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Abstract—It is well established that acquiring large amount of 
data can quickly lead to important data management challenges 
where processing capabilities become saturated and preempt full 
usage of the information available for autonomous systems to 
make educated decisions. While sub-sampling offers a naïve 
solution for reducing dataset dimension, it does not capitalize on 
the knowledge available in already acquired data to selectively 
drive further acquisition over the most significant regions. This 
paper discusses the development of a probabilistic occupancy 
grid based algorithm to automatically establish which regions 
within a single point of view from a range sensor would provide 
the most improvement if further acquisitions were made.  The 
algorithm, which is independent of the sensor used, is validated 
with range data acquired from the popular Kinect multi-modal 
imaging sensor. 

Index Terms—probabilistic occupancy grid, range sensing, 
3D imaging, smart sensing, selective sensing, Kinect. 

I.  INTRODUCTION 
With the continuous improvement of semiconductor 

manufacturing technologies, production of sensors has dropped 
in cost, while at the same time improving their overall quality 
and the amount of data they produce.  This has led to a larger 
number of sensors being used in numerous applications, such 
as cell phone cameras, entertainments systems with Microsoft 
Kinect, security applications, and robotic platforms.  
Interpreting all of this rich and dense information from a wide 
variety of sensors is a complex task, which is known as the 'Big 
Data Challenge' [1, 2]. 

While this work does not deal with the related issues of 
handling and combining data across multiple sensors and 
sharing of that data, it addresses the sub-issue of 3D data 
acquisition.  One way to tackle the Big Data Challenge consists 
of minimizing the amount of data points acquired in a range 
image.  A promising approach to achieve this goal aims at 
identifying regions in the scene which need a higher density of 
points, and other areas which do not.  In the context of this 
work, range acquisition from a single point of view of the 
sensor is considered to properly evaluate performance without 
dependency on data registration considerations.  By performing 
this analysis, the data can be effectively compressed at 
acquisition time, while ensuring both an appropriate level of 
coverage of the overall scene and the quality of the 3D model 
created.  This is accomplished through an original algorithm 
that builds on probabilistic occupancy grids to determine 
regions which provide the most overall benefit for the 
acquisition. 

Firstly, reviews of relevant techniques for determining 
where to scan next in a multi-view setup, techniques for 
determining optimal scanning patterns, and approaches for 
intelligent adaptive sensing from a single point of view are 
presented. An introduction to probabilistic occupancy grids is 
then discussed.  Next, the algorithm being proposed is 
developed.  Finally experimental results are presented and 
analyzed before concluding remarks are made. 

II. LITERATURE REVIEW 
Other works in the past have dealt with the issue of 

identifying to which location a sensor should be moved in order 
to improve the coverage and quality of the model of a scene, 
while minimizing the amount of separate acquisitions required.  
These approaches are well known as next best view (NBV) 
algorithms. 

Connolly [3], through his previous usage of octrees 
generated from multiple views [4], realized that determining 
optimal viewing vectors based on the current knowledge of the 
scene would improve the overall time required to model a 
scene.  He describes two different methods for determining the 
NBV:  by determining the view which would reveal the most 
'unseen' nodes in the octree (the planetarium algorithm), and by 
summing together the normals of the faces of nodes that are 
common to both 'unseen' and 'empty' nodes in order to produce 
a viewing vector which sees the greatest amount of potentially 
visible 'unseen' nodes (the normal algorithm).   

The goal of eliminating occlusions to drive the NBV 
process was investigated by several researchers [5, 6, 7, 8].  
Morooka et al. [9] define a discretized shell around a region to 
be modeled in order to limit the number of possible viewing 
vectors, which allows the use of lookup tables to optimize the 
entire process.  Mackinnon et al. [10] use a laser range sensor 
which provides several additional fields of data in order to 
derive a quality metric for each acquisition point in order to 
drive the NBV process to optimize the quality of the overall 
model. 

There has also been works that have looked into optimal 
fixed scanning patterns for several scenarios.  Ho and Saripalli  
[11] have investigated scanning patterns for autonomous 
underwater vehicles (AUV) which attempt to maximize 
coverage and quality, while minimizing energy use from the 
AUV propulsion system.  English et al. [12] use three different 
patterns, a Lissajous, a rosette, and a spiral scanning pattern, 
along with an adaptive algorithm to swap between them 
depending on the characteristics and objects detected in the 
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scene, with the goal of optimizing the estimation of position 
and orientation. 

Adaptive and intelligent sensing for range acquisition was 
previously investigated by Cretu et al. [13], who determine 
regions which require higher resolution acquisition based upon 
an initial course scan, from within a single point of view.  Their 
method uses a neural gas network to determine where varying 
features and edges are located by training the network over a 
short period, which produces clusters of points in regions 
where there are features.  The resulting clusters are then 
analyzed, and regions with higher density of clusters, which 
correspond to regions in space where there are more potential 
features, are re-acquired at a higher resolution.   

Shih et al. [14] develop three different techniques to guide a 
non-uniform data acquisition process from a single point of 
view.  In the first two approaches, an initial scan of the object 
is made.  This object is then subdivided in a hierarchal tree-
type fashion, with error between actual values at the leaf nodes 
and the estimated values at those points calculated from the 
next layer up being used to determine if new points within each 
sub-division is acquired.  The difference between the first two 
approaches is that the first approach uses plane fitting over 
regularly shaped sections, such as rectangles and triangles, 
while the second approach uses curve fitting.  The third and 
final approach determines the optimal non-uniform scanning 
pattern for a particular object based upon a CAD model, by 
first performing a virtual acquisition, and then using a local 
adjustment algorithm to move points around until an optimal 
placement occurs where the points cease to move.  The 
resulting point locations correspond to the optimal scanning 
pattern for that particular object. 

In robotic navigation and path planning however, many 
researchers do not tend to rely on meshed surface models, but 
rather on volumetric models.  In particular, probabilistic 
occupancy grids developed by Elfes [15], which are a Bayesian 
updated form of the occupancy octrees that Connolly 
developed in [4], provide a framework to take into account the 
uncertainty of the measurements acquired from the sensors on a 
robotic platform. They also define probabilistic rules for 
merging data acquired from various views into a single model.  
The probability being used is the probability that a particular 
cell is occupied given a set of measurements.  A conversion 
between probabilistic occupancy grids and regular occupancy 
grids can be made by thresholding the probabilities contained 
within each node, where a low probability corresponds to 
empty space, high probability corresponds to occupied, and a 
middling probability is unknown.  Payeur et al. in [16] develop 
a closed-form solution to optimize the application of 
probabilistic occupancy grids for 3-D modeling of dynamic 
scenes.  By using probabilistic occupancy grids, a robot can be 
made to only move around in regions where it is sufficiently 
confident that it is empty, and has an inherent method of 
increasing confidence of knowledge about a region by 
repeatedly acquiring data in that region until it is sufficient 
enough to navigate through. 

III. PROPOSED ALGORITHM WITH IMPROVEMENT MEASURE 
Most range sensors available, such as laser range finders, 

stereo vision, and structured light systems, are projective based. 
Consequently, these sensors have a focal point through which 

their data is collected, allowing the modeling of the collected 
data in a spherical coordinate system, without worrying about 
self occlusions within the data.  Hence, the proposed algorithm 
uses a spherical probabilistic occupancy grid. 

The starting point of the algorithm uses the closed-form 
equations developed by Payeur et al. [16], which yields a 
sensor occupancy probability distribution function (OPDF), 

, defined in eq. (1). The variables 
 correspond to the depth, azimuth, and elevation values 

in a spherical occupancy grid,  correspond to the 
measured location using the sensor, and  correspond 
to the standard deviation of the sensor measurements along the 
respective spherical axes. 

 

 

(1) 

The Bayesian rule for updating the value of the probability 
of occupancy for any voxel based upon the current occupancy 
probability, as well as the OPDF of the acquisition at a 
particular point is shown in eq. (2).  is the voxel in which the 
point  is located,  is the acquisition of the kth data 
point  with the sensor standard deviations of 

,  is the conditional probability that voxel  
is occupied at time t, and  is the probability that voxel 

 is occupied given a measurement from the sensor with 
values of . 

 

 

 

(2) 

 
Based upon the Bayesian relationship described in eq. (2), it 

is possible to express the estimated future probability of 
occupancy based upon the current probability of occupancy, as 
well as the possible acquisition at a particular point through the 
OPDF function.  In order to maximize the knowledge of 
whether or not space is occupied or empty, and whether 
acquiring a depth value along a particular ray in the spherical 
space will maximize the knowledge about the scanned area, a 
measure of improvement in the knowledge of the probability of 
occupancy is required.   

To perform this over the entire 3D occupancy grid is 
computationally expensive, and unneeded since a single point 
of view is considered here.  Within the probabilistic occupancy 
grid acquired from a single point of view, there will be a 
surface of highest probability determined by the surface of the 
closest object in any given direction within the field of view of 
the range sensor, taking into account that behind any object the 
volume is occluded from the sensor and its probability of 
occupancy remains 50% (unknown) by default.  This surface of 
highest probability is created by determining the depth at which 
the highest probability of occupancy occurs for each azimuth 
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and elevation value represented in the grid.  Taking into 
account this piece of information, the problem is reduced from 
3D to 2D, and the computational requirements of the 
calculation of the Bayesian update in order to determine the 
improvement of acquiring a point of data is reduced to 
calculations along the surface of highest probability.  
Furthermore, by limiting the sensor's OPDF region of influence 
by truncating it to a region within a multiple of the sensor's 
respective standard deviations along the azimuth and elevation 
axes, only a limited number of voxel’s need to have their 
estimates of improvement updated after the acquisition of 
another point. 

To determine an estimate of improvement of the knowledge 
of occupancy of a region a simulated acquisition, , is made 
along the ray , with a depth, , corresponding to that of 
the most probabilistic surface.  The current probability of 
occupancy in the corresponding voxel in spherical coordinates 
is subtracted from the new probability of occupancy of the 
same voxel assuming that the simulated acquisition is merged 
into the occupancy grid. This defines the estimated 
improvement, , as follows: 

 

 
(3) 

 
The change in the probability of a single voxel when a new 

acquisition is made, is not enough to determine the overall 
improvement in the confidence of occupancy. Rather the total 
summation of this improvement happening over all voxels 
which the acquisition at  affects, according to the truncated 
OPDF, must be performed.  Furthermore only the voxels 
currently belonging to the surface of highest probability are 
used, as defined in eq. (4).  The resulting cumulative 
improvement, , can be negative. Such a negative 
improvement can be interpreted as uncertainty in the degree of 
overall improvement in the region, which can be due to 
variable sampling densities as well as depth transitions. 

 

 (4) 

 
As the distribution of  is the probability 

distribution of the possible sensor acquisition along the most 
probable surface for the purpose of calculating improvement, 
only the voxels around the region of support provided by the 
standard deviation of the sensor model need to be used.  This 
effectively makes the improvement calculation a non-linear 
rectangular filter in 2D.  Furthermore, by keeping track of 
which elements of the surface of highest probabilistic 
occupancy have changed after the addition of a point, the 
number of points updated after an acquisition can also be 
limited to the size of the sensors OPDF, within a multiple of its 
standard deviation. 

IV. EXPERIMENTAL RESULTS 
The evaluation of the proposed method is performed using 

range images acquired from the popular Microsoft Kinect 
platform, which has a variety of sensors integrated, including a 
RGB camera, a microphone array, and a depth sensor which 
uses an IR camera and an IR projector to generate a structured 
light pattern.  Data acquisition was accomplished using the 
open source OpenNI drivers, with the depth sensor resolution 
set at 640x480.  The Kinect's depth sensor has a 57° horizontal, 
and a 43° vertical field of view [17], and provides reliable data 
between 0.8m and 3.5m [17, 18, 20] with a maximum range of 
0.5m - 9m [19, 20].  The spatial resolution at 2m depth is 3 mm 
along the horizontal and vertical axis, and 1cm along the depth 
axis.   

While there have been studies [20] that discuss the error 
model of the depth measurements of the Kinect, they do not 
report on the error along the other axes.  Therefore the 
quantization noise is used for the Kinect sensor error model for 
the azimuth and elevation axes.  This tends not to have a 
dramatic effect, since any measurement error along the X and 
Y axes incorporates itself to error along the depth axis due to 
the triangulation nature of the depth measurement.  The depth 
noise model used is a combination of the measurement noise 
developed and the quantization noise [20].  The maximum 
variance along the azimuth, elevation, and depth within the 
supported region, which is 0.8m - 5.0m, is used as the 
parameters for the OPDF.  This yields variances of 

 and .  The 
number of bins used in the spherical probabilistic occupancy 
grid for the azimuth and elevation axes is the same as the 
resolution of the sensor, that is 640x480.  The number of 
discrete bins along the depth axis is 512.  The region of support 
used for the OPDF is two standard deviations. 

The depth images acquired are from an underground 
parking garage, which provides a large but controlled 
environment which typically is not found in traditional 
laboratories, as well as from a low height above ground in 
order to simulate what a mobile robot would perceive.  A non-
linear color mapping has been performed on the improvement 
maps such that the differences between improvements is 
clearer, and the mapping from the parameter of eq. (4) 
is illustrated in Fig. 1.  

The depth, occupancy, and improvement maps are 
produced at 640x480, and each pixel represents a ray through 
the centre of a bin of the spherical probabilistic occupancy grid.  
Fig. 2a shows a scene imaged by the Kinect’s RGB camera and 
displaying two pillars in the parking garage with empty parking 
spaces.  Fig. 2b shows the depth of the most probabilistic 
surface.  Black pixels correspond to 0m depth from the sensor, 
that is ray projections where there was no depth information 
provided by the sensor. White pixels represent the maximum 
depth of 5m and beyond, and gray values represent the 
intermediate depth between 0m and the maximum depth.  Fig. 
2c shows the probability of occupancy of the most probabilistic 
surface in the scene, where black represents empty space 
(probability of 0% occupancy), middle gray value represents 
unknown occupancy (probability of 50% occupancy), and the 
lighter gray values map higher probability of occupancy.  Note 
that the black regions in Fig. 2b correspond to the middle grey 
regions in Fig. 2c since they remain unknown (50%) as they 
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were not imaged by the depth sensor, due to occlusion created 
by the pillar between the IR projector and the IR camera over 
certain surfaces, or because of too large distance.  Finally, Fig. 
2d shows the estimated improvement measure computed along 
the surface with highest probability.  Red regions represent the 
areas where the most improvement is to be achieved with extra 
data acquisition, which are the areas where there is no 
information available yet from the sensor.  The green regions 
are areas where no or little improvement can be obtained. They 
essentially correspond to regions that are located beyond the 
sensor’s maximum depth of field.  The blue regions correspond 
to areas where the improvement is negative, and they lie on 
transitions between objects that are at different depths.  The 
yellow and orange regions correspond to areas where there are 
a higher density of measurements already available in the 
probabilistic occupancy grid within the depth of field of the 
sensor.  Note that the striped pattern visible in Fig. 2c and 2d is 
due to the non-linear mapping between the uniform spherical 
occupancy grid spacing, and the uniform Cartesian grid 

spacing, which results in a higher density of point being 
inserted further away from the center of the occupancy grid, 
with an approximately equal density of points at roughly half 
way between the center of the grid and its edges.  An intelligent 
sensing application can be developed through prioritizing 
regions based on expected improvement, such that regions that 
are orange/red have a higher priority of being captured in future 
acquisitions than green/yellow regions.  Furthermore if the  
desire is to acquire higher confidence on severe transitions, 
then regions of negative improvement can be re-acquired. 

 
Fig. 1.  Color map for the estimated improvement measure. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Parking garage scene a) RGB image, b) depth of the surface with highest occupancy probability, c) probability of occupancy for the surface with highest 
probability, and d) improvement estimate over the surface with highest probability. 
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a) 

 
b) 

Fig. 3.  Cluttered scene a) RGB image, b) improvement estimate over the surface with highest probability. 
 

 
a) 

 
b) 

Fig. 4. Scene of vehicle and wall a) RGB image, b) improvement estimate over the surface with highest probability. 

Table 1. Mean timing data for probability occupancy grid generation and improvement calculations over 10 runs. 

Data Set # Points Mean 
Insertion Time 

(sec) 

Mean Time for Improvement 
Calculation (sec) 

Mean Time for Improvement 
per Point (sec/point) 

Mean  Percentage of Total 
Time for Improvement 

Calculation (%) 

Fig. 2 254060 29.46 1.47 5.80E-06 4.76 
Fig. 3 307200 31.84 1.82 5.92E-06 5.41 
Fig. 4 279299 29.72 1.65 5.90E-06 5.25 

 
Fig. 3 illustrates a cluttered scene with some traffic cones 

and a recycling bin with a few items inside. As seen in Fig. 3b, 
applying the proposed framework, the region where the most 
improvement can be achieved by further acquisitions is 
determined as the areas of occlusion between the IR projector 
on the Kinect and its infrared camera, as well as the regions 
with reflective strips on the cones, over which the Kinect depth 
sensor did not acquire many data points.  The transition regions 
between objects of different depths are again marked by a blue 
outline representing negative improvement in probability of 
occupancy. The latter characteristic indicates that such an 

improvement map can also prove useful to support 
segmentation of objects in the depth map. 

Fig. 4 is interesting since it shows a narrow region between 
a vehicle and a wall.  The regions of highest estimated 
improvement correspond to the rear glass of the vehicle, the 
lens of the rear lights, and regions of occlusion.  There are also 
regions of moderate potential improvement (yellow) where 
points at the edge of the depth of field (5m) are integrated into 
the probabilistic occupancy grid. 

The results in Table 1 were obtained on a computer with an 
Intel Core I7 2630QM processor with 8GB of RAM running 
Windows 7 64 bit operating system, with the application being 
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compiled as a 64-bit application.  The turbo-boost capability of 
the processor caused the chip to operate at 2.6 GHz during the 
computation of the results.  The algorithm was executed 10 
times, and the mean execution time was calculated for each of 
the three data sets included in this paper.  The mean insertion 
time is the mean time that was required to insert all the points 
of the depth image into the probabilistic occupancy grid.  The 
mean time for improvement calculation is the mean execution 
time required to calculate the improvement values for all the 
affected locations due to all the points that were inserted into 
the probabilistic occupancy grid.  The timing data shows that to 
calculate the estimated improvement, , takes 
approximately 5.8-6.0 µs per point to calculate, which is 
between 4.76% - 5.41% of the total execution time. 

V. CONCLUSIONS 
The proposed method to estimate improvement of the 

probability of occupancy in a model built progressively from a 
series of 3D data acquisitions is an effective technique to 
selectively and automatically determine which regions of a 
scene require the acquisition of supplementary data. It can also 
serve as a tool to determine when to stop acquiring more data.  
Moreover, the approach can readily be used to detect regions 
where there is greater uncertainty in the estimation of 
improvement in the model due to sparse sampling or a sharp 
depth transition region, by paying attention to regions of 
negative improvement.  The technique is adapted to operate 
from a single point of view of the sensor, while requiring no 
other information aside from a measurement error model of the 
sensor. It takes full advantage of the potential offered by 
probabilistic occupancy grids for mapping complex 
environments, and it performs sufficiently fast to support real-
time directed acquisition with any type of range sensor. 

The technique described in this paper is meant to serve as a 
stage in an intelligent sensing pipeline, where a decision 
process involving the 1-step improvement calculation 
presented here would be required.  Additionally, the results 
from the improvement map can be used in 3D segmentation, as 
sharp discontinuities are outlined by a region of negative 
improvement. 
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