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Abstract— This paper proposes a reliable solution to the problem 
of estimating the motion of a rigid object moving freely in 3D 
space, through the use of a passive vision system. The feature-
based tracking technique builds upon the selection of a consistent 
set of features and their tracking on a frame-by-frame basis. A 
thorough investigation is conducted to determine a proper vision 
system setup, which results in a configuration that ensures the 
coverage of the complete patterns of motion that the object may 
exhibit. While the system relies on low resolution cameras, the 
proposed algorithm provides subpixel accuracy on the pose 
estimation of the rigid body and its associated motion. The 
algorithm is experimentally validated and operates within an 
execution timeframe that makes it suitable for real-time 
processing applications. 

Keywords— feature extraction; sparse optical flow; feature 
correspondence; tracking; 3D reconstruction; pose estimation; 
motion estimation. 

I.  INTRODUCTION 
The goal of this work is to estimate the pose and motion of 

a rigid object translating and rotating freely in 3D space. The 
motion is assumed to be smooth and continuous, while the 
color and texture properties of the object are not strongly 
contrasting or easily detectable. The proposed solution aims at 
providing accurate estimation of the location of the rigid body 
in the 3D world and its associated speed, without referring to 
an exact 3D CAD model of the object. 

The suggested pose and motion estimation technology is 
meant to become an integrated part of an autonomous robotic 
system to work in interaction with moving automotive parts, 
which are rotating and translating on an assembly-line. The 
task is an important component of an industrial setting for 
automatic quality control. Therefore, the robot is considered as 
a central element for an on-line defects marking system. The 
pose and motion estimator complements other sensors that 
provide extremely accurate information about the surface shape 
characteristics of body parts. For the robot to perform actions 
on a part that is moving with the assembly line, the motion of 
the gripper must be planned in accordance with the motion of 
the object, therefore the requirement for accurate and real-time 
pose and motion estimation. By ensuring synchronization 
between the robot end-effector and the automotive body part, 
the marking operation of surface defects can be accomplished 
as if in a pseudo-static environment. 

The current techniques used for tracking unidentified 
objects require the selection of some visually significant 
keypoints that can be easily extracted and followed over 
several frames. The main problem resides in how these feature 
points can be selected, such that they are unique or nearly-
unique, and can be compared in a distinctive way to other 
points in subsequent images. By analyzing how the position of 
these features changes from frame to frame, useful data for 
estimating the motion, as well as a sparse structure model of 
the rigid body, can be obtained. 

The design of a solution must take into account the 
specificities of the industrial setup. The starting premise was 
linked to the fact that merging the information from several 
vision sensors could bring reliable data about the complete 
motion of the rigid body, in any direction. However, solving 
the feature correspondence problem under mixed effects of 
large baseline, low amount of overlap, complex environment 
and low resolution, preempted the implementation of such a 
generic solution. A careful analysis on the complete set of 
motion patterns that can be performed by the object in the 
industrial perspective of an assembly line led to the selection of 
a setup consisting of a small baseline stereo-vision system 
appropriately positioned in the scene. 

Finally, with the addition of extra knowledge about the 
general appearance of objects to be inspected on the assembly 
line, but without requesting an exact CAD model, a reliable 
algorithm for pose and motion estimation is developed. The 
system was tested with offline data and proved to be suitable 
for real-time processing. 

The paper is organized as follows: Section II proposes a 
review of promising existing techniques to address the several 
challenges involved in the considered application. In Section 
III, two experimental multiple-view vision systems are 
introduced and characterized. In Section IV an original pose 
and motion estimation algorithm is detailed while Section V 
introduces the experimental validation. Finally, Section VI 
concludes the work and discusses potential extensions. 

II. STATE-OF-THE-ART 
In this section important research work on three major 

aspects that provide partial solution to the motion estimation 
problem are reviewed. The extraction of reliable features, the 
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computation of optical flow, and the formal estimation of 
motion are examined. 

A. Feature Extraction 
The selection of features to track is an important aspect that 

must be addressed at an early stage as it directly conditions the 
accuracy of the motion estimates. Harris and Stephens [1] 
introduced the combined corner and edge detector based on the 
local auto-correlation function to deal with image regions that 
contain texture and isolated features. Inspired by the proposed 
approach and the specified measure of the corner quality, Shi 
and Tomasi [2] set up a different validation gate starting from 
the same data which is the auto-correlation matrix. In a 
thorough investigation on feature matching, Vincent and 
Laganière [3] used corner extraction and introduced the 
interesting property of “repeatability”. Another effective 
direction in the field of feature extraction was initiated by 
Lowe [4] with the development of SIFT features, in which the 
process of extracting keypoints becomes invariant to scaling 
and rotation.  

However, under the constraints of the industrial application 
considered, low-resolution cameras are privileged and therefore 
images do not contain a large amount of fine details. Moreover, 
the inspected objects present very few sharp and unique 
features from a visual perspective. In addition to this, both pose 
and motion must be estimated in real-time. Therefore, solving 
correspondences under these conditions with the SIFT features 
approach does not represent a realistic alternative. 

B. Sparse Optical Flow Computation 
Provided that a reliable set of features is available, velocity 

or displacement estimates can be extracted. For that matter, the 
Lucas-Kanade (LK) feature tracker [5] can be applied to the 
subset of points in the input image. The suggestion of Lucas 
and Kanade to use a “coarse-fine strategy” as a registration 
technique represents the starting point for the pyramidal 
implementation of the LK tracker, detailed in [6]. In the latter, 
the problem of a natural trade-off between local accuracy and 
robustness is also addressed, when selecting the size of the 
search window in the motion tracking process.  

A sparse perspective over the Block Matching Algorithm is 
introduced by Chen et al. [7]. Sui et al. [8] present another 
approach for feature tracking in image sequences. Under this 
framework, using the projective invariant of Barrett and Payton 
[9] and the tracking of 8 general points in space, all other 
feature points that exist in the image can be tracked by means 
of a Hough transform technique. The low number of features 
required is appealing. However, under the constraints of an 
industrial setup, the suitability of the latest two solutions is 
questionable, since the trade-off between accuracy and 
computational costs remains critical. 

C. Motion Estimation and Robotic Interaction 
Huang and Netravali [10] present a review on 3D-to-

3D/2D-to-2D correspondences to estimate the 3D motion and 
structure of rigid objects from corresponding features at 
different times. Weng et al. [11] go along the same direction 
and introduce an algorithm for estimating the motion 

parameters and structure of the scene from point 
correspondences between two perspective views. Conversely, 
the proposed error correction algorithm is computationally 
expensive. It also imposes constraints on the necessity of a 
large field-of-view, and a simplified case of motion that should 
approximate a translation orthogonal to the image plane, 
similar to a far focus of expansion. 

As Holt and Netravali [12] observe, more useful 
information and improvement for the motion estimation and 
understanding can be obtained by analyzing an image sequence 
with more than just two frames. In their approach, they 
consider a motion model containing only a few parameters 
which can be presumed to remain constant over a short period 
of time. However, their formulation imposes constraints on the 
freedom of motion, since they consider that the translation does 
not vary between successive pairs of time intervals. Therefore, 
more insight about the motion can be obtained, but at the cost 
of restricting the freedom of motion of the rigid body. Kuang 
and Liu [13] introduce a pose estimation algorithm building 
upon a setup with a stereo-vision system and a rigid body 
equipped with a couple of known predefined markers on its 
surface. Their solution is based on the fact that the increments 
from the set of points on which rotation has been applied are 
perpendicular to the direction of rotation. 

Overall, the literature remains very limited about the 
problem of robotic interaction with moving rigid bodies in an 
industrial setting. Yoon et al. [14] highlight one of the 
important problems faced in industrial quality control, which is 
the lack of a considerable amount of features to track in order 
to determine the motion. In their work, the authors try to 
estimate the complete pose of an industrial object by using its 
circular-shape features. Their algorithm achieves good 
accuracy by tracking only three of the geometrical features of 
the object with a camera-in-hand solution. Under the same 
framework, Chang et al. [15] propose a multiple-level robot 
control solution for a peg-and-hole experiment on the same 
moving body as in [14]. They point-out the necessity of highly 
accurate ground truth data for validating the pose and motion 
estimates of the object throughout its motion sequence. For this 
purpose and for calibration and visual servoing validation, they 
make use of a six degree-of-freedom NIST laser tracker.   

The problem in the current research and the one introduced 
in [14] are similar from the perspective of estimating the pose 
without any a priori knowledge about the 3D CAD model of 
the object. Nevertheless, in order to be able to solve this 
problem in the case of a rigid body exhibiting only a small 
number of features, extra knowledge about the object structure 
is required. Since using an exact CAD model of the object is 
not desirable, only generic geometrical characteristics about the 
automotive part are provided to the pose and motion estimator. 
In that, the amount of extra information provided to the 
solution proposed here remains smaller than what is considered 
in [14]. In the latter a specific reference frame is assigned to the 
industrial object, based on the locations of the three circular 
shapes of interest, measured with the laser tracker.  
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III. EXPERIMENTAL STEREOSCOPIC SETUP 
In order to reproduce the automotive body inspection 

scenario in the laboratory, an experimental setup has been built 
that uses a rigid body structure consisting of a mobile robot to 
generate the movement, along with a mock-up door mounted 
on its upper face, as shown in Fig. 1. The prototype was built 
with the objective of getting as close as possible to the actual 
set of visible features offered by a real automotive body part, in 
this case, a car door with a window, the door knob and a key 
hole. 

 

Figure 1.  Mock-up rigid body used for experimental evaluation. 

In the process of selecting the most suitable configuration 
for a multiple-view vision system in the context of on-line 
quality control, a number of settings have been evaluated. After 
a thorough investigation regarding the patterns of motion that 
the rigid body might exhibit on the assembly line, a 
configuration consisting of two orthogonal cameras was 
evaluated, as shown in Fig. 2a. One camera is positioned over 
the inspected part and points downward, while the second 
camera collects a lateral view of the moving part. Therefore, 
only two cameras are sufficient to extract the necessary motion 
information. As imposed by stereoscopic vision, the 
correspondence problem must be resolved in order to 
reconstruct the 3D position of some keypoints. Unfortunately, 
in this case the correspondence problem cannot be solved 
accurately. This is mainly because of the small number of 
features that can be extracted and matched from the limited 
overlapping regions of the views. 

   

Figure 2.  Alternative configurations with:  a) two orthogonal cameras (Cam 
1 and Cam 2), and b) a single stereo-vision system (CamR and CamL). 

Considering the relatively straight motion of the assembly 
line, the acquisition system was modified to measure the 
motion information with a single stereo-vision configuration 
located above the assembly line and pointing downward, as 
shown in Fig. 2b. In this configuration the world reference 

frame is attached to the left camera (CamL) with the optical 
axis, Z, pointing down. The XY plane defines the surface of 
motion of the object. The motion pattern of the rigid body is 
mainly a translation along the X axis in the first part of the 
sequence, coupled with a minor translation along the Y axis in 
the second part of the motion sequence. The latter corresponds 
to a slight turn on the right w.r.t. the direction of motion. The 
speed of the mobile robot varies only slightly throughout the 
motion. Also, as the robot is manually driven by a remote 
control, it exhibits a low level of vibrations throughout the 
sequence of motion. Following experimentation, a baseline, b, 
of about 25cm between the two cameras was found to provide 
better results than the cases with closer vision sensors under the 
same configuration. The experimentation conducted on the 
mock-up model of a car door revealed that the stereo-vision 
configuration illustrated in Fig. 2b, with its principal axis 
pointing perpendicularly to the object and direction of motion, 
represents the most suitable acquisition strategy for estimating 
the pose and motion of the automotive body part moving on an 
assembly line. The calibrated vision system includes two Point 
Grey Flea2 IEEE-1394b CCD cameras with CCTV 3.5 mm 
lenses. Software solutions are implemented in C++ with the 
open-source library for computer vision, OpenCV.  

Also, in order to create a set of ground truth data that will 
be compared to the pose and motion estimates, the trajectory of 
the mobile part is recorded during motion by tracing a line over 
a 156x140 cm grid (made of 1x1 cm squares) that was fixed on 
the floor. A third camera, synchronized with the calibrated 
vision system, provides information about the timing of the 
movement by detecting the position of the pencil marker over 
the grid during the recorded sequence. Although, not as highly 
accurate as the ground-truth data accumulation presented in 
[15], the recorded trajectory is fairly accurate and provides a 
good basis of comparison. 

The data is recorded at a frame rate of 15fps, and 640x480 
pixels of resolution. During this initial phase of 
experimentation the videos are recorded offline, but the 
application runs fast enough to operate in real-time on live 
video feeds. Since the rigid body is moving with slightly 
variable speed and because the frame-extraction rate is also 
imposed by the processing of the ground truth data, the frame-
extraction process is triggered every time the pencil intersects 
with grid lines separated by 2cm. As a result, the average frame 
extraction frequency, fextr, is 1.5Hz. A total number of N=48 
extracted frames are employed in the sequence. The total 
displacement of the mock-up door is about 100 cm throughout 
the entire sequence. The duration of the entire processed video 
sequence is about 40 s.   

IV. PROPOSED ALGORITHM 
Building upon the last acquisition configuration detailed in 

Section III, an algorithm is proposed to resolve the pose and 
motion estimation problem. The technique offers reliable 
results with respect to the estimation of the pose of the object 
as well as for the motion it exhibits. A set of six features that 
can be extracted with a maximum of stability from the mock-
up car door are tracked, that is the four corners of the door 
window and the two corners of the door knob. These keypoints 
are called the macro-features.  
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Fig. 3 presents the block-diagram of the proposed algorithm 
that is applied on the processed set of videos recorded with the 
configuration defined in Fig. 2b. Using a graphical user 
interface (GUI), the process is initiated by the operator who 
roughly selects the macro-features in the first frame that 
represents a full view of the inspected object in both cameras.  
This action (A1) is performed only once, on the frame grabbed 
by the right camera (camR), as an initialization step. For every 
chosen feature an 11x11 pixels window is defined and centered 
on the selected feature. A search for the exact locations of the 
corners (A2) is then performed only over those windows of 
interest to refine the estimation of the feature localization in the 
image. This is achieved using the Shi and Tomasi corner 
detector [2] with a subpixel accuracy refinement. The 
accurately located macro-features provide the input data to the 
pyramidal Lucas-Kanade tracker [6] that gives reliable 
information about their displacement throughout the processed 
sequence. Subsequently, the tracker contains a built-in 
validation gate for pruning away the outliers. The key elements 
of this procedure are the tracking error, linked to how much 
the neighborhood that contains each macro-feature changed 
during the tracking, and the norm of the optical flow in both 
directions with respect to the dominant norm value. Fig. 4 
illustrates the sparse optical flow results for a frame captured 
by the right camera.  

 
Figure 3.  Proposed pose and motion estimation algorithm. 

The corner detection refinement process (A3) is reapplied 
on every r frames among the set of extracted frames (i.e. N1 
times during the entire sequence, with N1=N/r). This aims at 
correcting for the error that might be accumulating between the 
position of the features given by the tracker and the more 
accurate location provided by the corner detector.   

Although the LK tracker is able to compute the 
displacements for all extracted corners, features that are not 
part of the selected macro-features set are discarded since they 
exhibit much larger variations in their position estimation over 
the tracking period. For that reason, for solving the 

correspondence problem, only the matches between the macro-
features are considered.  

 

Figure 4.  Sparse optical flow data and macro-features on the rigid body. 

In order to avoid computationally expensive feature 
matching techniques, as proposed in [3], advantage is also 
taken of the short baseline between the cameras. The pyramidal 
LK tracker also serves for directing the correspondence (A4). 
Also, the parameter regarding the number of levels that the 
image pyramid should contain can also be modified, making 
the proposed algorithm suitable for stereoscopic configurations 
with even larger baselines or systems in which the cameras are 
slightly tilted with respect to the principal axis of the stereo-
vision sensor.  The feature tracker in A4 is employed only once 
during the processing of the motion sequence. But in general, it 
can be applied every p frames (i.e. N2 times during the entire 
processed sequence, with N2=N/p). The feature tracker 
provides an initial guess of the macro-features localization in 
the correspondent frames. 

 Following a procedure similar to A1, a 12x12 pixels 
window is centered over each of the macro-features returned by 
the pyramidal LK tracker employed for the correspondence 
problem. As the tracker is used only once, in the next cycles of 
the algorithm, the positions of the windows are updated, based 
on the optical flow information obtained from the tracking of 
features in the correspondent frames taken with the right 
camera. 

The location of the macro-features given by the pyramidal 
LK tracker for correspondence is being refined with the 
application of the Shi and Tomasi corner extractor in the 
corresponding frame of the left camera. The above mentioned 
windows, which are being displaced every cycle, represent the 
search regions for the corner detector. Based on the accurate 
estimates for the macro-features correspondences obtained 
previously, the 3D position of these keypoints is estimated with 
a linear triangulation procedure [16]. The 3D points represent 
the set of estimated data, to be compared with the ground truth 
data obtained with the help of the validation system described 
in Section III.  

V.  EXPERIMENTAL VALIDATION 
Fig. 5 shows a back-projection of the 3D points over the 

corresponding image plane of the left camera and is used to 
evaluate the accuracy of the pose estimation. As a calibrated 
stereo-vision system is used, the epipolar lines can be 
computed in the frames of the left camera and used to visually 
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inspect the location of the computed correspondences with 
respect to them. Experimentation demonstrated that sub-pixel 
accuracy is achieved on the back-projection of the estimated 
pose for the set containing the first four macro-features (see 
Fig. 5) in both directions. The last two macro-features exert 
subpixel accuracy on the back-projection error in the horizontal 
direction, and an average value of 1.5 pixels for the back-
projection error in the vertical direction. As mentioned in 
Section III, the rigid body exhibits relatively straight and 
smooth motion (mainly, a translation along the X axis in the 
first part, coupled with a minor translation along the Y axis in 
the second part, w.r.t. the world reference frame as shown in 
Fig. 2b).  

 
Figure 5.  Image from the left camera with back-projection of  

estimated location of the six macro-features. 

The analysis of the reconstructed 3D data is based on a set 
of two quality tests. The first quality measure is related to the 
comparison of our results with the knowledge available about 
the geometrical structure of the mock-up door. The reference 
data is accurately measured in the real world and compared to 
the corresponding computed values based on the 3D positions 
of the macro-features. The set of data consists of: the width 
between macro-features 3 and 4 (width1), as defined in Fig. 5, 
between features 5 and 6 (width2), and the height between 
macro-features 4 and 5 (height1), and between macro-features 3 
and 6 (height2) of the rectangle representing the window. As 
well, the lateral size of the door knob (between macro-features 
1 and 2) is monitored. The absolute relative error between the 
real and the estimated data is computed over the entire 
processed sequence. The values reported in Table I represent 
the mean of the absolute relative errors computed over the 
sequence, in the cases where corners are re-extracted every r=5 
frames or not, as explained in Section IV. It can be observed 
that the data, in which the macro-features 5 and 6 are involved, 
is more erroneous than the measurements that include the other 
macro-features. This is caused by the higher back-projection 
error in the vertical direction associated with the last two-
features. Moreover, from the perspective of the group 
containing the first four macro-features, the mean absolute 
error is inferior to 1cm, thus acceptable accuracy is achieved 
for a robotic marking process of deformed areas over an 
automotive part. Interestingly, there is no consistent 
improvement observed in the data when the features are 
monitored with corner re-extraction; only the rectangle width 
and the size of knob results tend to get closer to their real 
values. 

TABLE I.  QUALITY MEASURE 1 – GROUND TRUTH DATA COMPARISON 

The second quality measure is related to the comparison of 
the pose and motion estimates with the ground-truth data 
recorded by tracing the trajectory of the rigid body on the grid 
fixed on the floor. In order to be able to compare the two 
different data sets, one that is measured with respect to the 
world reference frame (CamL) and the other one with respect 
to the grid, a two-step transformation procedure is employed. 
First, ten corner-shaped markers placed over the grid are 
recovered with the corner extractor. The method of Arun et al. 
[17] is used to compute the transformation matrix between the 
world reference frame and the grid reference frame. With the 
use of the estimated transformation matrix, the 3D locations of 
the macro-features can be expressed with respect to the 
reference frame attached to the grid. In the second step, the 
displacements in X, Y and Z directions (w.r.t. the grid reference 
frame) between the macro-features and the tip of the pencil 
tracing the trajectory are estimated manually to allow a 
comparison of trajectories in the grid reference frame. 

The validation procedure includes two comparisons for 
validating the accuracy of the pose and motion estimation. Fig. 
6 illustrates the real and the estimated 3D trajectories of the 
rigid body throughout the sequence. For computing the 
estimated trajectory, we have applied the transformation 
procedure to the first macro-feature since it exhibits the 
smallest back-projection error throughout the sequence. For the 
initial part of the processed video, where the rigid body is 
smoothly translating along the X axis, the two trajectories are 
very close to each-other. In the second part (for X>40cm), a 
slight divergence starts to appear between them. 

 

Figure 6.  Real and estimated 3D trajectories comparison  
for the rigid body througout the motion. 

The maximum value of this divergence is 3.5cm along the 
X axis, 2.8cm along the Y axis, and 2cm with respect to the Z 
axis. One of the most important causes of this error is the fact 
that the pencil that marks the grid is mounted on a spring which 
tends to slightly bias the trajectory when changing direction. 
The least-squares method used in computing the transformation 
matrix between the world reference frame and the grid 
reference frame, together with the manual measurements made 
in the second step of the transformation procedure, also 
introduce a small amount of error in the system. 

For the second comparison the velocities along the X and Y 
axis are compared, between the ground-truth and the estimated 
data. In Fig. 7a it can be observed that the real and estimated 
velocities along the X axis are very close to each other. The 
rudimentary trajectory marking system is the cause of the 
spikes present in the last part of the sequence in both Fig. 7a 

Corners re-
extraction 

Ground Truth Comparison 
Width1 
Error 
(cm) 

Width2 
Error 
(cm) 

Height1 
Error 
(cm) 

Height2 
Error 
(cm) 

Size of knob 
Error 
(cm) 

No 0.82 0.93 1.55 1.7 0.79 
Yes 0.76 0.9 1.63 1.73 0.42 
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and 7b. Moreover, the velocity in the X direction is not constant 
as the part was manually moved with a mobile robot during 
experimentation, which resulted in slight variations around a 
mean value of 3cm/s. The velocity along the Y axis is very 
small in the first part of the trajectory and is basically caused 
by the merged effects of noise, imperfect orthogonality of the 
stereo-cameras with the horizontal surface over which the 
movement occurs, and the small variations during the motion. 
Then, in the second part of the motion sequence, the absolute 
value of the velocity along the Y axis increases as the rigid 
body slightly turns right from the direction of motion. 

 

 

Figure 7.  Real and estimated velocities (cm/s) along: a) the X axis;  
b) the Y axis, throughout the motion cycle. 

Finally, the time performance of the entire processing per 
pair of frames represents approximately �p�0.2s which, 
subtracted from the average frame-extraction rate �t�0.667s, 
leaves a reserve of �r�0.47s until the next frame will be 
captured. Experimentation demonstrated that increasing the 
frame-extraction rate does not significantly improve the 
accuracy for this type of trajectory. This makes the proposed 
solution a valid approach for a real-time implementation, as 
required in an industrial setting. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, the problem of pose and motion estimation of 

a rigid body exhibiting a limited number of dominant features, 
and moving in 3D space is addressed. The use of a calibrated 
stereo-vision system is evaluated in regards of industrial 
inspection systems requirements. An algorithm is proposed to 
effectively track the few features available and estimate pose 
and motion of the moving rigid body in real-time. The 
technique is validated experimentally and demonstrates that 
reliable results can be achieved, even when standard video 
cameras are used.  

Future investigation will aim at further improving the 
accuracy of the pose and motion estimates, by taking advantage 

of the remaining time available within typical acquisition frame 
rates. The integration of the pose and motion estimator with a 
robotic arm will also be performed to provide actual interaction 
with the moving object under visual guidance. 
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