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Abstract- This paper presents the design and integration of a vision-guided robotic system for 

automated and rapid vehicle inspection. The main goal of this work is to scan and explore regions of 

interest over an automotive vehicle while a manipulator’s end effector operates in close proximity of the 

vehicle and safely accommodates its curves and inherent surface obstacles, such as outside mirrors or 

door handles, in order to perform a series of close inspection tasks. The project is motivated by 

applications in automated vehicle inspection, cleaning, and security screening. In order to efficiently 

navigate the robotic manipulator along the vehicle’s surface within regions of interest that are 

selectively identified, an efficient and accurate integration of information from multiple RGB-D 

sensors and robotic components is proposed. The main components of the proposed approach include: 

automated vehicle category recognition from visual information; RGB-D sensors calibration; 

extraction of specific areas to inspect over the vehicle body, and path planning from an efficiently 
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reconstructed 3D surface mesh to move the robotic arm along and in close proximity of the vehicle. The 

proposed multi-stage system developed merges all components to achieve rapid 3D profiling over a 

complex surface in order to fully automate the process of surface following for vehicles of various types 

and shapes. To validate the feasibility and effectiveness of the proposed method experiments are carried 

out with a 7-DOF manipulator navigating over automotive body panels. 

 

Index terms: Security robotics, sensor based navigation, RGB-D imaging, curvature estimation, path 

planning, surface following. 

 

I. INTRODUCTION 

 

Detecting dangerous or prohibited substances hidden in a vehicle without direct human 

intervention is a critical asset to ensure the security of populations and properties worldwide. 

Some public and private institutions such as government buildings, research centers, military 

bases, airports, and critical infrastructures require rigorous vehicle or individual screening 

systems at their periphery. While very efficient technologies exist to detect the presence of 

minute amounts of dangerous material particles, the process of collecting such particles safely 

and efficiently in an automated manner remains a challenge, especially over large surfaces such 

as a vehicle. This paper proposes an efficient and automated integrated vision-guided robotic 

system driven by multi-modal sensing to fully automate the detection of potentially 

compromising particles over an automotive vehicle in the context of security screening in 

restricted access areas. While one of the major objectives is to make the process safer for the 

operators, the proposed solution also aims at providing authorities with pre-event screening 

mechanisms for prohibited substances while remaining versatile, easy to use, and permitting 

automated screening of large vehicles in time critical applications. 

In order to accomplish such complex operations, the robotic system must be able to sense the 

environment and analyse the information accurately, but still rapidly. In the literature, a large 

range of sensors are frequently employed to support such complex tasks. Unfortunately, many 

types of sensors are not capable to capture color and depth images simultaneously, or are slow 

and require a considerable amount of time to perform range acquisition over a surface of the size 

of an automotive vehicle. To overcome these limitations, several attempts have been made to 

capitalize on novel consumer-grade RGB-D cameras such as the Microsoft Kinect sensor. This 
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sensor is able to generate high density depth maps and corresponding color images in a fraction 

of a second. In the context of vehicle security screening considered here, which imposes tight 

time constraints, this technology can be beneficial, in spite of its inherent operational limits. 

Nevertheless, typical vehicles size largely exceeds the field of view of any RGB-D sensor. 

Therefore a multi-view vision system is required to rapidly acquire and reconstruct a full scale 

model of an entire vehicle undergoing inspection. The solution proposed in this work involves a 

network of rapid and relatively low resolution RGB-D sensors. The raw data being rapidly 

captured by a calibrated network of Kinect sensors makes it possible to constrain the screening 

procedure to only a few minutes, while still allowing for the process to determine the category of 

the vehicles (e.g. car, van, SUV) and provide the required 3D information for the robotic surface 

following to proceed with sufficient accuracy. The information collected includes the position 

and orientation of the surfaces, their shape and normal direction, and also the location of 

obstacles that must be taken into account for path planning and surface following. The 

compromise made to achieve sufficient speed for the acquisition and screening procedure was to 

adopt relatively low resolution sensors to acquire the depth maps. This has an impact that must be 

dealt with at the path planning stage. The proposed approach is designed and experimentally 

validated in the specific context of automotive vehicle surface shape following but is applicable 

to a wide diversity of shapes and object sizes. Within the context of development considered, the 

solution automatically adjusts the screening procedure for vehicles of various types, brands and 

sizes.  

The main contributions of the work are in the development of a dexterous manipulation 

framework and algorithms for exploration, scanning and shape estimation of miscellaneous 

object surfaces endowed with a robust motion planning and control approach coupled with RGB-

D vision sensing. This paper closely examines the integration considerations of the vision stages 

and the robotic components to perform the security screening process efficiently and in a 

coordinated way.  

The paper is organized as follows: Section 2 describes related work. Section 3 provides a formal 

problem formulation and set of requirements. Section 4 details the system design. Experimental 

results are presented in section 5, and a final discussion concludes the paper in Section 6. 
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II. RELATED WORKS 

 

To achieve complex manipulation with everyday life objects, robotic systems must become more 

aware of their environment and, as such, earn extra flexibility to fully capitalize on their degrees 

of freedom. For that matter, it is essential to develop innovative integrated sensing and control 

methods to provide next generation robots with increased versatility that will make them perform 

closer to what human beings can achieve. Computer vision and embedded force and torque 

sensing have been widely explored to assist robotic manipulation [1]. However, limitations 

remain with these sensing solutions, often resulting from the lack of adequate sensing capabilities 

to ensure robust interaction control when the robot is in close proximity or in contact with an 

object. The problem becomes even more prominent as modern robotics calls for operation in a 

priori unknown workspaces, which involves a full range of sensing, planning and fine control 

steps that must be performed by proper planning and control algorithms.  

For cases involving surface shape following, two types of sensors are generally used: touch 

(force/torque and tactile) and vision (2D/3D cameras). Force/torque sensors are critical 

components to extend the capability of robot manipulators. With the help of these sensors a robot 

can deal flexibly with uncertainties in its environment and execute complicated tasks. 

Force/torque feedback is often used to compensate for positioning inaccuracies in simultaneous 

position and force control of robot manipulators. In [2], the problem of force and position control 

of a robot manipulator performing compliant tasks is addressed which describes a 3D surface 

tracking controller based on the Smith predictor design. Yin et al. [3] propose a methodology of 

active tracking of unknown surface using force sensing and control technique. They present a 

strategy for force sensing and control on the basis of information fusion of force and position, 

fuzzy hierarchical coordination and neural control. In similar works, Papageorgiou et al. [4] 

propose a methodology to drive the end-effector of a non-redundant manipulator in close 

proximity of a surface while avoiding obstacles. Once the end-effector is close to the surface, a 

second controller takes over to stabilize the end-effector at a predefined distance to the surface. 

Later on, in [5], force control is added for tasks that involve dealing with contact on surfaces.  

In manipulative tasks, tactile information not only allows the assessment of object properties, but 

also guides manipulation based on contact information. It is used as a control parameter to obtain 

contact point estimation, surface normal, curvature measurement, and slip detection through 
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measurement of normal static forces [6-8]. In [9] the problem of autonomously estimating 

position and orientation of an object from tactile data is addressed for 6-DOF localization using a 

Bayesian approach. Wang and Li [10] present an approach to control a manipulator tracking a 

surface where the tactile sensing is integrated with force-torque information as the feedback. 

Hybrid impedance control is applied to follow both the position and force trajectories. Later, they 

extended the work to control the end-effector of a redundant manipulator in [11]. However, the 

force/torque and tactile sensors are only applicable in the context of surface following when there 

is physical interaction between the robot and the objects located in its workspace. An initial 

contact point between the tool and the object must be prescribed and the force controlled contact 

must be maintained. Therefore, due to the limited bandwidth of the contact or force sensor, the 

execution speed of the task is limited to prevent loss of contact and information. Furthermore, 

these methods are applicable only where planned trajectories are known beforehand [12]. 

A fundamental advantage of using vision-based control is that no contact with the object is 

required as it allows non-contact measurement of the environment. Vision sensors provide global 

or local information to determine the robot and objects relative locations in the environment. This 

information is used by the robot controller to reach the object or target while avoiding undesired 

obstacles. Most of the proposed approaches on vision control for robot manipulators have 

involved free motion control. These approaches demonstrate a good performance in dealing with 

planar surface following but are not very successful over 3D structures because the depth of the 

object is also required for precise path planning. Therefore, hybrid vision/force controllers [13-

15] have been proposed to deal with contact tasks [16] which impose delays due to the limited 

contact points.  

Alternatively, several solutions for vision-guided robotic inspection make use of high-cost 3D 

profiling cameras, scanners, sonars, or combinations of them, which often results in lengthy 

acquisition and slow processing of massive amounts of information. However, the ever growing 

popularity and adoption of RGB-D sensors, especially the Microsoft Kinect sensor, recently 

motivated its introduction in the development of vision-guided robotic systems. Numerous 

examples of application for the Kinect technology recently appeared in the literature [17-19]. For 

the development of the system presented here, the extreme acquisition speed of the Kinect 

technology and its low cost have been major selection criteria for this sensor to be used, given 

that rapidly acquiring color and 3D data over large volumes is instrumental. 
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The robot path planning methods typically used for surface following can be divided into two 

categories: learning-based and automatic. In learning-based path planning [20-23] methods, the 

robot is usually trained by the operator, or from offline generated paths, to scan a sample surface, 

and the same quality and shape is expected for the subsequent objects. These methods rely on the 

operator’s experience and knowledge of the facilities and equipment, on their capabilities, as well 

as on the processes and tools. In this case, the robot is trained using different methods which 

involve extensive tests and iterations of the teaching process until the best results are achieved.  

This process is complex and time consuming while the results vary based on the operator’s skill 

and the learning process. To overcome these shortcomings, it is desirable to use an automated 

path planning process. Automating the planning process reduces human labor dramatically, and 

keeps human operators from being exposed to harmful working environments. Hence, it is 

essential to replace the manual path planning methods by automated ones. This challenging 

research topic has been receiving more and more attention from academia and industry. As part 

of these initiatives, this paper introduces a fully automated vision-guided global path planning 

method that is adapted to explore and scan regions of interest over a vehicle body using a rapidly 

constructed 3D model of the vehicle. As such, this paper represents a technically extended 

version of our previous paper [24] on the complete development and integration of the sensing 

stage and the path generation process to handle more complex surface shapes. 

 

III. PROBLEM FORMULATION AND REQUIREMENTS 

 

The aim of this work is to rapidly collect data over the surface of a vehicle in order to efficiently 

navigate a robotic manipulator toward regions of interest that are selectively identified as being 

critical for security screening. A set of RGB-D sensors are configured to interact as a 

collaborative network of imagers to achieve full coverage and rapid 3D profiling of automotive 

vehicles within a short response time [25].  Fig. 1a shows the layout of the proposed automated 

vehicle screening station and Fig. 1b presents an instance of the physical implementation of the 

RGB-D sensing stage while conducting experimental evaluation of the vision stage. The vehicle 

is stopped in front of a set of Kinect RGB-D sensors while the manipulator can be moved on a 

linear track placed aside the vehicle to extend its reach. The manipulator is initially located at the 

extremity of its workspace to avoid creating any occlusion during the RGB-D data acquisition 

phase. The network of Kinect sensors distributed around the vehicle is properly calibrated to 
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collect the color and depth information over a 180 degrees view of the vehicle (one side) by five 

calibrated Kinect sensors within only a few seconds. A duplication of the same setup can be 

deployed on the other side of the vehicle to acquire its complete surface. The color and depth 

information is then processed to construct a textured 3D model of the vehicle. The specifications 

initially set for the task were that the entire procedure of acquisition, modeling, and robotic 

interaction is completed within 2 to 3 minutes, and that the accuracy achieved on the 3D 

reconstructed model is sufficient to navigate the manipulator while following the surface of the 

vehicle’s bodywork. 

            

(a)                                                                 (b) 

Figure 1. a) Design of the vehicle screening station, and b) physical implementation of the  

RGB-D scanning station. 

 

IV. SYSTEM DESIGN 

 

The assembly of the main components of the proposed RGB-D vision-guided robotic platform for 

vehicle inspection is presented in Fig. 2. The main components of the system are: vehicle category 

recognition functionalities for automated and efficient recognition and classification of different 

vehicles; a registration module using color and depth data from Kinect sensors to estimate the 

calibration parameters of the vision stage; a visual detector of vehicle parts (VDVP) to detect 

specific areas that will be inspected over the vehicle; an efficient surface mesh generator for 3D 

modelling; and a global path planning algorithm that operates from a 3D surface mesh to achieve 

precise robot control. These components are detailed in this section. 

a. Vehicle category recognition 

Given that an automated security screening process requires the verification of various areas over 

a vehicle (such as door handles, seem of doors, trunk area), the procedure must be adapted to the 

specific shape of a vehicle entering the inspection station in order to perform reliably while still 



Danial Nakhaeinia, Pierre Payeur, Alberto Chávez-Aragón, Ana-Maria Cretu, Robert Laganière, and Rizwan 
Macknojia, SURFACE FOLLOWING WITH AN RGB-D VISION-GUIDED ROBOTIC SYSTEM FOR AUTOMATED 

AND RAPID VEHICLE INSPECTION 

 

426 

 

meeting tight time constraints. With the large number of vehicles circulating over our roads and 

the diversity of their categories and size, it appears essential to first recognize to what category a 

vehicle belongs (e.g. sedan, SUV, minivan, small truck) before collecting any further data. For this 

purpose, a vehicle classification system from color images collected from different views that has 

been recently proposed [26] was adapted to support the security screening application. The 

computational approach consists in the use of human visual attention mechanismsto detect 

discriminative salient features [27], and a set of support vector machines (SVM) classifiers, 

complemented by a width and height-based discriminating heuristic, to achieve fast automated 

classification. As shown in Fig. 3, five images are collected by the 5 color cameras of the Kinect 

sensors distributed around the vehicle (Fig. 1) for multi-view classification. To identify a 

predetermined number of features for each view, saliency maps (SM) are obtained using Itti et al. 

[28] visual attention model. The number of salient features required for classification of the 

images in a dataset is defined using the saliency threshold, ST (Eq. 1). To build a limited m-feature 

saliency map, SMl (Eq. 2), all the selected salient features in SM are replaced with 1s and the rest 

of the points with 0 for each view of a vehicle: 

                                      𝑠𝑇 = ∑ 𝑠𝑖
𝑚
𝑖=1 / ∑ 𝑠𝑗

𝑛
𝑗=1                                 (1) 

 
 

                         𝑆𝑀𝑙(𝑥, 𝑦) = {
1      𝑖𝑓 𝑆𝑀(𝑥, 𝑦) ∈ 𝑆𝑚

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

                             (2) 

where s ∈ S, S= {sk│ sk = SM (xk , yk), sk > sk+1, k=1…n}, m is the number of salient pixels to be 

considered, and n is the total number of pixels in the saliency map, SM, with m < n. The number 

of salient features, m, is defined such that at least 99.8% of the images in a dataset reach a saliency 

threshold, sT, of at least 0.5. S is a list of all the pixels in SM from the most salient to the least 

salient. 

To perform a binary classification, the set of features extracted from each image is transformed 

into a vector and 5 SVM classifiers are trained for each view. The classifier output is 1 if it 

recognizes the vehicle in each view and 0 otherwise. Finally, the results of all 5 classifiers are 

composed from each view which is called a confidence measure. The confidence value changes 

from 0 to 5. When none of the classifiers identifies the vehicle in a category, the confidence is 0, 

and when all the classifiers recognize the vehicle, it is 5. The vehicle belongs to the category that 

provides the highest confidence measure. If 2 or more categories provide the same confidence 

measure, two additional SVM classifiers are trained to identify the vehicle category based on the 
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width and height. The saliency map obtained above is used to estimate the width and height of 

the vehicle. The classifier receives a vector composed of the width and height of a vehicle 

computed based on the feature set in each image to map the vehicle to a corresponding category. 

 
Figure 2. Block diagram of the vision-guided surface following robotic system. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Multi-view vehicle classification: examples of vehicle categories: a) sedan, b) sports 

car, c) SUV. 

Our early work validated the method on vehicles of three different categories: sedan, sport car, and 

SUV. The overall recognition rates reached 96% where only salient features were used, and over 

99% correct classification when using the additional estimations on the width and height of the 

vehicles [26]. As such, the approach demonstrated superior performance to alternative solutions 

from the literature. 
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b. Calibration & data registration 
 

In order to coordinate the movement of the manipulator using rapidly acquired 3D data by the 

network of Kinect sensors, the corresponding textured 3D point clouds must be accurately 

registered with respect to the base of the robot. For this purpose, a calibration methodology was 

proposed in [25] to estimate the internal and external calibration parameters over a network of 

Kinect sensors to achieve accurate alignment between the respective point clouds and textured 

images acquired by each Kinect sensor that are distributed in a collaborative network of imagers to 

provide coverage over the large volume occupied by the vehicle.  

Extrinsic parameters estimation for built-in Kinect sensors (color and depth) within each Kinect 

unit is determined by stereo calibration. The position between both cameras is defined by (3): 

 

𝐻 = 𝐻𝑅𝐺𝐵𝐻𝐼𝑅
−1 (3) 

 

𝐻IR is the homogenous transformation matrix from the depth (IR) camera to a checkerboard 

target used for calibration, and 𝐻RGB is the homogenous transformation from the color (RGB) 

camera to the checkerboard target. The internal extrinsic calibration parameters allow to 

accurately relate the color to depth data collected by a given Kinect device. However, the Kinect 

sensor does not directly provide the registered color and depth images. Therefore, the 3D 

coordinates corresponding to each point in the depth image are computed as follows: 

 

𝑋𝐼𝑅 = (𝑥 − 𝑂𝑥_𝐼𝑅)𝑑𝑢(𝑥, 𝑦) 𝑓𝑥_𝐼𝑅⁄  

𝑌𝐼𝑅 = (𝑦 − 𝑂𝑦_𝐼𝑅)𝑑𝑢(𝑥, 𝑦) 𝑓𝑦_𝐼𝑅⁄  

𝑍𝐼𝑅 =  𝑑𝑢(𝑥, 𝑦) 

 

(4) 

 

where (𝑋𝐼𝑅 , 𝑌𝐼𝑅 , 𝑍𝐼𝑅) are the 3D point coordinates of pixel (x, y) in the depth image with respect to 

the IR camera reference frame, (𝑥, 𝑦) is the pixel location in the depth map, (𝑓𝑥_𝐼𝑅, 𝑓𝑦_𝐼𝑅) is the 

focal length of the IR camera, (𝑂𝑥_𝐼𝑅,𝑂𝑦_𝐼𝑅) is the optical center of the IR camera, and 𝑑𝑢(𝑥, 𝑦) is 

the depth of a pixel in the depth image. Next, the color is assigned from the RGB image to each 

3D point 𝑃𝐼𝑅(𝑋𝐼𝑅 , 𝑌𝐼𝑅 , 𝑍𝐼𝑅) as follows: 

 

𝑃𝑅𝐺𝐵 (𝑋𝑅𝐺𝐵, 𝑌𝑅𝐺𝐵, 𝑍𝑅𝐺𝐵) = 𝑅 · 𝑃𝐼𝑅 + 𝑇 

𝑥 = (𝑋𝑅𝐺𝐵. 𝑓𝑥_𝑅𝐺𝐵 𝑍𝑅𝐺𝐵) + ⁄ 𝑂𝑥_𝑅𝐺𝐵 

𝑦 = (𝑌𝑅𝐺𝐵. 𝑓𝑦_𝑅𝐺𝐵 𝑍𝑅𝐺𝐵) + ⁄ 𝑂𝑦_𝑅𝐺𝐵 

 

(5) 
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where PRGB is the 3D point with respect to the color camera reference frame, 𝑅 and 𝑇 are the 

rotation and translation parameters from the color camera to the depth camera obtained from the 

calibration procedure, (𝑓𝑥_𝑅𝐺𝐵,𝑓𝑦_𝑅𝐺𝐵) is the focal length of the color camera,(𝑂𝑥_𝑅𝐺𝐵,𝑂𝑦_𝑅𝐺𝐵) is 

the optical center of the color camera, and (𝑥, 𝑦) is the pixel location of color information in the 

color image. 

The last set of parameters estimated in the calibration process is the extrinsic one, which is the 

relative position and orientation between every pair of Kinect sensors. This way a complete 

calibration of all cameras in the network of Kinect sensors is achieved [25]. As shown in Fig. 4, 

the center Kinect, K1, is set as a base of reference for the setup. The relative calibration is then 

calculated between (K1, K0), (K1, K2), (K2, K3) and (K0, K4). 

 

Figure 4. Complete calibration of all sensors in the network of Kinect sensors. 

The raw Kinect sensor information is stored in a textured 3D point cloud form. The vision stage 

is also calibrated with the robot’s base reference frame during the setup procedure. Therefore, all 

the points imaged on the vehicle are defined as Cartesian coordinates with respect to the robot’s 

base reference frame, which allows for path planning and guidance of the manipulator from the 

visual stage. As shown in Fig. 5, the calibration parameters are initially estimated with the method 

detailed in [25] and then finely tuned with the use of an iterative closest point (ICP) algorithm as 

part of the calibration process. The calibration procedure is performed offline in order to meet the 

vehicle screening time requirements before the inspection station is put in operation. As such it 

does not impact the execution time for the security screening process. The refined calibration 

parameters are later used to perform actual registration between the piecewise datasets originating 

from the 5 separate Kinect sensors in order to guide the manipulator from visual information.  
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Figure 5. Calibration and data registration module. 

c. Regions of interest extraction 

Performing a screening operation over the entire surface of the vehicle remains unrealistic within 

the time constraints imposed by the tasks. Given the nature of the operation, a number of critical 

areas were selected given the higher probability of finding prohibited substances in those regions 

that are prone to hands contact with the vehicle. In order to automatically and efficiently locate 

those targeted areas over a vehicle, a visual detector of vehicle parts (VDVP) has been developed 

[29], which also takes advantage of the fully calibrated network of Kinect sensors.  

The VDVP method determines the location of the vehicle in the scene and subsequently the 

location of a set of significant vehicle components. It initially relies on the successful detection of 

the car wheels from the lateral views. The detector uses the Hough transform algorithm and a 

classifier based on Haar-like features trained for detecting wheels. The approach estimates the 

shape over selected regions to be reconstructed in order to support the robot navigation and 

surface following based on the detection of features of interest on vehicle body panels. The VDVP 

receives a color image of a lateral view of the vehicle as an input and automatically and efficiently 

determines the location of up to 14 vehicle characteristic parts that are relevant for security 

screening (Fig. 6). Once the location of the regions of interest is known, the approach uses inputs 

from the depth sensors of the Kinect devices to acquire and reconstruct the shape of the vehicle’s 

surface within the regions of interest only, thus speeding up the 3D imaging process.  

 

Figure 6. Regions of interest detection over a 4-door sedan car. 
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The specific areas of interest over a large object such as a vehicle are re-organized in order to 

speed up the modeling process and to facilitate the guidance of the robot arm. By focusing the 

operation only over selected areas of importance for the screening procedure the amount of time 

spent on scanning of the vehicle surface is significantly reduced. 

d. Surface mesh generation 

The point clouds collected by the set of Kinect sensors are first aligned using the external 

calibration parameters previously calculated. Then, using the VDVP method, the points contained 

within the specific areas of interest are segmented from the whole point cloud to make the 

representation of the surface shape only over those regions of interest. In this stage it is desired to 

automatically reconstruct the 3D shape over selected regions using the depth information from the 

global RGB-D model. Fig. 7 illustrates the procedure for 3D reconstruction of regions of interest 

over the vehicle lateral panels. For this purpose, the locations of the detected parts of interest in 

color images are mapped unto the 3D point cloud. A surface mesh is created from the registered 

point clouds using an accelerated meshing technique [29] that takes advantage of the structured 

organization of depth readings generated by Kinect sensors. A set of local 3D colored models that 

represent the shape and visual appearance of the surface within each region of interest is obtained. 

Rather than using the classical Delaunay triangulation technique, which tends to be 

computationally expensive, here the triangulation mesh is computed more efficiently by taking 

advantage of the structured information provided by Kinect sensors. In this case, an individual 

triangle mesh is built over the corresponding groups of points that belong to each region of 

interest. 

The models are stored in a PLY format file which contains a collection of vertices and faces which 

are called the vertex list and the face list. The vertex list is a list of (x, y, z) triplets for vertices 

with respect to the robot base frame. The face list contains the number of vertices that form the 

face (triangle), followed by the vertex indices that compose each face. The proposed meshing 

technique generates a mesh for the entire point cloud from one Kinect in about 0.1 second. 

A 3D mesh of a mock-up car door panel is shown in Fig. 8, after the Quadric Clustering 

decimation algorithm [30] is applied over the resulting triangle mesh to reduce the number of 

triangles for better visualization. 
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Figure 7. 3D reconstruction of selected regions over the vehicle. 

 

Figure 8. Triangle mesh of a car door model. 

e. Path planning for surface following 

The piecewise 3D models generated in the previous step are used as inputs for a robotic path 

planner to allow the manipulator’s end effector to efficiently scan a given region of interest in 

close proximity of a vehicle while performing some inspection tasks. For that purpose, the 3D 

model of the region is first processed to extract the vertex list and the face list to plan a trajectory 

in Cartesian space for scanning the whole region of interest. Then a triangle mesh of the surface 

is formed to compute the normal to each vertex that is part of the planned trajectory. Finally the 

orientation of the surface area that will be scanned is estimated to compute the orientation of the 

end-effector at each location while meeting the desired point coordinates over the path. 
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1) 3D data processing 

The vertex list and the face list are used jointly to plan a path for the manipulator and 

simultaneously form the 3D triangle mesh of reference to estimate the local normal and 

orientation of the surface which are also used to control the orientation of the manipulator. The 

2D representation of a 3D point cloud is presented in Fig. 9. The 3D point of 𝒊 can be accessed 

from the vertex list 𝑽𝑳 as follows: 

𝑣𝑖 ←  𝑉𝐿[𝑖𝑛𝑑𝑒𝑥] 
 

   (6) 

The black dot is a vertex 𝒊 shared by the triangles: (𝑒, 𝑖, 𝑛), (𝑛, 𝑖, 𝑤), (𝑒, 𝑖, 𝑠) and (𝑠, 𝑖, 𝑤) which 

form four faces, where 𝒆, 𝒔, 𝒘 and 𝒏 are four neighbor points of 𝒊. The triangles are defined as 

follows: 

𝑇𝑀1[𝑗]  ←  𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑣1, 𝑣2, 𝑣3) 

𝑇𝑀2[𝑗]  ←  𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑣1, 𝑣4, 𝑣5) 

    (7) 

 

 

Where 𝑣1 =  𝑉𝐿(𝑖), 𝑣2 =  𝑉𝐿(𝑒), 𝑣3 =  𝑉𝐿(𝑠), 𝑣4 =  𝑉𝐿(𝑤) and 𝑣5 =  𝑉𝐿(𝑛). 

 

 

Figure 9. 2D representation of a 3D point cloud. 

The triangulation process is performed rapidly using this procedure and later on supports the 

estimate of local normal and surface curvature that control the orientation of the manipulator. 

2) Trajectory planning 

In order to follow the vehicle surface within a given region of interest, the trajectory of the end 

effector is planned using a raster scan motion according to the 3D model defined in the previous 

section. The global path planning strategy, introduced in [24], assumes that each zone of interest is 

bounded in a rectangular box delimited by a set of points at the edge of the surface (Ymin, Ymax, 

Zmin, Zmax), corresponding respectively to the minimum and maximum values of the Y and Z 

coordinates in the vertex list (Fig. 10a). To scan and explore the whole region, the end-effector 

center position at each step is defined by a set of points according to the end-effector coverage 

𝑒 𝑤 𝑖 

𝑠 

𝑛 
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zone, which corresponds to the size of the tool attached on the robot to perform the screening 

operation (Fig. 10b). In this work the manipulator is considered to cover a circular area with radius 

of r = 50 mm which represents the diameter of the tool mounted on the robot to perform particles 

collection which are analyzed later on to detect the presence of any prohibited substances.  

The planning strategy starts with the closest vertex to the upper-left corner of the rectangular 

bounding box. For this purpose the closest point to the corner point with Ymax and Zmin (Fig. 10b) 

coordinates is searched in the vertex list (Eq. 8).   

 

 

 

where inum is the total number of vertices in vertex list, and VL[i] is an entry in the list of vertices. 

The vertex which generates the minimum distance is considered as start point. Then the robot 

moves horizontally towards the next point that is within a distance 2r, which corresponds to twice 

the circular area of radius r covered by the end effector on the manipulator, from the previous 

point along the Z-axis until it reaches to the surface edge on the right side of the rectangular 

bounding box (Zmax). The surface edge is identified by checking the neighbour vertex at each step. 

Once the neighbour vertices are no longer within the rectangular area, the robot moves vertically 

down and the next position of the end-effector is the point which is within a distance 2r from the 

previous location of the robot along the Y-axis. Then the robot again moves horizontally but in the 

opposite direction until it reaches the surface edge on the left side of the rectangular bounding area 

(Zmin). The process continues until the robot has scanned the entire area. 

 

                                        (a)                                                            (b) 

Figure 10. a) Zone of interest bounded in a rectangular form, b) trajectory planning over the 

region of interest. 

for (k=0:inum) 

Min(Dist)=

min ( √| 𝑉𝐿[𝑖]. 𝑦 − 𝑌𝑚𝑎𝑥|2 − | 𝑉[𝑖]. 𝑧 − 𝑍𝑚𝑖𝑛|2) 

 

                                (8)                           
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However, the desired region of interest can be of any shape and it is not efficient to scan a region 

only using a rectangular bounding approach. To further increase the flexibility and efficiency of 

the path planning such that it follows the actual edges of the region of interest, it is required to 

determine the object boundary points along the desired path. For this purpose, the surface is 

divided by M horizontal lines separated by a distance of 2r, one from each other, along the Y axis 

(Fig. 11a). 

𝑀 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)) ⁄ 2𝑟 (9) 

After splitting the surface, the distance between the points which lie on a same line and the line’s 

start point is calculated. The points with the minimum (Ai) and maximum (Bi) distances are 

selected respectively as the border edges (Fig. 11b). 

𝐹𝑜𝑟(𝑖 = 0:𝑀) 

𝑆𝑖 = 𝑌𝑚𝑎𝑥 − (2𝑖 − 1)𝑟 

 

If  |𝑉𝐿[𝑖]. 𝑦 − 𝑆𝑖| <  𝛼 

                                                                          

(10) 

        𝐷𝑖𝑠𝑡 =  |𝑉𝐿[𝑖]. 𝑧 – 𝑍𝑚𝑖𝑛| (11)    

 

A𝑖  =  min (𝐷𝑖𝑠𝑡) 

B𝑖  =  max (𝐷𝑖𝑠𝑡) 

 

 

(12) 

where 𝛼 is a small value to find the points that lies on the same horizontal line. These steps result 

in extracting all border edges with various depths. These edge points are used to control the robot 

position at the beginning and end of each horizontal line.  

    

(a)                                                                          (b) 

Figure 11. a) Region of interest splitting, b) edge point’s extraction. 



Danial Nakhaeinia, Pierre Payeur, Alberto Chávez-Aragón, Ana-Maria Cretu, Robert Laganière, and Rizwan 
Macknojia, SURFACE FOLLOWING WITH AN RGB-D VISION-GUIDED ROBOTIC SYSTEM FOR AUTOMATED 

AND RAPID VEHICLE INSPECTION 

 

436 

 

3) Normal to surface calculation 

The set of points forming a path for the robot defined in the previous step determine the positions 

for the end effector to reach in Cartesian coordinates. However, to ensure proper alignment of the 

end effector with the surface and close proximity to the vehicle bodywork, the local orientation of 

the end effector should match that of the normal to the surface of the vehicle at every point. This is 

especially important given the typical aesthetic curves and significant changes of orientation that 

exist over any type of vehicle. Therefore, it is required to calculate the normal to the surface and to 

estimate the local surface orientation in order to compute the proper end-effector orientation and 

ensure precise surface following. As defined earlier, using the vertex list and the face list, a 

triangle mesh of the surface is formed. The normal of each triangle is computed as the cross 

product between the vectors representing two edges of the triangle. The probability of having a 

normal in one direction is the same as having it in the opposite direction, which depends on the 

cross product order (Fig. 12a). To solve this issue, the direction of the normal is imposed to be in 

the same direction for all triangles, which corresponds to the orientation of the surface of the 

vehicle when viewed from the sensors side. The following equations define the normal vector, N, 

calculated from a set of three vertices, E, F, G, belonging to a given triangle: 

𝑁𝑥 = (𝐸𝑦 − 𝐺𝑦 ∙ 𝐸𝑧 − 𝐹𝑧) − (𝐸𝑧 − 𝐺𝑧 ∙ 𝐸𝑦 − 𝐹𝑦) (13) 

𝑁𝑦 = (𝐸𝑧 − 𝐺𝑧 ∙ 𝐸𝑥 − 𝐹𝑥) − (𝐸𝑥 − 𝐺𝑥 ∙ 𝐸𝑧 − 𝐹𝑧) (14) 

𝑁𝑧 = (𝐸𝑥 − 𝐺𝑥 ∙ 𝐸𝑦 − 𝐹𝑦) − (𝐸𝑦 − 𝐺𝑦 ∙ 𝐸𝑥 − 𝐹𝑥) (15) 

𝑁 = [𝑁𝑥 𝑁𝑦 𝑁𝑧] (16) 

 

However, as shown in Fig. 12b, the data collected by Kinect sensors tend to be noisy and 

discretized. As a consequence, the normal calculation tends not to provide accurate enough 

information to properly determine the orientation in all locations. 

              

                                               (a)                                                            (b) 

Figure 12. a) Triangle normal vector calculation, b) triangle mesh normals over a region of 

interest. 
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Therefore, the resulting normals are then normalized such that the length of the edges does not 

come into account. The normalized vector Nnorm is computed as: 

                   𝑁𝑛𝑜𝑟𝑚 = [
𝑁𝑥

𝑛𝑜𝑟𝑚

𝑁𝑦

𝑛𝑜𝑟𝑚

𝑁𝑧

𝑛𝑜𝑟𝑚
]       (17) 

where 

           𝑛𝑜𝑟𝑚 = √𝑁𝑥
2 + 𝑁𝑦

2 + 𝑁𝑧
2 

   (18) 

 

Since the planned path is a set of vertices from the vertex list, it is desired to calculate an 

orientation corresponding to each vertex. As shown in Fig. 13a, each vertex can be shared with 

several triangles. Therefore, to calculate the vertex normal in the triangle mesh, all the triangles 

that contain that vertex must be known and the normalized average of all these triangles’ normal 

represents the vertex normal.  If fi,j are the n triangles that have the common vertex Vi , the vertex 

normal 𝑵𝒗𝒊
⃗⃗ ⃗⃗ ⃗⃗  is given as follows: 

𝑁𝑣𝑖
⃗⃗ ⃗⃗  ⃗ =

∑ 𝑁𝑓𝑖,𝑗
⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑛

𝑗=1

𝑛
 (19) 

In order to smooth out the normal estimate, the vertex’s normal is calculated for all the local 

vertices which are covered by the end-effector, within a region of radius r, for every displacement 

step. The average of the vertices normals is then calculated and normalized to represent the 

overall direction of the surface in the local neighborhood of the corresponding vertex along the 

planned trajectory (Fig.13b). 

The normal vector is then used to calculate a rotation matrix and compute the RPY angles that 

define the surface orientation with respect to the robot base frame. Since the vehicle panel surface 

and the robot end effector face directions that are opposite to each other, the orientation of the 

end effector for a given location along the trajectory is set as the opposite to the local surface 

orientation vector. 

           

                                            (a)                                                             (b)            

Figure 13. a) Vertex normal calculation, b) averaged and normalized vertex normal. 
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4) Obstacle detection and avoidance 

The desired path is safe as long as there is no obstacle (e.g. protruding components of the vehicle) 

along the planned path, as exemplified in Fig. 14a where the rear view mirror on the door panel is 

evidenced. In order to avoid an obstacle, it is required to detect the object using the 3D model 

computed in previous stages and define a new path for the robot in proximity of the obstacle. In 

this work, the obstacle detection is based on the detection of depth change in the local surface 

mesh acquired from the RGB-D sensors. A large and abrupt change in the depth value (x-

coordinate) of a series of the vertices indicates the presence of an obstacle (Fig. 14b). For this 

purpose, the depth of the current position of the end effector is compared with the one in the next 

position. When the difference between the current and the next depth is greater than a threshold, 

here set to 𝜀𝑑 = 30 𝑚𝑚, for at least 50 consecutive vertices, an obstacle is detected on the next 

position. In this case, the end effector moves backward from the predefined surface and 

temporarily follows the obstacle boundary until the difference between the depth of the current 

and the next position becomes lower than 𝜀𝑑. It then moves forward to continue along the path 

originally planned unless another obstacle is detected. 

               
(a)                                                                 (b)                                    

Figure 14. a) 3D model of a car door with a rear view mirror, b) abrupt depth change in 

presence of an obstacle. 

 

5) Surface following execution 

As a final stage, the computed Cartesian space trajectory which defines the position and 

orientation for the end-effector, as determined in the previous section, is transformed to the joint 

space of the robot via its inverse kinematics. Then, the joint space trajectory is sent to the 

controller to perform the surface following over the region of interest on the vehicle. The entire 

procedure is repeated for every region of interest extracted from the RGB-D model of the vehicle. 
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V. EXPERIMENTAL RESULTS 

 

The algorithms used for this work were developed in C++ and run on a computer with an Intel 

core i7 CPU and Windows 7. For a 3D surface shape reconstruction of a regular vehicle, the 

average time needed is 4.0 seconds per Kinect sensor view. When using a network of 5 Kinect 

sensors covering an 180o lateral view of the vehicle, the network of sensors collects the 

information in two time slots to avoid interference; the initialization of each device takes between 

1 and 2 seconds. As a result, the scanning and 3D textured modeling processes for the entire side 

of a vehicle are completed within 30 seconds. The calibration process is performed off-line and 

has no impact on the inspection rate. To validate the feasibility of the proposed path planning 

method and to assess the accuracy of the end-effector motion in accordance with the surface of 

automotive panels, experiments are carried out with a 7-DOF CRS F3 manipulator which consists 

of a 6-DOF robot arm mounted on a linear track. The resulting redundancy provides an additional 

axis of motion and an expanded working area which is also useful to prevent some singularities. 

a. Surface following over a mock-up car door with variable orientation 

In the first experiment, a 3D model of a car door (Fig. 15a) is constructed using the color and 

depth information collected with the network of Kinect sensors. It is desired to closely scan the 

whole door with the robot except for the window area since glass is not imaged well with Kinect 

sensor technology. The considered region of interest (contained within the black rectangular box 

in Fig. 15a) over the door is stored as a 3D triangular mesh (Fig.15b). 

          
(a)                                                            (b) 

Figure 15: a) Region of interest over a car door, b) corresponding 3D triangular mesh used to 

guide the manipulator. 
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The start point at the upper-left corner of the surface is detected (Fig. 16a). Then the robot 

follows the planned trajectory while remaining in close proximity to the surface (a safety distance 

of 50 mm is considered between the end-effector and the surface during this experiment). Over 

the entire trajectory, the end effector accurately follows the surface curves (Fig. 16b-d).  

            
                                         (a)                                                               (b) 

           
(c)                                                    (d) 

Figure 16: Robot performance at following the panel’s curved surface and matching its position 

and orientation. 

b.  Surface following over a real car door with an obstacle  

In the second experiment, a real automotive door panel with a rear view mirror is considered. As 

shown in Fig. 17a, a start point (upper left edge) of the object is automatically selected by the 

robot using the global information provided from the Kinect sensors. The obstacle (mirror) on the 

door is detectable in the reconstructed 3D model of the object (Fig. 14). The robot closely follows 

the object’s surface until it reaches to the obstacle. Then the robot moves away from the panel, 

where the obstacle starts (Fig. 17b) and follows the obstacle boundary until the obstacle ends 

(Fig. 17c). Finally the robot moves back closer to the surface and continues closely following the 

surface on the other side of the obstacle (Fig. 17d). 
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(a)                                                         (b) 

            

(c)                                                      (d) 

Figure 17. Robot operation when dealing with an obstacle over the surface of a car door panel 

with a rear view mirror. 

c. Surface following accuracy and limitations 

Fig. 18a shows the robot trajectory in Cartesian space for the first experimental scenario above 

where the robot follows the surface of a mock-up car door (Fig. 16). In this case, the robot 

successfully tracks the desired path and scans the whole surface smoothly. The blue line shows 

the desired path (yd, zd) and the red dashed line shows the actual robot trajectory (y,z). It is 

observed that the robot path perfectly follows the desired trajectory along the surface of the 

panel. The desired path is planned based on the 3D model of the door collected by the vision 

sensors as shown in Fig. 15b, which ensures the proper alignment of the planned trajectory over 

the surface of the panels. Therefore, the error, (ey, ez), between the desired path and the robot 

trajectory (Fig. 18b) represents the accuracy of robot in following the Cartesian path, which 

remains under 0.15 mm of deviation. Fig. 19a shows the desired value,𝑞𝑑, (in blue) of the joints 

calculated using inverse kinematics at each step versus the real joints value, 𝑞, (in red) after 

execution of each step. As shown in Fig. 19b, the error in joint space is also very small. Despite 
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the low resolution on depth data collect by Kinect sensors over the region of interest of a car 

door, the surface is covered entirely and the experimental results show an adequate surface 

following performance in the joint and Cartesian spaces. 

Beside the considerable advantages of using Kinect sensors, such as their acquisition speed and 

affordability, they also present some limitations, mainly related to their limited depth resolution. 

In order to further evaluate the potential error between the planned path based on the 3D model of 

an object and the actual position and shape of the panel in 2D (Y-Z plane), a refined contour 

following method was also evaluated [12] where an eye-in hand camera is mounted on the robot 

end-effector to provides supplementary local information with higher resolution about the actual 

contour location. A contour tracking operation is here considered as an alternative to surface 

following.  

         

(a)                                                         (b) 

Figure 18: a) Cartesian space surface following trajectory, b) tracking error in the Cartesian 

space. 

Fig. 20a shows the trajectory of the robot while following the contours of the automotive door 

shown in Fig. 15a, using Kinect information (blue edge map) vs the robot trajectory using visual 

servoing with aid of the eye-in-hand camera (red dots) to closely follow the contours. The gap in 

between the blue and the red contour points shows that the error between the estimated contour 

using Kinect sensors and the actual position of the object’s contour is at most 30 mm. The error 

on the depth measurement provided by Kinect sensors during the first experiment is also shown 

in Fig. 20b. The Cartesian distance deviation that appears in between the end-effector location 

and the surface, was manually measured at each step over the surface following operation. The 

average residual error is about 20 mm in absolute value, and varies in sign depending on the 

section of the object and its distance from the Kinect. This level or error is expectable as it 
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corresponds to the typical error characteristics of the Kinect sensors and of some residual error in 

the Kinect/robot calibration process discussed in section IV.b. 

 

(a)                                                       (b) 

Figure 19: a) Joint space surface following, and b) tracking error in the joint space. 

 

      

(a)                                                                          (b) 

Figure 20: a) Car door contour following using an assistive eye-in-hand camera and deviation 

with respect to Kinect only guided navigation, b) depth error estimation for surface following in 

the first experiment. 
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VI. CONCLUSION AND FUTURE WORK 

 

This work presents the design and implementation of an RGB-D vision-guided surface following 

method for automated and rapid vehicle inspection using the 3D modeling of regions of interest 

over an automotive vehicle in the context of automated security screening for restricted areas 

access. A layout for the vehicle screening station is proposed and the development of the main 

stages of the inspection system is detailed as well as their integration into a coordinated and 

efficient system solution able to meet tight time requirements. An automated classification 

technique is adapted for recognizing different vehicle categories from piecewise views collected 

by a calibrated network of Kinect sensors distributed around the vehicle. The sensors collect 

color and depth information over the bodywork of the vehicle to produce a triangular mesh in an 

accelerated manner. The resulting 3D data provides sufficiently accurate spatial information 

about the bodywork of the vehicle for planning the path of a robot to closely follow the surface of 

an automotive vehicle surfaces as required to collect samples of particles that support the 

detection of prohibited substances that may be hiding on board the vehicle. The proposed method 

is implemented and experimentally validated at full scale with a network of five RGB-D sensors 

and a 7-DOF robotic manipulator. The experimental results demonstrate that sufficient accuracy 

is achieved for the robot to successfully follow, both in position and orientation, the surface and 

the contours of whole regions of interest, while also avoiding obstacles created by protruding 

parts over the vehicle body. 

Given the noisy and discretized nature of information provided by Kinect sensors, especially on 

depth measurements, ensuring and maintaining contact with the vehicle during the entire 

screening process remains a challenge. To address this issue an adaptive path planning method is 

currently being developed to further refine the planned trajectory based on extra information 

about the local shape and orientation of the surface. The required information will be collected 

using live proximity and contact sensors mounted on the end-effector to dynamically refine the 

planned trajectory. Any error due to the relatively low accuracy of the 3D model of the vehicle 

achieved with the RGB-D sensors will be compensated by these embedded sensors in order to 

ensure more precise interaction between the robot and the vehicle. 
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