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Abstract—Visually estimating the motion of automotive body 
parts over an assembly line represents a major challenge for 
classical feature detection, matching and tracking algorithms due 
to the lack of a rich surface texture. But as feature extraction and 
matching remain vital for accurate object pose and motion 
estimation, this paper presents a thorough investigation on the 
actual reliability of popular feature extraction and matching tools 
in terms of stability and robustness for industrial applications. 
Severe tracking errors that result from brightness variations and 
occlusions are corrected with the integration of an original 
supervisory approach that relies on the encoding of a minimum 
amount of a priori information about the general appearance of 
the objects. The proposed solution is experimentally validated on 
an application for quality control in the automotive industry. 

Keywords— feature extraction; feature matching; feature 
tracking;  pose and motion estimation. 

I.  INTRODUCTION 
The integration of robotic systems in industrial 

manufacturing resulted in more efficient, accurate, cost 
effective and safer solutions for assembly and quality control 
operations. The way to conduct robotic procedures on static 
bodies has been addressed for long. For moving objects, 
current solutions often rely on preset motion parameters or use 
track encoders. However, for a robot to execute tasks on a 
freely moving object, accurate and real-time data about the 
pose and motion of the object is required. The surface 
appearance of the object then plays an important role.  

Automotive body panels [1-3] are characterized by a very 
low number of distinctive visual features over their surface 
during the car assembly process. To account for the lack of 
features over such objects, current approaches for pose and 
motion estimation rely on structured lighting [4], edge tracking 
[5] or particle filtering [6]. However, these approaches limit the 
possibility of sustaining high production rates while handling 
several types of body parts, under the complexity of typical 
industrial environments, which are often characterized by 
occlusions caused by manipulator robots and sporadic 
appearances of factory associates in the view of the vision 
systems. Under these settings, the pose and motion estimator 
(PME) needs to run in real-time and not rely on exact 3D CAD 
models of the panels while embedding a high level of 
robustness not to deviate from its target. In order to overcome 
some of these difficulties, Kak et al. [1-3] used three different 

vision systems, along with controlled backgrounds and the 
knowledge that the moving object contains circular features 
over its surface. These conditions hardly transpose in 
automotive assembly environments. 

Sparse optical flow computation is a well established 
technique and is often based on Lucas-Kanade’s (LK) [7, 8] 
approach. However, the LK tracker is extremely sensitive to 
cases where the brightness constancy assumption is not 
validated, such as when occlusions and photometric variations 
occur [9]. In order to overcome the sensitivity of the LK tracker 
to photometric variations, Jin et al. [10] introduced a hybrid 
model based on photometry and geometry for the 
characterization of variations exhibited by the feature patches 
during tracking. However, their formulation still remains 
sensitive to occlusions, and to the appearance of other objects. 

The objective of this research is to develop an alternative 
solution that relies on passive vision only, and surmounts the 
constraints of the application from a software perspective rather 
than with the addition of extra hardware, which ensures greater 
flexibility. The proposed approach extends previous solutions 
for robotic tracking and marking of surface deformation defects 
[11, 12]. An original supervisory layer is added to the pose and 
motion estimation stage that allows to reliably detect and track 
a low number of available features throughout the displacement 
of the object. This paper concentrates on the analysis of the 
feature extraction and matching processes and details the 
supervisory layer operation, whose objective is to provide time-
efficient, accurate and fault-tolerant visual servoing data to the 
robotic station. 

In the following sections, the experimental setup is 
presented and the framework for the supervised PME is 
introduced. Subsequently, an experimental feature extraction 
analysis is proposed, which evaluates the suitability of five 
leading feature detectors [13-17]. The core of this analysis is 
supported by an original metric which empirically evaluates the 
correlated stability-robustness property of the feature extraction 
process. Based on the results provided by the analysis of the 
correlated stability-robustness metric, and in spite of the lack of 
rich texture over the automotive panels, the proposed PME 
builds upon classical computer vision algorithms for feature 
extraction, tracking and matching [7, 8, 17]. Finally, the 
improvements brought by the proposed supervised PME 
solution are demonstrated. 
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II. EXPERIMENTAL PLATFORM 
A vision-robotic platform, shown in Fig. 1, is used for 

experimentation. It integrates modules for automated surface 
deformations detection over automotive panels [12], for part 
motion estimation and for robotic marking. Various automotive 
panels, such as unfinished doors and fenders, which are 
representative of the early manufacturing stage of automobiles, 
are tested on the system. A sled provides a linear motion at 
variable speeds which mimics the assembly line displacement 
over a length of 54 cm. 

 

Figure 1.  Experimental setup for vision tracking and robotic interaction with 
moving panels. 

A calibrated stereo-vision sensor (SS) is used for estimating 
the pose and motion of the automotive panel. It is composed of 
two Point Grey Flea2 IEEE-1394b CCD cameras (CamL and 
CamR) with 8.5mm lenses and 640x480 pixels of resolution. A 
44.5 cm baseline is used between the cameras, as it provides 
improved accuracy in reconstructing the sparse structure of the 
panel. The automotive part is located at approximately 310 cm 
from the acquisition system. The interaction with the panel is 
performed by an F3 7DOF CRS serial manipulator, and the 
inter-calibration between the SS and the robot’s base [12] is 
available. 

III. FEATURE EXTRACTION AND MATCHING ANALYSIS 
The reliability of the feature extraction and matching 

processes is critical for accurate visual estimation of position 
and motion on weakly textured objects in an industrial 
environment. This section presents an experimental evaluation 
of several classical feature point detectors in order to derive 
guidelines for the development of motion estimators in real 
world applications. An analysis of Torr’s “Structure and 
Motion toolkit” [18] for solving the feature correspondence 
problem is also performed in the last part of this section. 

Most popular computer vision tools for keypoint extraction 
[13-17] can be very successful when dealing with richly 
textured objects. However, their performance severely 
deteriorates when facing constraints such as those found in the 
industrial application considered here. For conducting the study 
of these feature detectors, the properties of stability and 
robustness [19] are analyzed as they represent essential 
characteristics for reliable feature extraction. The robustness 
property is linked to the insensitivity to noise, and the 
proportion between false positives and true localized feature 
points. The stability property, which also embeds the 

“repeatability” of feature extraction, is linked to the capability 
of a corner detector to identify the same points even though the 
images suffer from perspective distortion, zoom or illumination 
changes. This study also aims at intrinsically testing the 
variability of feature detection, since the input images contain a 
very low amount of details resulting from weak surface 
textures over the panels. The variability characteristic 
represents the ability of the feature extractor to still detect 
several feature points despite the nature of the image content. 

The first part of this section is dedicated to the SIFT (Scale 
Invariant Feature Transform) keypoint detector [13] and its 
suitability to heavily constrained applications. Secondly, an 
original measure is introduced with the purpose of quantizing 
the correlated stability-robustness property of the feature 
extraction. Subsequently, the correlated stability-robustness 
measure is applied to four popular feature detectors in order to 
select the most appropriate feature extraction methodology. 
Finally, the performance of Torr’s feature correspondence 
technique [18] is analyzed under the industrial context of the 
considered application. 

A. SIFT Keypoint Detector 
The SIFT feature detector [13] has received a lot of 

attention over the last few years, because of its capability to 
extract features which are invariant to scaling and rotation. But 
the repeatability [19] of the SIFT feature extractor has not been 
rigorously evaluated for real-life industrial applications where 
the lifespan of the detected features directly impacts the 
tracking accuracy. In order to empirically assess the 
repeatability of the SIFT feature detector, a scenario was 
considered in which the linear sled system was positioned 
approximately parallel to the baseline of the SS, whereas the 
velocity of the sled system was set to vss=1.4cm/s. 

Under these settings, Fig. 2 illustrates the keypoints 
detected by SIFT on the first and last processed frames, 
respectively. It can be noticed that the descriptors associated to 
the features detected on the panel surface substantially differ 
between the two frames, and not only in the area occluded by 
the robot in the last frame. This degradation exemplifies the 
lifespan reduction of the extracted features, which negatively 
impacts the tracking process, as those features represent its 
main source of information.  

 
Figure 2.  Extracted SIFT keypoints over the tracking sequence. 

A limited lifespan has a direct effect on the repeatability 
property of the feature extraction, which is essential for 
accurate and reliable pose and motion estimation. Due to its 
limited repeatability, the SIFT detector was discarded from the 
assessment of the correlated stability-robustness, which will be 
performed in the next section. 
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B. Correlated Stability-Robustness Empirical Measure 
For assessing the combined stability-robustness 

performance of different feature extraction processes, the data 
acquired with the scenario described in Section III.A was 
analyzed while assuming that a limited number of macro-
features (MF) are manually pre-selected over the surface of a 
car door panel at the beginning of the motion cycle. Ten MFs 
are shown and numbered in Fig. 6a.  

A quality measure called “success percentage” is 
introduced: 

                     
framesN cd
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where cd
MF i(n )  is the number of correctly detected MFs (in the i-

th frame) within a neighborhood of 5x5 pixels around the 
keypoints shown in Fig. 6a, and total

MF i(n ) is the total number of 
detectable MFs in the i-th frame. It should be noticed that 

total
MF i(n ) is not necessarily equal to the total number of MFs 

extracted on the car door panel, because of the occlusions 
occasionally caused by the manipulator robot, also present in 
the scene. Without loss of generality, the “success percentage” 
was computed only with the results obtained by processing the 
frames grabbed by the left camera of the stereo pair, CamL. 

C. Classical Feature Extractors 
Other than SIFT, the feature extractors investigated in this 

experimentation include the Harris and Stephens corner 
detector [14], followed by the same feature detector but with 
Noble’s validation gate [15], the SUSAN corner extractor [16], 
and finally, the Shi and Tomasi feature detector [17]. For the 
Harris and Stephens corner detector with Noble’s validation 
gate, and SUSAN feature extractor, the MATLAB framework 
developed by Garcia [20] was used in the analysis, whereas for 
the Harris and Stephens extractor [14] and the Shi and 
Tomasi’s approach [17], their OpenCV [21] implementations 
were selected. All the feature extractors were applied on image 
segments containing the car door’s window frame, which were 
used for the SIFT-processing as well. For the extraction of the 
regions of interest (ROI), the robust optical flow calculations, 
which will be introduced in Section IV, had a direct impact. 

Since the constrained motion pattern of the car door was a 
translation along the X axis of CamR, as in Fig. 1, with no 
changes in orientation, the positions of the MFs within the ROI 
were not affected by the movement of the object. As a 
consequence, a 5x5 pixels patch was set for all MFs, shown in 
Fig. 6a, within the initial ROI belonging to the first frame 
grabbed by CamL that contained a full view of the car door. 
Then, the process of computing cd

MF i(n ) consisted in verifying if 
the detected MFs lie within the pre-assigned patches. Due to 
the constrained motion of the car door, the positions of these 
patches in the extracted ROI remained constant, throughout the 
entire duration of the motion experiment. Figure 3 illustrates 
the feature extraction results obtained with the four selected 
approaches applied on the 10th frame segment during the 
motion of the rigid body. In this case, total

MF 10(n ) 8= is the total 

number of detectable MFs, which were all correctly extracted 
with the Shi and Tomasi corner detector [17] and Harris 
detector with Noble’s validation gate [15]. 

In Fig. 3 the correctly localized MFs are marked with the 
symbol “�”, whereas for the erroneously detected MFs the 
symbol “�” is used. In order to compute cd

MF i(n ) , a 20x20 pixels 
patch was centered on the MFs in the first extracted ROI. The 
normalized cross-correlation, as a measure for quantizing how 
much the intensities of the selected regions have changed 
during tracking, when compared to the distribution of 
intensities in the first ROI, was used to compute the total 
number of detectable MFs.  

The results obtained for the “success percentage” with each 
selected feature point extractor are summarized in Table I. In 
the case of the Harris and Stephens corner detector [14], a 
threshold THarris_Stephens=0.01 was used for the corner strength 
measure. As it can be noticed from Table I, a considerable 
improvement in the success percentage is obtained by applying 
Noble’s validation gate [15] with the same threshold, 
TNoble=0.01. This improvement is a result of Noble’s corner 
strength measure, which diminishes the sensitivity of the Harris 
and Stephens corner extractor to image patches having contrast 
variations.  

  
             (a)                                                            (b) 

  
                  (c)                                                            (d) 

Figure 3.  Feature extraction results: (a) Harris and Stephens corner detector, 
(b) Harris and Stephens corner detector with Noble’s corner strength measure, 

(c) SUSAN corner detector, (d) Shi and Tomasi corner detector. 

The SUSAN corner detector [16] was used with its default 
thresholds [20] and gave the lowest “success percentage” from 
all the studied feature extractors. The Shi and Tomasi corner 
detector [17], used with the threshold TShi_Tomasi=0.02, gave the 
highest “success percentage” for the proposed stability-
robustness correlated measure. 

Several tests performed on similar objects led to the same 
conclusions. Therefore, the supervised pose and motion 
estimator, that will be described in section IV, builds upon the 
classical Shi and Tomasi corner detector [17], which is 
selectively applied on the ROIs containing the area of the MFs. 
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TABLE I.  “SUCCESS PERCENTAGE” FOR THE FOUR FEATURE 
EXTRACTORS 

Feature Extractor Success Percentage PS(%) 

Harris and Stephens 57.14 
Harris and Stephens with 
Noble’s validation gate 75.25 

SUSAN 47.52 

Shi and Tomasi 77.08 

D. Torr’s Structure and Motion Toolkit 
In order to evaluate the feature matching process, the 

“structure and motion toolkit” developed by Torr [18] was also 
tested under the same experimental setup. Torr’s approach 
relies on a Maximum A Posteriori Sampling Consensus 
(MAPSAC) technique for matching features in the presence of 
outliers. It was applied on two ROIs extracted from the first 
two acquired frames, before the manipulator robot occluded the 
view of the SS. As shown in Fig. 4, the set of correspondences, 
obtained after judiciously tuning the two thresholds related to 
the maximum numbers of samples to be drawn and the 
proportion of inliers, has a large proportion of outliers, as 
multiple corners, extracted from CamL’s ROI, point to the 
same corner in the adjacent view. As a result, the unicity 
property of the feature matching [19] is highly compromised. 
This experiment shows that Torr’s toolkit requires a substantial 
amount of adaptation, when transferred to industrial parts that 
exhibit weak texture surfaces. 

 

Figure 4.  Feature matches computed with Torr’s toolkit. 

IV. SUPERVISED POSE AND MOTION ESTIMATOR 
The proposed supervised pose and motion estimation 

framework, illustrated in Fig. 5, builds upon a pre-selection of 
a minimum set (typically 6 to 10) of macro-features (MFs) over 
the structure of the object. In a factory, the selection is 
manually performed by an installation engineer over the left 
view (CamL) of the stereo images, and only once, when 
configuring the vision-robotic station for a specific type of 
panels. These MFs are represented by a few corner points 
which are distinctive over the panel.  

In the case of a car door panel, the selected MFs can belong 
to the inner and outer frame of the door window. Figure 6a 
shows the location of the MFs as they were pre-selected, along 
with the associated 9x9 pixels patches, which are used to refine 
their initial locations on the first image. The automated 
refinement of the MFs uses the Shi and Tomasi corner detector 
[17] within the extracted patches. Once the MFs are refined in 
the left view, their correspondences with the right view (CamR) 
are computed. Given that the stereoscopic cameras are 
approximately parallel, the pyramidal implementation of the 
LK tracker [7, 8] is used to guide the correspondences [11]. 

Figure 6b illustrates the disparity vectors extracted from the 
right initialization frame.  

 

Figure 5.  Supervised pose and motion estimation framework. 

Following the initialization procedure, the PME is 
triggered. First, a rigid body detection module informs the 
PME about the full appearance of the panel in the field of view 
of the SS. The supervised MFs re-initialization block ensures 
the automatic detection of the MFs in subsequently acquired 
stereo frames, whenever a new panel enters the field of view. It 
builds upon the Shi and Tomasi corner detector and the 
pyramidal LK tracker but is fully automated. 

  
                   (a)                                                            (b)   

Figure 6.  (a) Car door’s MFs, (b) MFs disparity vectors over the right 
initialization frame. 

Following re-initialization, the MFs position information is 
stored in two buffers that will be used by the supervisory 
system. The first buffer contains the Euclidean distances 
between each 2D MF and all of the other MFs in the extracted 
set. The second buffer stores the relative x and y displacements, 
expressed with respect to the image plane, between each MF 
and all of the other MFs. Subsequently, the MFs are being 
tracked frame-by-frame through the pyramidal LK tracker, 
which provides the necessary data for estimating the motion 
undergone by the panel between two successive frames. The 
motion estimations are used to guide the robotic interaction 
with the moving panel, given that the inter-calibration between 
the robot’s base and the SS is available [12]. 

The objective of the proposed supervisory layer is to 
overcome the limitations observed with classical computer 
vision methods for feature extraction, matching and tracking, in 
the case of objects with insufficient surface texture. 

V. SUPERVISORY LAYER OPERATION AND VALIDATION 
In the proposed framework, the tracking of the MFs is 

performed in both stereo views. Feature matching is 
straightforward given that the MFs are stored in an indexed 
data structure. However, the LK tracker is known to provide 
poor performance when variations in the brightness occur [9], 
such as when the robot or people temporarily occlude a certain 
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part of the MFs’ area. This has a direct impact on the feature 
matching process. To address this problem, a validation gate is 
embedded in the supervisory layer to correct erroneous motion 
vectors and to recover the MFs lost in the tracking, assuming a 
rigid structure for the object. 

For the supervisory operation to be reliable, the only 
condition is that the scaling effects exhibited by the object 
between two subsequent frames are minimal. The validation 
gate structure is illustrated in Fig. 7. It consists of finding a pair 
of tracked MFs that have a high level of confidence in both 
views. For that matter, the first test verifies that the difference 
between the Euclidean distance between the MFs (MFi, MFj) 
forming the pair, dij, and their corresponding distance saved in 
the buffer of Euclidean distances, ijd̂  , is within ±2 pixels. If 
the first test is passed, then a second test checks whether the 
difference between the relative displacement of the selected 
MFs, �ij, and the reference relative displacement stored in the 
buffer of relative displacements, ijδ̂ , is also within ±2 pixels. 
Finally, if the second test is also validated, a third test is 
performed on the norms of the motion vectors, 

i j
OF OFv , v associated with each MF. This last test verifies 

whether the difference between the motion vectors in the x and 
y directions of both MFs forming the pair is within ±2 pixels. 
This mechanism ensures the consistency of the features 
distribution throughout the sequence, and validates the 
correlation between the motion vectors in both views, in order 
to eliminate divergence and false estimates. A margin of 2 
pixels was experimentally selected based on the size of the 
panels in the image plane, when imaged from a distance of 
approximately 310cm. 

 

Figure 7.  Validation gate to reinforce accurate MFs pairs tracking. 

The three-step validation gate ends as soon as one pair of 
MFs, that passes all three tests, is found. This MFs pair (MFi, 
MFj)W, is regarded as a “winning” pair and the corresponding 
motion vector is used to correct other erroneous motion vectors 
and to recover the MFs that are lost during the tracking. 

Figures 8a and 8b present two processed frames, grabbed 
by CamL, over the tracking sequence, when running the 
supervisory layer. The motion vectors initially returned by the 
LK tracker are marked in red, the corrected motion vectors are 
represented in black, and the recovered motion vectors are 
drawn in white. Additionally, Fig. 8c was extracted from a 
scenario in which additional lighting was provided from a set 
of lamps mounted on top of the SS, in order to inspect the 
robustness of the PME to shadows and specular reflections on 
the panel surface. It can be noticed that all corrected and 

recovered motion vectors point to the proper MF regions, as 
shown in Fig. 6a. The validation gate performance was tested 
on 60 running scenarios involving various positions and 
movements of the robot and people entering the field of view 
of the SS. The correction/recovery of the motion vectors 
demonstrated a 95.4% success rate. As a result, the proposed 
validation gate provides the feature tracker with a robustness 
and stability level that cannot be achieved with the LK tracker 
alone, due to its instability in non-constant brightness 
scenarios.  

 
                                                  (a) 

 
                                                  (b) 

 
                     (c) 

Figure 8.  Motion vector results where: (a) the robot, (b) a person and the 
robot are present in the scene, (c) the scene contains shadows and specular 

reflections.  

When it is impossible to find a winning pair in one of the 
frames, the results from the winning pair found in the adjacent 
view (left/right stereo-frame) are used as a best estimate, given 
that the cameras forming the SS are approximately parallel. In 
such a situation, as shown in Fig. 9a, the entire set of MFs can 
still be recovered based on the winning motion vectors 
extracted from the adjacent frame acquired by CamR.  

Finally, in the situation where the search for a winning MFs 
pair is unsuccessful in both the left and right views, the motion 
vector related to the previous set of frames in the tracking 
sequence is used. Figure 9b and 9c show segments from two 
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frames grabbed by CamL, in which no winning pairs could be 
found. Thus, the motion vectors, in blue, were successfully 
recovered according to the motion vectors obtained from the 
processing of the previous pair of frames. 

 
                                                  (a) 

 
                                                  (b) 

 
Figure 9.  Motion vector results where: (a) the motion vectors are recovered 

from the adjacent view, (b), (c) the motion vectors are recovered from the 
previous frame.  

VI. CONCLUSIONS  
This paper addresses the problem of pose and motion 

estimation over weakly textured industrial objects and focuses 
on the stability-robustness analysis of the feature extraction 
process.  It introduces a supervised pose and motion estimation 
system that provides accurate and reliable motion vectors in 
real-time while relying only on passive stereoscopy and 
classical feature point trackers. The proposed supervisory layer 
significantly increases the robustness of a pose and motion 
estimator to operate on weakly textured objects, even when 
surfaces exhibit specular reflections, and in industrial 
environments where occlusions or sporadic appearance of 
workers in the field of view of the vision-based pose and 
motion estimator occur. 
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