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Abstract – In a world where automation of processes is more and 
more on demand, machine vision is continuously explored to 
address several industrial problems such as quality inspection. In 
the processed-food industry where the external quality attributes of 
the product are inspected visually before the packaging line, 
machine vision systems often involve the extraction of a larger 
number of features than those actually needed to ensure proper 
quality control. This work experiments with several feature selection 
techniques in order to reduce the number of attributes analyzed by a 
real-time vision-based food inspection system. Four filter-based and 
wrapper-based feature selectors are evaluated on seeded buns and 
tortillas datasets. Experimental results show that consistency-based 
and the RELIEF subset evaluation techniques perform the best for 
all the considered datasets in terms of accuracy. However, 
variations in the number of attributes selected still vary significantly 
between these techniques. 
 
Keywords – Machine vision, food inspection, feature selection, 
machine learning. 

I. INTRODUCTION 

For several years, the food industry has been trying to 
automate the product quality verification process in order to 
decrease production costs and increase the quality and 
uniformity of the production. Machine vision-based systems 
are of particular interest when it comes to extracting features 
of a product for classification purposes. Most of the external 
quality attributes of a product are usually inspected visually 
before the packaging line and items that do not satisfy to the 
set standards are automatically rejected. Such machine vision 
systems have been used for several inspection applications in 
the food industry including meat, fruits and vegetables, 
bakery products, and prepared consumer foods [1][2][3]. 

Machine learning is at the core of several vision-based 
inspection systems. But in many applications, it is not known 
exactly which features are critical for the quality control or 
how they should be represented. It is therefore difficult and 
time-consuming to determine on which features to focus the 
system’s attention when configuring the inspection system in 
order to sustain a high production rate with a minimum of 
redundancy. One intuitive solution is to include all features 
that could possibly be relevant and let the learning algorithm 
decide which features are in fact worthwhile [4]. A more 
formal way is to identify the relevant features by means of 
feature selection techniques and make the inspection system 
concentrate only over a space of a reduced dimension. Such 

feature selection techniques are often categorized as filters or 
wrappers. In the filter approach, the feature selector is 
independent of the learning algorithm and serves as a filter to 
sieve the irrelevant and/or redundant attributes. The wrapper 
feature selector rather works around the learning algorithm to 
actively determine the relevant attributes. 

The motivation for this research work is to evaluate the 
effectiveness of some state-of-the-art feature selection 
techniques for an application on real-time vision-based food 
inspection systems that operate on several types of bakery 
products such as hamburger buns, tortillas, and croissants. 
The development of an automated process for the 
determination of the most relevant features that can also 
adapt to the type of products being inspected represents a 
major evolution in the technology. It makes the configuration 
and maintenance of inspection systems more straightforward, 
even for new products, while improving the uniformity of the 
production. 

Section II discusses four filter-based and wrapper-based 
feature selectors that have been considered. Section III 
presents and analyzes the outcomes of an experimental 
evaluation of those feature selection techniques on datasets 
generated with an existing real-time vision-based food 
inspection system. 

II. FEATURE SELECTION TECHNIQUES 

As mentioned previously, filter and wrapper approaches 
are examined for the application considered. Three different 
filter-based techniques are detailed: a correlation-based, a 
consistency-based, and the RELIEF feature selection methods 
respectively. One wrapper-based technique is also examined. 

A. Correlation-based Feature Selection 

Correlation-based feature selection (CFS), introduced by 
Hall [5][6], evaluates subsets of attributes rather than 
individual attributes. Hall’s rationale of this technique is 
based on the hypothesis that “a good feature subset is one 
that contains features highly correlated with (predictive of) 
the class, yet uncorrelated with (not predictive of) each 
other” [5]. The first part of this hypothesis is inspired by 
Gennari et al. [7] who stated that features are relevant if their 
values vary systematically with category membership.  This 
statement has been formalized by Kohavi and John [8] who 
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formulated that a feature Vi is said to be relevant if and only if 
there exists some vi and c for which P(Vi = vi) > 0 such that: 

( ) ( )P C c V v P C ci i= = ≠ =  (1) 

Theoretical and empirical evidence encourages removing 
redundant information along with irrelevant features 
[8][9][10]. A feature is considered redundant if it is highly 
correlated with one or more other features. CFS uses the 
following heuristic evaluation to rank feature subsets: 

( ) ffrkkk

cfrk
sMerit
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=  (2) 

where sMerit  is the heuristic “merit” of a feature subset S 

containing k features, cfr  is the average feature-class 

correlation, and ffr  is the average feature-feature correlation. 
The numerator can be interpreted as an indication of how 
predictive a group of features is, as for k fixed and greater 

than 1, the feature-class correlation average cfr  will be 
relatively large if the group of features is correlated with the 
class and small otherwise; and therefore the numerator allows 
discriminating irrelevant features. On the other hand, the 
denominator discriminates redundant features because in case 
of redundant attributes (respectively non redundant), the 

feature-feature correlation average ffr will be large (small), 
which implies a larger (smaller) denominator, and therefore a 
smaller (larger) sMerit . The correlation between features is 
computed using symmetrical uncertainty (SU): 
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where H(Y) is the entropy of a discrete feature Y and H(X, 
Y) is the entropy of a discrete feature X after observing Y. 

B. Consistency-based Feature Selection 

In consistency-based feature selection, training instances 
are projected onto the subset of attributes and then the 
consistency of the subset is evaluated. It is therefore common 
practice to use consistency-based subset evaluator in 
conjunction with a search algorithm that looks for the 
smallest subset with consistency. Liu and Setiono proposed 
an inconsistency evaluation criterion in [11].  Two instances 
are considered inconsistent if they match except for their 
class labels. The inconsistency criterion is computed as 
follows: (1) suppose there are k possible class labels label1, 
label2,…, labelk in a certain dataset which contains N 
instances; (2) suppose there are J distinct combinations of 

attribute values for a subset s of attributes (without 
considering the class labels of the instances); (3) suppose that 
Di is the number of occurrences (or matching instances 
without considering the class labels of the instances) of the ith 
combination of attribute values; (4) suppose that among the 
Di instances, c1 instances belong to class label label1, c2 
instances belong to label2, …, and ck instances belong to class 
label labelk, such that c1 + c2 + … + ck = Di and let Mi = max{ 
c1 , c2 , … , ck }.  Then the inconsistency count is given by: 

ncyinconsiste  ( )iMiDcount −=  (4) 

In other words, for matching instances (without considering 
the class labels of the instances) in a subset s of attributes, the 
more the class labels match, the less inconsistent (or the more 
consistent) is the subset s with respect to the class. The 
inconsistency rate of an attribute subset s is given by the sum 
of all inconsistency counts divided by the total number of 
instances: 

N
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i iMiD
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∑
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−
= 1  
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Several search strategies can be used to look for the smallest 
most consistent subset of attributes. 

C. RELIEF Feature Selection 

The RELIEF attribute selection technique uses general 
characteristics of the data to evaluate attributes and operates 
independently of any learning algorithm. RELIEF was first 
introduced by Kira and Rendell [12] as a means of estimating 
the “quality” of attributes with and without dependencies 
among them. RELIEF is an instance-based attribute ranking 
scheme that works by randomly sampling an instance from 
the data and then locating its nearest neighbors from the same 
and opposite classes. The neighbor from the same class is 
named nearest hit and the one from the opposite class is 
called nearest miss. The values of the attributes of the nearest 
neighbors are compared to the sampled instance and used to 
update relevance scores for each attribute. The rationale of 
the RELIEF algorithm is that useful attributes should 
differentiate between instances from different classes and 
have the same value for instances from the same class. 

The original version of RELIEF is limited to only two-
class problems, which led Kononenko [13] to extend the 
original RELIEF to deal with noisy, incomplete, and multi-
class datasets. The first enhancement that Kononenko 
addressed was to increase the reliability of probability 
approximation by searching the k-nearest hits/misses instead 
of only one near hit/miss. The enhanced version, called 
RELIEF-F, finds nearest neighbors from each class different 
than the current sampled instance and averages their 
contribution for updating estimates W[A], and finally weights 
the average with prior probability of each class as follows 
[14]: 
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set all weights W[A] := 0.0; 
for i  := 1 to m do 
 begin 
  randomly select an instance R; 
          find k nearest hits Hj; 
  for each class C ≠ class(R) do 
      find k nearest misses Mj(C) 
   for A := 1 to NumberOfAttributes do 
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 end 
where NumberOfAttributes is the total number of attributes in 
the original dataset, and diff(Attribute, Instance1, Instance2) 
computes the difference between the values of Attribute for 
two instances. For discrete attributes, the difference is either 
1 (the values are different) or 0 (the values are the same), 
while for continuous attributes the difference is the actual 
difference normalized to the interval [0, 1].  The same 
function diff(.) is used for calculating the distance between 
instances to find the nearest neighbors. 

D. Wrapper Feature Selection 

A wrapper feature selection approach uses a machine 
learning algorithm as a black box, therefore needing only the 
interface of the induction algorithm. In fact, knowledge of the 
learning algorithm itself is not necessary [8]. The wrapper 
feature selector repeatedly searches for a “good” feature 
subset by using the induction algorithm as part of the 
evaluation function. In [8], Kohavi and John suggest using 
10-fold cross-validation method for model selection. Cross-
validation is explained in the next section. 

III. EXPERIMENTAL EVALUATION ON VISION-
BASED FOOD INSPECTION SYSTEM 

A. Experimental Setup 

The vision-based food inspection system used for our 
experimentation is a technology that automates visual 
identification and classification of bakery products such as 
buns, cookies, tortillas, and pizzas. The system, shown in Fig. 
1, is equipped with a conveyor belt which moves the bakery 
products to the rejection and packaging systems. One camera 
is mounted above the conveyor belt and produces real-time 
line scans of the top view of products moving with the 
conveyor belt. A laser light strip is also projected vertically 
on the conveyor belt and an extra profile camera sensing the 
laser light in diagonal generates real-time height information 
on every product. Real-time image processing algorithms 
combine the height information with the data from the line 
scan camera in order to estimate a set of parametric features 
of the products under inspection. Depending on the product, 
up to 200 features can be extracted. The system analyzes the 

features of every product and then orders rejection of the 
product if it is classified as defective, or orders packaging if 
the product is classified as acceptable. For the purpose of our 
experiments, all extracted features and the system’s decision 
were saved on every single product to create large datasets. In 
order to evaluate the accuracy of the proposed feature 
reduction techniques, it is assumed that the system produces 
correct classification on all items and therefore the accuracy 
is evaluated against the original classification of the system 
[15]. 

 

 
Fig. 1. Experimental System 

B. Procedure for the Comparative Evaluation  

Experiments were conducted on two of the most common 
products inspected by the vision-based food inspection 
system available: buns and tortillas. Seeded buns were 
selected as they contain more features and more complexity 
than regular unseeded ones. Buns and tortillas both have 
“irregular” shapes as none of them has a perfectly defined 
geometrical shape. For both the buns and the tortillas 
datasets, 82 continuous features are extracted per product 
item, plus one boolean feature representing the decision to 
reject or accept the item. Each dataset contains 3287 product 
items. Prior to feature selection, the continuous features are 
discretized using a supervised discretization technique 
introduced by Fayyad and Irani [16] which combines an 
entropy-based splitting criterion with a minimum description 
length stopping criterion [14].  

In order to evaluate the accuracy achieved with the various 
feature selectors, three different machine learning techniques 
are used that represent different approaches to learning: 
Naive Bayes (a probabilistic learner), C4.5 (a decision tree 
learner) and Multi-Layer Perceptron (MLP, a neural networks 
learner). The Naive Bayes algorithm assumes that features 
are conditionally independent given the label and computes 
the posterior probability of each class given the feature values 
present in the class, and assigns the instance to the class with 
the highest probability [17][18]. C4.5 is an algorithm which 
builds a decision tree top-down by recursively finding the 
best single feature test to conduct at the root node of the tree 
[19]. The MLP is a hierarchical structure of several 
perceptrons with weighted interconnections able to capture 
complex input/output relationships from training data [20]. 
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For wrapper-based feature selectors an interaction with the 
learning algorithm is required during feature selection. 

We used two different approaches to evaluate accuracy: 
holdout and cross-validation methods [21]. The holdout 
method, also called test sample estimation, separates the data 
into two mutually exclusive subsets: the training set and the 
test set, or holdout set. In k-fold cross-validation, the data is 
randomly split into k mutually exclusive subsets (the folds) of 
approximately equal size. The learner is trained and tested k 
times, each time with (k-1) different training sets and one 
different test set. The overall accuracy is averaged over the k 
folds. We used 10-fold cross-validation as suggested in [21], 
and repeated it 10 times with different random seeds. We 
repeated holdout 100 times on our datasets and averaged the 
overall accuracy. 

It is worth mentioning that the continuous features are 
discretized only for feature selection purposes. After feature 
selection, the reduced datasets are extracted from the original 
continuous datasets and then passed to the learning 
algorithms for accuracy estimation. The same train/test sets 
and the same folds were used for all learning schemes in 
order establish a common base for comparison. 

C. Experimental Results on Tortillas and Seeded Buns 

Table 1 and Table 2 show the number of features selected 
for tortillas and seeded buns respectively, sorted in ascending 
number of features selected by the different dimensionality 
reduction techniques. For the tortillas dataset, the C4.5 
wrapper algorithm is top on the list by selecting only 4 
features out of 82, followed equally by the CFS feature 
selector and the MLP wrapper that both select 5 features. The 
RELIEF algorithm is the last on the list as it keeps up to 33 
attributes out of 82. For the buns dataset, the C4.5 wrapper is 
still on top of the list with 2 features selected, followed by the 
consistency-based subset evaluation (5 out of 82). The Naive 
Bayes wrapper and the MLP wrapper both found 6 attributes 
to be relevant to their respective learning algorithms. RELIEF 
is again the one rejecting the less attributes. 

For both the buns and the tortillas datasets, C4.5 wrapper, 
MLP wrapper, Naive Bayesian wrapper, CFS and 
consistency-based subset evaluation tend to consider 10 or 
less features out of 82 as relevant to qualify the product, 
whereas RELIEF seems to be cautious by keeping many 
more features. The fact that only positive differences of 
probability were kept in the RELIEF implementation implies 
that weakly relevant features are very likely to be preserved. 
Kohavi and John also mentioned that the RELIEF algorithm 
tends to keep most of the relevant features of a dataset even if 
they are redundant and only a fraction of them is necessary 
for the concept description [8]. Moreover, wrapper feature 
selection techniques globally tend to select fewer features 
than filter-based feature selectors. This could be explained by 
the fact that wrappers are meant to optimize the feature 
selection for a particular given algorithm with which they 
interact during the attribute selection process. 

 

Table 1. Features space reduction performance on the tortillas dataset. 

 Number of 
features 
selected 

Number of 
features 
rejected 

Feature 
rejection ratio 

(%) 
C4.5 wrapper 4 78 95.12 
CFS 5 77 93.90 
MLP wrapper 5 77 93.90 
NB wrapper 7 75 91.46 
Consistency 10 72 87.80 
RELIEF 33 49 59.76 

 
Table 2. Features space reduction performance on the buns dataset. 

 Number of 
features 
selected 

Number of 
features 
rejected 

Feature 
rejection ratio 

(%) 
C4.5 wrapper 2 80 97.56 
Consistency 5 77 93.90 
MLP wrapper 6 76 92.68 
NB wrapper 6 76 92.68 
CFS 7 75 91.46 
RELIEF 59 23 28.04 

 
However, the number of attributes selected as relevant by 

the different feature selectors should be interpreted with 
caution. In fact, although a dataset with fewer features would 
be preferred for production rate enhancement, the accuracy of 
prediction with the reduced datasets is of capital importance. 
This makes us favor prediction accuracy over dimension 
reduction of the dataset for industrial quality inspection 
applications, as considered here.  

Fig. 2 and Fig. 3 show the accuracy estimation with the 
different feature selection techniques for the tortillas dataset, 
evaluated using three learning schemes: Naive Bayes, C4.5 
and Multi-layer Perceptron (MLP). The accuracy represents 
the percentage of products that were classified from the 
reduced set of features in the exact same way as the original 
classification of the system, as defined in the dataset. On both 
figures, “Tortilla” represents the original full dataset which 
did not undergo any feature selection and the vertical bars at 
the edge of the columns represent the standard deviation. Fig. 
2 shows the result of 10 repetitions of 10-fold cross-
validation and Fig. 2 presents the result of 100 repetitions of 
holdout accuracy test.  

For all feature selectors, the C4.5 learning scheme globally 
gives the highest accuracy and the lowest standard deviation 
at the same time, followed closely by the MLP learner and far 
beyond by the Naive Bayes learner. Holdout and cross-
validation gave comparable results in terms of accuracy and 
standard deviation. It is important to note that in the 
experiments presented, both cross-validation and holdout use 
90% of the data for training and 10% for test. For 10-fold 
cross-validation, the full original tortillas dataset had an 
accuracy of 99.39% with a standard deviation of 0.47% using 
the C4.5 learning scheme. Consistency-based subset 
evaluation gave a better accuracy (99.44%) than the full 
dataset. The RELIEF feature selector is the second best by 
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having the same accuracy estimation as the original dataset, 
followed by the C4.5 wrapper and the correlation-based 
feature selector with an accuracy of respectively 0.03% and 
0.04% below that of the full dataset. The holdout tests gave 
approximately the same order by ranking consistency and 
RELIEF equally accurate to the original full dataset (accuracy 
of 99.37%), followed by CFS and C4.5 wrapper achieving an 
equal accuracy of 0.01% inferior to that of the original 
dataset. The standard deviation for all feature-reduced 
datasets are all between 0.39% and 0.47% and are considered 
not high enough to impact the interpretation of our results. 
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Fig. 2. Ten repetitions of “10-fold cross-validation”  
accuracy estimation for the tortillas dataset. 
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Fig. 3. One hundred repetitions of “Holdout” accuracy 
 estimation for the tortillas dataset. 

 

Fig. 4 shows the results of 10 repetitions of 10-fold cross-
validation for the buns dataset. The holdout test results are 
not presented here as they are similar to the cross-validation 
results. C4.5 is once again the learning scheme giving 
globally the best accuracy estimation, followed by the MLP 
and the Naive Bayes respectively. The original full buns 
dataset has an accuracy of approximately 99.81% with a 
standard deviation of 0.25% and none of the reduced dataset 
is able to achieve a better accuracy. However, the 
consistency-based subset evaluation and the C4.5 wrapper 
closely follow the original full buns dataset by both achieving 
an estimated accuracy only 0.58% inferior to that of the full 
dataset. RELIEF occupies the third place and CFS the fourth 
with an accuracy less than 1% lower than that of the full buns 
dataset. 

The fact that the Naive Bayes classifier gives lower 
accuracy estimations compared to the C4.5 and the Multi-
Layer Perceptron can be attributed to the assumption that the 
algorithm makes about features being conditionally 
independent. In fact, several of the features in the dataset are 
correlated, for example features such as the mean diameter of 
an approximately circular product and its surface area are 
clearly correlated. MLP was able to capture a certain rule for 
the classification of the products considered because of the 
structure inherent to the MLP which allows capturing 
complex input/output relationships. C4.5 giving very high 
classification accuracy can be explained by the fact that the 
vision-based food inspection system inherently uses a 
decision structure very close to a decision tree.  
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Fig. 4. Ten repetitions of “10-fold cross-validation”  
accuracy estimation for the buns dataset. 

Globally, the advantage of a consistency-based subset 
evaluation is undisputed accuracy-wise for both the buns and 
the tortillas datasets. Considering the number of attributes 
retained by the different feature selectors, consistency-based 
subset evaluation acquires another advantage over RELIEF 
by proposing only 10 attributes vs. 33 for the tortillas dataset 
and 5 vs. 59 for the buns dataset. One might explain the 
success of consistency-based subset evaluation and RELIEF 
techniques by their ability to capture attribute interactions. 
CFS also gives reasonably good results, especially when the 
relatively small number of features selected by this filter is 
considered. In the case considered here, several features in 
the dataset are correlated and CFS appears to be able to 
identify these correlations. The C4.5 wrapper has a net 
advantage with respect to the number of features selected and 
wrappers actually tend to give better results than filters. But 
this benefit is compromised by the time it takes to train 
wrappers, which can reach several minutes rather than only a 
few seconds with filter-based selectors, due to the repetitive 
interaction with the learning schemes. 

According to our experiments, consistency-based subset 
evaluation seems to be the best suited feature selector for 
application on a real-time vision-based food inspection 
system, provided that the products under classification are 
similar to the ones analyzed here. RELIEF ranks as the 
second best candidate in terms of accuracy and training time, 
but tends to keep a lot more features than needed. In fact, not 
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only does consistency-based subset evaluation outperform all 
the other feature selectors’ accuracy for the C4.5 algorithm, 
but it also generally gives a better accuracy for all the 
learning schemes we experimented with and for all the 
datasets. Instead of analyzing and interpreting 82 features for 
every product under classification and in-real time, the 
vision-based food inspection system can now focus on less 
than 10 features and produce classification accuracy similar 
or even better than with the full 82 features. Reducing the 
number of features extracted and analyzed in real-time 
reduces the time taken for processing a single product and 
therefore allows the food inspection system to support higher 
production rates.  It is however necessary to emphasize that 
having quality training data covering as many cases as 
possible is a definite key in helping the algorithms generalize. 
Therefore particular caution in choosing the data samples 
shall be applied to prevent poor generalization of the learner.  

IV. CONCLUSION 

This paper presented and evaluated four feature selection 
techniques for parametric space reduction in a real-time 
vision-based food inspection system. Three machine learning 
algorithms were used to evaluate and compare the accuracy 
of the classification from extracted features with and without 
feature selection. Experimental results on seeded buns and 
tortillas demonstrated that consistency-based subset 
evaluation outperforms all other feature selectors in terms of 
accuracy, and is also very competitive in terms of the number 
of selected attributes. The RELIEF technique also revealed 
good performance, but has the disadvantage of keeping more 
features than the other selectors, which might impede 
production rates. Wrapper approaches tend to give excellent 
accuracy results, especially with the C4.5 decision tree 
inducer, but take a longer time to train. 

Most of the feature-reduced datasets provided by the 
attribute selectors gave an estimated accuracy very close to 
the accuracy achieved with the full datasets, and even higher 
accuracy when extracted with the consistency-based subset 
evaluation technique. Apart from the RELIEF algorithm, all 
feature selectors reduced the parameter space dimension by 
more than 85%. This demonstrates the relevance of 
integrating feature selectors into the vision-based food 
inspection system such that it can focus on fewer features and 
still provide inspection results of a comparable quality while 
allowing a higher rate of production. 
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