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Abstract—This paper proposes an innovative solution to the 
problem of extracting feature nodes from a 3D model and 
grouping nearby feature nodes according to the likelihood that 
they belong to the same feature.  The technique is designed 
specifically with the problem of detecting unwanted deformations 
on automotive body part in mind, where feature line detection 
will not always give the best results.  Using an octree 
representation, the multiresolution method is able to analyze the 
model for features of various scales.    It also uses the octree data 
structure for feature grouping, and provides an alternative to 
feature line extraction for connecting similar feature nodes.  An 
existing technique is compared to the proposed approach for 
feature extraction, and results are presented for the feature 
grouping method using a point cloud of a miniature car model. 

 

Keywords—feature extraction, surface map analysis, 
deformation detection, pattern recognition, quality control, 
automotive body parts.  

I.  INTRODUCTION  
Feature extraction techniques can be very useful to gain 

meaningful information out of a dataset.  The process can 
advantageously be automated in quality control applications 
where compliance of the shape of an object with some 
predefined standards is to be validated. In the context 
considered for this work, the objective is to automatically 
detect surface deformations over high resolution 3D point 
clouds of automotive body parts on an assembly line. The goal 
is to improve quality consistency over large production 
volumes.  The surfaces considered are characterized by their 
smooth curvatures, along with some intentional sharper 
features, such as door handles, molding holes and aesthetic 
curves; and with some undesirable features, such as damages 
produced during manufacturing, which are to be detected.  
Most of the intentional features are larger, while the 
deformations represent rather small features compared to the 
overall size of the object under inspection.   

For the purposes of this work, features are defined as 
meaningful variations over the surface of a 3D model.  To 
determine which features are intentional and which features 
are unintentional deformations, some sort of classification 
must be performed.  Extracting feature segments is the first 
phase.  Being capable of identifying features at various scales 
is important, since the dimensions of the intentional features 
and deformations may vary.  The second phase is known as 

feature grouping, and identifies which of the detected feature 
segments belong to the same physical feature.  This stage is 
important to determine the size and shape of various features 
on the automotive parts to separate the intentional features 
from the undesired deformations.   

Most methods detect meaningful variations over the 
surface of a 3D model directly from 3-dimensional datasets 
and build on volumetric representations.  Many techniques can 
be applied to the extraction of features, but cannot be easily 
applied to grouping features [1,2].  Some methods propose 
feature extraction and identify feature lines of a mesh [3,4]. 
But since the application requires the detection of small 
features which may not always be connected it would be 
useful to identify relationships between seemingly different 
features that may belong to the same desired feature. 

This paper proposes a new technique to extract meaningful 
features from a 3D mesh and to group them based on their 
proximity and similarity using a single octree structure.  
Though classification is beyond the scope of this paper, the 
method works at various scales and provides multiresolution 
information which can be useful in identifying and classifying 
important features.  The method is divided into two stages: the 
Feature Extraction stage and the Feature Grouping stage.   

The paper is structured as follows.  Section II reviews 
state-of-the-art techniques which can be applied to the 
problem considered.  Section III discusses the proposed 
feature extraction and feature grouping techniques.  Section IV 
shows the results obtained with the proposed method.  Finally, 
Section V presents future improvements and conclusions. 

II. STATE-OF-THE-ART 
With the growth of 3D imaging and modeling 

technologies, the problem of performing pattern recognition 
over surface shape models has recently received significant 
attention, but still remains an important field of investigation.    
Feature extraction has been well-researched recently, with 
several methods that deliver good results.  

A. Feature Extraction from 2D Projections 
Two-dimensional feature extraction methods applied on 3-

dimensional data can be very effective under some 
circumstances.  This strategy involves generating a 2D 
representation of 3D data and applying traditional 2D edge 
detection filters to properly identify features.   
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Two main strategies can be identified in this case: i) depth 
imaging and ii) surface normal imaging. The depth imaging 
method relies on projecting the 3-dimensional model onto a 2-
dimensional map, where each pixel’s intensity corresponds to 
a depth value.  By examining these depth values, significant 
changes in the surface shape can be put in evidence, 
depending on the projection that is considered to create the 
map. This method results in a 2-dimensional array of depths, 
where traditional edge detection methods can readily be 
applied to determine the location of the features. Alternatively, 
the surface normal imaging method maps pixel elements of the 
2-dimensional image to the orientation of surface normals.  
Significant changes in adjacent surface normals should 
indicate relevant features.  The surface normal image can be 
analyzed with traditional edge detection techniques also.   

These methods have been tested on models representing 
relatively flat surfaces, where desired features exist on only 
one side. They prove to be very effective when using good 
edge detection methods, such as the Canny edge detector [5]. 
However, with 2D-based methods, a reference perspective is 
required, and since a 3D model must be projected onto a 2D 
plane, some faces of the object are inherently missing in the 
intermediate representation, preempting the extraction of a full 
set of features.  A more robust solution for 3D models, such as 
automotive body parts which may not be flat or one-sided, is a 
volumetric feature extraction method.  

B. Feature Extraction using Mesh Aggregation 
Feature extraction using mesh aggregation was proposed 

by Lee et al. [6], and classifies edges as sharp edges or smooth 
edges. Sharp edges are drastic changes in adjacent surface 
normals, while smooth edges are gradual variations between 
adjacent surface normals, as a smooth curve would produce.   

Working on a 3D mesh, all of the adjacent triangular 
surfaces in the mesh that exhibit a variation in their normal 
orientation beyond a certain threshold are regarded as 
boundary meshes.  A cost value is assigned to each of the 
faces, and they represent the likeliness that a face can be on a 
boundary or not.  The area of the polygonal meshes is also 
considered to detect gradual rounded curves that correspond to 
smooth edges.  A second threshold is used to define the 
maximum area of a group of polygons that will be merged to 
form a mesh.  Adjacent polygons are merged together to form 
a larger mesh.  When the cost value becomes too high, the 
curve is an edge.  If the surface area becomes too high the 
mesh is not mapped as an edge.   

This method is effective at identifying features at various 
scales, due to its ability to detect small sharp features as well 
as large curved features.  However, it is still not truly a 
multiresolution method because it requires different thresholds 
at different scales. Also, a secondary technique is still required 
to reduce the density of the mesh. 

C. Multi-scale Feature Extraction 
A multi-scale feature extraction method was proposed by 

Pauly et al. [7] which allows feature extraction from a 3D 
object composed of surfaces at various detail levels.   

It operates on point cloud data and detects deformations in 
the surfaces of the model.  A weight is given to each point to 
represent the confidence that it belongs to a feature.  A feature 
is defined by local variations in the surface normals, and for 
different scales, different neighbourhood sizes are used.  
Strong features are determined by selecting a threshold and 
considering variations over that threshold as feature nodes.  If 
a feature persistently exceeds that threshold over multiple 
scales, it is classified as a strong feature.  To extract feature 
lines from the feature nodes and weights discussed above, a 
minimum spanning tree is generated. 

 The results presented in the paper show that this method 
performs well at identifying prominent features of various 
scales.  However, important features are not always a 
connected line of feature nodes, but rather correspond to 
disjointed feature nodes or lines.  For the proposed 
application, they should be counted as a single feature group, 
but even with reasonable scale selection, this algorithm would 
cause disjointed feature lines to appear as multiple features. 

III. PROPOSED METHOD 
The proposed method can be separated into two 

components:  feature extraction that searches for nodes of 
interest, and feature grouping that associates the detected 
nodes into larger structures. 

A. Feature Node Extraction 
Woo et al. introduced a 3D feature detection technique 

based on octree structures [8], and uses recursive subdivision 
of the volume of a 3D model to identify features.  It requires a 
model with a reconstructed surface and partitions the model 
into subsections which represent varying levels, or scales, of 
features.  Since the data being used is in the form of an 
ordered point cloud, surface reconstruction is a trivial task.   

Given a 3D mesh, surface normal vectors can be calculated 
for all parts of the surface.  They define the orientation of each 
segment of the mesh.  Variations in the orientation of surface 
normals within a given region are estimated from the standard 
deviation of normal vectors within that region. This method 
facilitates the partitioning process.  All of the triangles that 
make up the surface of the object are initially added to the root 
of the tree structure.  The standard deviation of their surface 
normals is calculated, and compared to a threshold.  First the 
mean normal is computed: 

 �� � � ������	
  (1) 
 
where n is the number of triangles at the node, �����is the mean 
normal, and ��  is the unit normal of each of the triangles.  
Then the standard deviation, �, of the normals can be 
estimated as: 
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Figure 1. Octree-based feature node segmentatio
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Figure 3. Point-base rendering 
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normals set at 0.50, and set at 0.55. The depth levels illustrated 
correspond respectively to the 10th level and 16th level in the 
octree structure, the latter being associated with finer features. 

  

 
a) b) 

Figure 4.  Original method, threshold= 0.50: a) depth 10, and b) depth 16. 
 

  
a) b) 

Figure 5.  Original method, threshold=0.55: a) depth 10,  and b) depth 16. 
 
Fig. 6 shows the features extracted with the proposed 

method applied on the same data set with the linear threshold 
defined in Eq. (3), using a root threshold of a=0.45, and a tree 
depth increment of i=0.01.  These parameters cause the 
threshold to start at 0.45 at the root node, and increment by 
0.01 for every level of the tree, until it ends at 0.61 at the 16th 
level. The data shown are the features extracted respectively at 
the 10th and 16th level of the tree, as in Fig. 4 and Fig. 5. 

 

 
a) b) 

Figure 6.  Proposed method, a= 0.45, i= 0.01: a) depth 10, and b) depth16. 
 
It is visible that even with well-selected thresholds, too 

many features are ignored or too much of the model is 
identified as features, when using the original method.  With a 
threshold that was too high, at a tree depth of 10, as in Fig. 5a, 
several important features have already been removed, such as 
part of the aesthetic curve, the borders of the door, and the 
manually created deformation.  With a threshold that was too 

low, at a tree depth of 16, as in Fig. 4b, excess features and 
noise had still not been removed. 

 With the proposed method, the results shown in Fig. 6 are 
more accurate.  Features of interest are identified with few 
excess features.  At a depth of 10, there are very few excess 
features, while all major features are still intact.  At a depth of 
16, more unwanted noisy features have been removed.  With 
the settings considered for the linear threshold, the threshold 
values range from 0.45 to 0.61, which represents a proper 
overlap with that of the original method. The proposed 
approach results in a larger portion of wanted features to be 
detected while eliminating more unwanted features.  The 
proposed method is also more efficient, as shown by the size 
of the tree generated with the respective methods.  At a tree 
depth of 16, there are 17718 nodes containing features with 
the original method with a threshold of 0.50.  There are 5656 
nodes containing features at a tree depth of 16 with a threshold 
of 0.55.  With the proposed approach, there are only 6714 
nodes at a tree depth of 16, which is much less than the 
original method at a threshold of 0.50, and only slightly 
greater than the original method at a threshold of 0.55, yet all 
major features are still intact. Overall, this experimentation 
demonstrates that the proposed method preserves more 
relevant data within a smaller data structure.  Generating the 
smaller data structure  reduces computation time, and requires 
fewer resources, which is beneficial, as the end goal is to 
obtain results in real time on an assembly line. 

B. Feature Node Grouping Results 
To evaluate the performance of the feature grouping 

component of the proposed algorithm, three feature groups 
over the course of various resolutions are examined.  The 
important features are shown and labeled in Fig. 7. 

 

 
a) b) 

Figure 7. a) Important features on point cloud dataset (1:deformation; 
2:door knob; 3:aesthetic curve), and b) important features extracted. 
 
The percentage difference threshold on the standard 

deviation of unit normals is set at 0.70, while the percentage 
difference threshold on the relative occupancy is set at 0.75.  
Feature node grouping is experimented and evaluated at tree 
depths 4 to 8.  Feature node grouping is only evaluated at 
these depths because at greater depths the resolution is very 
fine and connectivity is determined for very small regions, and 
at lesser depths, the resolution is so shallow that everything 
has high connectivity.  These depths provide the proper scale 
for features that are important for the application considered.  
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Fig. 8 shows a relative occupancy map at each depth, as the 
resolution increases, where pixel intensity corresponds to the 
relative occupancy of each node volume as defined in Eq. (5).  
This figure illustrates how the octree represents resolutions at 
various depths, as well as showing the relative occupancy 
values of each node. As resolution increases, the relative 
occupancy of feature nodes concentrates on finer details, 
which provides an important mechanism to detect features of 
various scales within the same point cloud. 

 

 
Figure 8. Node relative occupancy as resolution changes, for: a) depth 4, 

b) depth 5, c) depth  6, d) depth 7, and e) depth 8. 
 
  Fig. 9 presents the results of the feature node grouping 

phase when applied on the nodes extracted in Fig. 6b. 
 

 
Figure 9.  Feature groups obtained at various depths. 

 
The results show consistency over various resolutions by 

showing the same features being grouped together, such as 
features 1 and 3 in depths 5 to 7, and feature 2 in depths 4 to 8.  
Feature 1 gets broken up into multiple groups at the higher 
resolution of depth 8.  When reaching a resolution that is too 
high for the scale of the feature, the latter may be separated 
into multiple groups due to a lack of connectivity between 
adjacent nodes.  Unwanted features being grouped with 
feature 1 at the lower resolution of depth 4 are due to the 
resolution being too low for the scale of the feature, which 
results in too much connectivity between adjacent nodes.  
Similarly, feature 2 is grouped with other nodes at depth 4, but 

its extraction is immediately refined at depths 5 and beyond, 
and the dominant piece of feature 2 shows up consistently in 
depths 5 to 8.  The capability to analyze the point cloud at 
various scales provided by the proposed 2-step approach is 
very promising.  Consistency in the appearance of features 
over multiple scales demonstrates the algorithm’s reliability.   

V. CONCLUSIONS AND FUTURE WORK 
For the purposes of automotive body parts inspection, the 

experimental results show that the proposed feature extraction 
method works very well by providing accurate results on the 
location of features of interest and by generating a more 
compact octree data structure than with the original approach.  
Taking advantage of the octree structure which is inherently a 
multiresolution representation of the feature extraction, the 
feature grouping stage can be performed at various 
resolutions, revealing features of various scales.  With the 
proposed solution, feature node extraction and feature 
grouping are integrated to perform over a single data structure, 
rather than necessitating the use of two different frameworks.  
This proved to be an efficient strategy, with numerous features 
successfully revealed over the course of several resolutions.   

Future work will investigate how the consistency 
throughout several resolution levels can be exploited to further 
automate the deformation detection process by reducing 
dependency on threshold selection. Automatic feature 
classification will also be integrated. 
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