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Abstract – This paper addresses the issue of intelligent sensing for 
advanced robotic applications and is a continuation of our research 
in the area of innovative approaches for automatic selection of 
regions of observation for fixed and mobile sensors to collect only 
relevant measurements without human guidance. The growing 
neural gas network solution proposed here for adaptively selecting 
regions of interest for further sampling from a cloud of sparsely 
collected 3D measurements provides several advantages over the 
previously proposed neural gas solution in terms of user 
intervention, size of resulting scan and training time. Experimental 
results and comparative analysis are presented in the context of 
selective vision sampling. 
 

Keywords – Selective sensing, 3D vision, neural gas network, 
growing neural gas network, feature detection, surface modeling. 
 

I. INTRODUCTION 
 
Reducing the complexity of the large datasets provided by 

the current generation of 3D data acquisition devices (e.g. 
laser scanners) is one of the key techniques required in order 
to operate subsequent applications on the resulting data at a 
reasonable computational cost. The most widely exploited 
trend in contemporary literature involves the post-processing 
of data obtained by acquisition devices based on the user 
input of parameters such as the desired density of sampling, 
the regularity of sampling, or the minimum distance between 
samples. As the user is not always aware of the appropriate 
level of accuracy required for a model in order to be further 
processed, the adjustment of such parameters can be a 
difficult task associated with lengthy trial-and-error processes 
to fine tune the acquisition system.  

This work is a continuation of our research on innovative 
approaches to achieve automatic selection of regions of 
observation for vision sensors to collect only relevant 
measurements without human guidance. The relevant regions 
of interest are extracted from 3D point clouds during the 
acquisition procedure to prevent a large amount of data from 
being collected and the associated excessive processing load. 
Starting from an initial, fast, and sparse scan of an object, a 
growing neural gas network map is used to adaptively select 
areas of interest for further scanning in order to improve the 
accuracy of the model. The final representation is a multi-
resolution model with a higher resolution in areas rich in 
geometrical features.  

The paper starts by presenting a brief literature review for 
the sampling and post-processing of large datasets in Section 
II. Our proposed solution for selective sensing based on a 

growing neural gas is shown in Section III. Experimental 
results for data sampling using vision sensors as well as a 
comparative analysis with our previous solution based on a 
neural gas network are presented in Section IV and V, 
respectively. 
 

II. LITERATURE REVIEW 
 
The most commonly encountered type of sampling 

procedure in the literature is stratified sampling, a technique 
that implies the collection of evenly spaced samples by 
subdividing the sampling domain into non-overlapping 
clusters and by sampling independently from each partition. 
Such a method ensures that an adequate sampling is applied 
to all partitions and is often exploited in the context of post-
processing of large point clouds or meshes [1-7], where a 
subdivision of models into grid cells occurs and sample 
points that fall into the same cell are replaced by a common 
representative.  

The 3D model is first voxelized with an octree and one 
sample is outputted for each voxel. The common 
representative for a voxel can be selected according to a 
probability that decays as the distance of the sample to the 
center of the voxel increases [1], and can be chosen to be the 
measured point that is closest to the average of points that fall 
into the same voxel [2] or the point whose normal is closest 
to the average of the points in the same voxel [3]. 
Alternatively principal component analysis can performed for 
each cell of the octree to efficiently decimate data [4].  

Surface-based clustering can be employed as well instead 
of volumetric voxelization, where clusters are built by 
collecting neighboring samples while taking into account 
local sampling density [5]. Points are incrementally added to 
a cluster until a maximum size and/or a maximum allowed 
variation is reached.  

Another category of solutions for the decimation of large 
datasets is based on boundary segmentation [6, 7]. Meshes 
are segmented into the boundary of the original domain and 
interior samples, and each part is simplified separately.  

All the above methods are not meant to be incorporated 
in the actual sampling procedure, but rather to post-process 
collected data. An approach to integrate the sampling 
procedure into the measurement process is proposed by Pai et 
al. [8, 9] who consider a known mesh of the object under 
study, as well as a set of parameters such as the maximum 
force exerted on the object, the maximum probing depth and 
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the number of steps for the deformation measurement. During 
probing, an algorithm generates the next position and 
orientation for the probe based on the specifications and the 
mesh of the object under test. It performs at the same time 
proximity checks and verifies the expected contact location of 
the probe with the mesh based on line intersection. However, 
the procedure is not selective and therefore is similar to 
collecting data for all the points of the mesh and can take 
very long. More recently, an adaptive scanning procedure 
was introduced by MacKinnon et al. [10] that builds upon a 
group of intermediate quality metrics to monitor several 
aspects of the scanning procedure, including outliers, 
aliasing, planarity, resolvability and reflectivity of the 
surface. This heuristic approach helps at focusing a laser 
scanner over an optimal field of view and guides the 
collection of 3D points over regions that will most likely 
maximize the visual quality of a final 3D model of an object 
while minimizing the number of measurements required. This 
approach is mainly evaluated in the context of high-resolution 
modeling of artefact objects, where the necessary information 
to compute the quality metrics is typically available and 
reliable.  

 
III. PROPOSED FRAMEWORK 

 
Our proposed framework is meant to be incorporated 

directly in the sampling procedure, with the purpose to 
achieve automated selective scanning over large workspaces. 
It uses a self-organizing neural network architecture that 
adaptively selects regions of interest for further refinement 
from a cloud of 3D sparsely collected measurements. Starting 
from an initial low resolution scan of an object, a growing 
neural gas network is employed to model the resulting point 
cloud and those regions that are worth further sampling in 
order to ensure an accurate model are detected by finding 
higher density areas in the resulting growing neural gas map. 
Rescanning at higher resolution is performed for each 
identified region and a multi-resolution model is then built 
using the initial sparse model and augmenting it by the high 
resolution regions of interest.  

The approach is similar to the one previously proposed on 
the topic [11]. However, the work presented here tackles 
some of the limitations of the neural gas solution introduced 
in [11], particularly the one related to the need of the map 
size to be decided prior to learning. This size constrains the 
resulting mapping as well as the accuracy of the modeling 
results. Growing networks add incrementally nodes into the 
network structure, therefore eliminating the need for fixed 
size network maps. 
 
A. Growing Neural Gas Networks 

 
The use of self-organizing architectures in the context of 

selective 3D scanning is justified by their ability to quantize 
the given input space into clusters of points with similar 
properties. In our previous research we proved that a neural 

gas network is able to cluster both geometric and elastic 
properties of the objects embedded in a modeled point cloud 
[11]. In spite of some guidelines that we developed to choose 
an appropriate map size based on the size of the initial scan 
and the desired accuracy of the model, the efficiency of such 
a solution can vary slightly with the characteristics of the 
objects considered, such as the size of the object, and the 
number and the size of features. Growing networks eliminate 
some of these limitations. Such networks add supplementary 
nodes into the network structure at the position where the 
accumulated error is the highest and when the number of 
learning iterations performed is an integer multiple of some 
predefined value, eliminating the constraint imposed by the 
fixed map size. As a node is added, another set of iterations is 
performed before another new node is introduced. Therefore 
the network grows always at the same rate regardless of the 
way the input distribution is changing. The growth of the 
network is terminated when a predefined stopping criterion is 
met (e.g. a minimum error or a network size limit is reached). 

There are several growing self-organizing algorithms 
proposed in the literature. The most popular are: the growing 
grid, the growing cell structures, the growing neural gas [12] 
and the growing hierarchical self-organizing map (SOM) 
[13], just to mention a few. Several of the advantages of such 
architectures are that they only use constant parameters and 
that the training is faster when compared to other neural 
networks and other clustering algorithms. However, many of 
these growing architectures are still constrained by 
predefined network map shape, such as a rectangular grid in 
the case of the growing grid and the growing hierarchical 
SOM or k-dimensional hyper-tetrahedrons in the case of 
growing cell structures. Unlike these, a growing neural gas is 
a network without fixed dimensionality and has no predefined 
map. In this case the dimensionality of the network depends 
on the local dimensionality of the data and may vary within 
the input space. For this reason, growing neural gas seems a 
good choice for the application considered here.  
 The growing neural gas builds a topology, generated 
using competitive Hebbian learning [14], which inserts an 
edge between the two closest nodes. The closeness is 
measured in Euclidian distance from an input signal. There 
are no restrictions on the topology. Arbitrary edges are 
allowed and the topology can have different dimensionalities 
in different parts of the input space. The resulting graph is an 
induced Delaunay triangulation. This induced Delaunay 
triangulation has been shown to optimally preserve topology 
in a very general sense [14].  
 The growing neural gas algorithm can be described as 
follows: a new node is added every λ iterations, to support the 
node with the highest local accumulated error. For each input 
vector presented to the network, two best matching nodes are 
selected, whose weights are the closest to the input, based on 
Euclidean distance. This choice is justified by the fact that 
placing a new node in the median position between these two 
matching nodes will decrease the influence of each of the 
initial large error nodes and therefore will contribute to a 
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minimization of their future errors. A neighborhood 
connection is created between them if the connection does 
not already exist and its age is set to 0. The position of these 
nodes and the ones of the topological neighbors of the winner 
unit are moved such that they better fit the input. All edges 
that are not used increase in age and if the age exceeds a 
threshold, amax, the corresponding edges are deleted. Any 
node that has no edge connection is removed as well. After λ 
iterations, a new node is added to support the node that has 
accumulated the highest error in the previous steps. The new 
node is placed between the node with the highest error and 
one of its neighbors that has the next highest error. The errors 
of all nodes are globally decreased and the algorithm 
continues until some stopping criterion is met. A formal 
description of the algorithm and additional explanations can 
be found in [12]. 

The same procedure is employed here as the one 
proposed for the neural gas solution in [11]. Similar to the 
neural gas, the growing neural gas is employed to detect areas 
rich in geometrical features starting from an initial fast scan 
of different objects under study. Starting from the points 
collected during a fast scan of an object via an active range 
finder and an initial configuration of unconnected nodes, the 
latter move freely over the data space while learning and the 
model contracts asymptotically towards the points in the 
input space, respecting their density and thus taking the shape 
of the objects encoded in the point cloud. This ensures that 
density of the probing points will be higher in the regions 
with more pronounced variations in the geometric shape.  

 
B. Regions of Interest Detection 

 
The higher density regions in the growing neural gas are 

detected by traversing the nodes successively and checking 
the length of vertices between neighbor nodes. An average 
value for all these lengths is computed and a threshold is set 
to this value. All the nodes that are located further away from 
each other than the value of the threshold are removed from 
the model. The remaining points identify those regions that 
require additional sampling. Supplementary data is collected 
for all these regions and the resulting selectively sampled 
multi-resolution model is constructed by augmenting the 
initial sparse low resolution scan with the higher resolution 
data samples. The procedure can be repeated in several steps 
to improve the final model. 

 
IV. EXPERIMENTAL RESULTS 

 
 

The proposed method is tested on 3D range data point 
clouds of objects. While the point clouds of the objects 
presented here are collected for a fixed scanner position with 
only a single viewpoint, the procedure can be employed 
unchanged for multi-viewpoint data or from data coming 
from different scanning systems as long as it comes in (x,y,z) 
format. Apart from the real data, sets of synthetic data 
obtained from the interpolation on a higher resolution mesh 

of a sparse scan are used to train the network. The objects 
used for testing are shown in Fig. 1. 

Starting from an initial fast, sparse scan of each object 
under study, a growing neural gas network is employed to 
model the data in the point cloud, in the form of (x, y, z) 
coordinates. The data set is normalized prior to the mapping 
such that its variance is unity. Testing is performed for 
several resolutions of the initial fast/sparse scan in order to 
identify how the resolution of this scan influences the 
modeling results and what would be the smallest scan to start 
with that allows for the modeling of fine features in the 
modeled objects. 

 

 
a) 

 
b) 

 
c) 

 Fig. 1. a) Toy triceratops, b) foam chair,  
and c) mock-up car door used for testing. 

 
Fig. 2 shows the enlarged best modeling results for a low 

resolution initial scan of 3065 points, shown in Fig. 2a, and 
for a medium low resolution initial scan of 6113 points, 
presented in Fig. 2b,  for λ=3 and amax=20.  

 

 
a) 

 
b) 

 
c) 

d) 

 
e)  

f) 
 

Fig. 2.  Initial scan at (a) low resolution and (b) medium low 
 resolution, growing neural gas model  of (c) 757 points and  

 (d) 1410 points, and detected regions of interest for further sampling 
 for (e) low resolution and (f) medium low resolution models. 
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The growing neural gas network, having as inputs these 
initial sparse point clouds, builds a topology that respects the 
density of points in the initial point cloud. The topology can 
be seen as compressed mappings for the initial dataset, as 
depicted in Fig. 2c and 2d for the low and medium low 
resolution initial scans respectively. The areas with dense 
geometrical features found in these mappings are shown in 
Fig. 2e and 2f respectively. The dense feature areas are much 
better identified and contoured for the higher resolution 
model, in Fig. 2f. However, in both cases, the network is able 
to identify, apart from the contours of the model, the areas 
around the head and horns of the triceratops as areas worth 
further scanning, as it is expected. 

The chair represents an object without many features and 
its initial dataset contains raster-like distributed sampling 
points. Fig. 3 presents the modeling results using a growing 
neural gas for a low (3065 points) and a medium (6113 
points) resolution initial scans on the chair, obtained for λ=3 
and amax=20. 

 

a) 
 

b) 

 
c) d) 

e) f) 
 

Fig. 3.  Initial scan at (a) low resolution and (b) medium resolution, growing 
neural gas model  of (c) 1243  points and  (d) 2826  points, 

 and detected regions of interest for further sampling for 
 (e) low resolution and (f) medium resolution models. 

 
The same parameters are used as in the case of the 

triceratops and the results are evaluated for different sizes of 
the initial scan. For both cases, it shows the detected regions 
of interest in the growing neural gas map (Fig. 3e for the low 
resolution and Fig. 3f for the medium resolution). As it can 
be seen, the network is able to detect the features in both 
cases in spite of some noise in the modeling results. 

As a last example, a fast scan of medium resolution on 
the door is initially performed to obtain the 16384 points 
medium resolution scan as shown in Fig. 4a. The resulting 

growing neural gas mapping is depicted in Fig. 4b, the areas 
of high density in this mapping in Fig. 4c, and the detected 
regions of interest are highlighted in Fig. 4d, neglecting the 
contour areas.  

 
a) 

 
b) 

 
c)  

d) 
 

Fig.4. The mock-up door (a) point cloud, (b) growing neural gas mapping, 
(c) high density areas, and (d) the detected regions of interest. 

 
As in the case of neural gas, the same procedure can be 

repeated for each of the regions of interest detected in the 
previous step. Each region is provided as input to a growing 
neural gas network in order to further detect fine details that 
are worth to be scanned at a higher resolution. Fig. 5 presents 
the details of the high resolution rendered model of the door 
for the selected regions in the previous step.  
 

 

 
 

 

 

 

  

  
 

Fig. 5. Different views of rendered selected regions (first column),  
point clouds of selected regions (second column) and  

detected regions of interest for each view (third column). 
 
For each of the selected regions it shows the growing 

neural gas model for λ=3 and amax=20 and the regions of 
interest detected at the second stage for further scanning, 
identified as high density areas in the growing neural gas 
model. The average error is of order e-6 for each of the 
regions. 
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All the presented examples show the capability of the 
growing neural gas map to capture the fine details in the 
sparsely collected point clouds of all the objects under study. 
By finding the higher density areas in the growing neural gas 
map, the proposed selective sampling procedure is able to 
identify and guide the sensor to collect only measurements in 
those regions that are of interest for the improvement of 
accuracy of the final multi-resolution models.  

 
V. COMPARISON WITH THE NEURAL  

GAS SOLUTION 
 

Although the neural gas and growing neural gas 
algorithms both present self-organizing attributes, are similar 
in approach and are based on the same ideas, there are 
differences in terms of required user intervention, accuracy of 
results, training time and obtained errors. These differences 
are summarized below.  

To begin with, the growing neural gas eliminates the 
need for the map size to be decided prior to learning as in the 
case of neural gas. Moreover, by comparing the final map 
size obtained with growing neural gas and the one obtained 
with neural gas, it can be seen in Table 1 that generally the 
size of the growing neural gas map (the number of nodes in 
the resulting graph) is smaller than the one required by neural 
gas in order to obtain similar modeling results. 
 

Table 1.  Approximate network map sizes for different sizes of initial 
scans with neural gas (NG) and growing neural gas (GNG). 

 
Size of initial point 
cloud (number of 

points, N) 

Approximate map   
size with NG 

Approximate map   
size with GNG 

2000-3000 60%-100%N 20-45%N 
3000-4000 50%-90%N 20-45%N 
4000-5000 30%-70%N 20-45%N 
5000-6000 20%-60%N 16-49%N 
6000-7000 15%-50%N 16-49%N 
over 16000 10%-40%N 10-40%N 

 
The average network map sizes for different initial scans, 

computed as the average value of the network map sizes for 
the range of values that provide reasonably good modeling 
results and for all the objects under study, as per Table 1, are 
shown in Fig. 6. 
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Fig.6. Comparison between growing neural gas  

and neural gas based on map size. 
 

In spite of the lower network map size, the accuracy of 
growing neural gas models is higher when compared to 
neural gas, as depicted in Fig. 7. The relative error is 
computed as an average distance between each data vector 
and its winning neuron and therefore shows how close the 
modeled data is to the initial scan point cloud. The average 
error is computed as the average relative error for all objects 
under study, as in the case of the network map size.  
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Fig. 7. Comparison between growing neural gas  

and neural gas based on errors. 
 

In terms of training time, the time required to build the 
model is also generally lower for growing neural gas, as 
shown in Fig. 8. 
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Fig. 8. Comparison between growing neural gas  

and neural gas based on training time. 
 

However, since the map obtained by growing neural gas 
is evenly distributed over raster-like object point clouds, the 
relevant areas for additional scanning are slightly harder to 
identify and they result in higher noise in the characterization 
of relevant features, as it can be seen in Fig. 9. The first 
column of Fig. 9 shows the best modeling cases for the neural 
gas while the second column presents growing neural gas 
models. When comparing the results in Fig. 9, it can be 
noticed that the edges are clearer on the contours in Fig. 9a-c, 
representing the high density areas detected in the neural gas 
map than those in Fig. 9d-f that represent the high density 
areas in the growing neural gas map. As such, the results in 
the second column are slightly noisier. This phenomenon is 
alleviated in the case of neural gas model by slightly over-
sizing the map dimensions and stopping the adaptation early 
enough not to allow the output space to become evenly 
distributed. Such a mechanism is impossible to be established 
in the case of growing neural gas as the points in the output 
space are added iteratively to support the node that has 
accumulated the highest error in the previous steps. The new 
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node is placed between the node with the highest error and 
the one of its neighbors with the next highest error. Therefore 
the error between the input space and the map being built is 
always decreased. This implies that the model will respect the 
density of points in the point cloud and cover evenly the input 
space, but gives less control on the training duration. 

 

a) 
 

d) 

 
b)  

e)  

 
c) 

 
f) 

Fig. 9. Higher feature density areas identified in the neural gas map (first 
column) for (a) triceratops (b) chair and (c) door, and in the growing neural 

gas map (second column) for (d) triceratops, (e) chair and (f) door. 
 

From this experimentation, the growing neural gas 
reveals to be faster, to lead to lower errors in mapping and to 
require less user interaction in the modeling procedure. But it 
gives slightly noisier results for geometrical feature detection  
as required for further sampling regions selection. Therefore 
the growing neural gas is an appropriate choice when more 
compact object models are desired, and when the user is not 
willing to interfere at all in the modeling procedure. On the 
other hand, neural gas provides clearer definition of the 
regions for further scanning, especially on edges but requires 
some trial-and-error settings in order to provide the best 
results. Therefore this choice is appropriate when the user is 
interested in accurately finding features over the objects. 

 
VI. CONCLUSIONS 

 
The growing neural gas eliminates the need of the map 

size to be decided prior to learning, as in the case of neural 
gas. During adaptation the network adds iteratively nodes to 
the structure to better fit the data provided as input and is 
able, in all the cases under study to identify the regions of 
further interest for scanning. All the examples show the 
ability of the growing neural gas map to capture the fine 
details in the sparsely collected point clouds of the objects 
under study. By finding the high density areas in the growing 
neural gas map, the proposed selective sampling procedure is 

able to automatically identify and guide the vision sensors to 
collect only measurements in those regions that are of interest 
for the improvement of accuracy of the obtained models, 
saving at the same time large amount of less relevant data in 
the scans. The growing neural gas solution is faster, reaches 
lower errors and does not require user intervention for the 
selection of an appropriate map size when compared to the 
previously proposed neural gas solution.  

Further research is directed towards the use of the 
growing neural gas network for deformable objects sampling. 
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