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Abstract – Optical flow techniques using grayscale image 
sequences are known to provide powerful solutions for motion 
estimation and shape reconstruction applications. In this paper, 
recent advances in optical flow computation from color image 
sequences are compared and refined to provide alternative optical 
flow computation techniques for biomimetic vision and control 
systems. Experimentation is performed in the specific context of 
flying insect-inspired systems to provide unmanned aerial vehicles 
(UAV) or flying robots with the ability to navigate through near-
Earth environment without colliding with obstacles. 

Keywords – unmanned aerial vehicles, collision avoidance, optical 
flow, near-Earth environments, flying insect-inspired systems. 

I. INTRODUCTION 
Traditional larger size UAVs (unmanned aerial vehicles) 

that fly at high altitudes employ sensing mechanisms based 
on GPS or radar technologies. However, such technologies 
fail when it comes to smaller vehicles with small width 
wings. These smaller size UAVs or micro UAVs (MAVs), 
which weigh only a few grams, have to fly closer to the 
ground and navigate complex terrain. It is hard to add radar to 
their small payloads. Also, GPS lacks accuracy when it 
comes to low-level flight navigation. On the other hand, it is 
not possible to program the autopilot system by feeding it 
with information about every single obstacle.  

Thus, alternatively there is an increasing interest among 
researchers in optical flow methods inspired from the flying 
insects as a solution for MAVs vision [1]. Optical flow is in 
fact the method by which flying insects with compound eyes 
like dragonflies, honeybees, or fruit flies, perceive the world. 
It allows such creatures with tiny brains and low resolution 
eyes to gather enough information quickly to perform highly 
accurate navigation maneuvers even in complex near-Earth 
environments. Consequently, researchers are seeking to 
create a new class of MAVs provided with autonomous 
collision avoidance capabilities inspired from the 
maneuvering techniques of these flying insects like hovering, 
searching, escaping and even chasing. 

This paper presents two traditional grayscale optical flow 
methods [2] which can be used on these MAVs. It also 
describes the extension of these methods into color [3] to 
obtain better features. 

II. OPTICAL FLOW IN INSECT-INSPIRED SYSTEMS 
The phenomenon of “optical flow” or flow perspective 

was first studied by Gibson [4]. The optical flow is defined 
in [5] as the speed at which texture moves in an image focal 

plane as a result of relative motion between the observer and 
objects in the environment. Optical flow is typically 
formulated as a vector field over an image, in which the 
vectors define the velocity that the texture is moving in the 
image plane. There are clear mathematical relationships 
between the magnitude of the optical flow in an image 
sequence and the object position. If the object doubles the 
speed at which it travels, the optical flow will also double. If 
an object is brought twice as close, the optical flow will again 
double.  

There is much evidence that flying insects utilize optical 
flow sensors to maneuver through regions with dense 
obstacle fields. Optical flow in this case refers to the apparent 
movement of texture in the visual field relative to the insect’s 
velocity. For example, while in-flight, objects which are in 
close proximity to the insect have higher optical flow 
magnitudes. Flying insects avoid imminent collisions by 
saccading (or turning) away from regions of high optical 
flow.  

Without GPS or radar system for navigation, flying insects 
perform tasks like collision avoidance, altitude control, and 
even takeoff and landing. Such insect-inspired navigational 
methods can therefore serve as a model for micro air vehicle 
(MAV) flight patterns in near-Earth environments. Barrows 
and Neely [5] depict how a MAV might experience optical 
flow while in-flight in a near-Earth environment, and how the 
optical flow could be used for such small scale navigation 
and collision avoidance.  

Barrows [6] also developed a new class of optical flow 
micro-sensors based on grayscale optical flow. This 
algorithm is implemented using mixed-mode and mixed-
signal VLSI techniques. Barrows [7] also mentioned the idea 
of incorporating color in UAV vision but did not propose any 
specific method. However, with such compact optical flow 
sensors, efficient and robust navigational strategies suited for 
MAVs can be developed by mimicking the natural behaviors 
of insects. Applications of these optical flow micro-sensors 
can be found in [8], [9], [10], [11], and [12] for different real 
flight patterns.  

In general, while in-flight within a certain plane MAVs 
experience two basic motions: rotation and translation. The 
optical flow, OF, measured in rad/sec, can be defined as a 
function of the MAV’s velocity of translation, V, angular 
velocity, , distance, D, from an obstacle, and the angle, ,
between the MAV’s direction of travel and the obstacle, as 
shown in Fig. 1. The optical flow seen by the MAV in the 
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direction of the obstacle is determined by the rate of change 
of and can be calculated as the sum of the flows produced 
by translational and rotational movements: 

ωθ −= sin
D
VOF (1) 

Fig.  1.  Optical flow during MAV flight within 1D plane. 

In fact, eq. (1) is the source of information provided to the 
MAV while in-flight about its environment. Accordingly 
optical flow micro-sensors mounted on the vehicle can be 
oriented to perceive information about oncoming collisions 
and altitude. Hence, it is possible to autonomously land a 
MAV by mimicking insects landing behavior. For example, 
the honeybees land by keeping the optical flow on the landing 
surface constant [1, 13]. Therefore, when measuring the 
optical flow on the landing surface, the obstacle is now the 
ground and thus  = 90. To further simplify this task, the 
rotational component of optical flow, ω, is assumed to be 
smaller than the translational component. Thus eq. (1) 
reduces to:  

D
VOF = (2) 

In a similar manner to what flying insects do in complex 
near-Earth environments to avoid collisions, MAVs can also 
turn away from regions of high optical flow. In this case, 
optical flow must be detected in front of the vehicle in order 
to avoid collision. Different collision avoidance strategies 
based on optical flow inspired from insects are outlined in 
[1]. Unlike with autonomous landing, where the sensor is 
oriented at 90 degrees to the direction of travel, the angle  to 
the obstacle will be a factor. Assuming the MAV is traveling 
in a straight path with a relatively constant translational 
velocity, V, and  ‹‹ V , we have from eq. (1): 

θsin
D
VOF = (3) 

III. COMPUTING THE OPTICAL FLOW 
This section outlines how optical flow can be measured in 

conventional machine vision techniques [2]. As mentioned 
before, the optical flow of an image sequence is a set of 
vector fields, relating each image to the next. Each vector 
field represents the apparent displacement of each pixel from 

image to image. If we assume that pixels conserve their 
intensity, the “brightness conservation equation” can be 
defined as: 

),,(),,( dttdyydxxItyxI +++= (4) 
where I is an image sequence, (dx,dy) is the spatial 
displacement vector for the pixel at coordinates (x,y), and t
and dt are respectively the frame time and the temporal  
displacement between successive images in the sequence. 

An obvious solution to eq. (4) is to use template-based 
search strategies in which a template of a certain size is 
created around each pixel and the best match is searched for 
in the next image.  The best match is usually found using 
correlation, sum of absolute difference or sum of squared 
difference metrics.  This process is often referred to as block 
matching.  Such a search strategy is computationally costly 
and generally doesn’t represent sub-pixel displacements. 

Most methods presented in the literature are gradient-
based. They solve the differential form of eq. (4), derived by 
a Taylor expansion. After discarding higher order terms, the 
optical constraint equation is obtained as follows: 
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which contains two unknowns, (u,v), the parameters of the 
optical flow in the image focal plane, for only one equation. 
However, eq. (5) can be extended to a system of equations in 
the form of: 

bvA = (6) 

where [ ]Tvuv ,=  is the optical flow vector which is to be 
recovered by solving this over-determined system of 
equations. Therefore, the problem is ill-posed and extra 
constraints must be imposed in order to arrive at a solution 
and achieve the optical flow recovery. 

There are many methods used in the literature to impose 
these extra constraints. These methods are outlined and 
quantitatively compared in Barron et al [2]. The two most 
widely used methods are namely those of Horn and Schunck 
[14], and Lucas and Kanade [15]. The Horn and Schunck’s 
method considers global smoothness of flow across the 
image, while Lucas and Kanade’s method considers instead a 
local smoothness in the local neighborhood of the block of 
pixels which is of interest.

IV. COLOR OPTICAL FLOW 
Classical optical flow methods analyzed in [2] as well as 

the approach proposed by Barrows [6] are all based on 
grayscale image sequences. Literature on the computation of 
optical flow from color images still remains limited in spite 
of the fact that computing optical flow from grayscale images 
cannot be solved without additional constraints on the nature 
of the movement. 

Color images represent a natural source for such additional 
information that allows defining an over-determined system 
of linear equations. Another justification for using color 
images is that many insects are able to perceive colors and 

15



that might be an important factor in achieving biomimetic 
vision. Therefore, including color in MAV vision provides 
additional information about the visual field that is not 
available from intensity images alone. In addition, optical 
flow recovery from color images can be implemented using 
direct methods presented in [3], [16] and [17], i.e. without 
using computationally expensive iterations or search 
strategies. Finally, the quality of the recovered color optical 
flow can be assessed and tailored after processing, to provide 
an effective, efficient and accurate tool for motion estimation. 

In grayscale optical flow, the three channels of color data 
(RGB) which are available to an optical flow algorithm are 
often combined to form a single intensity image. However, 
the optical flow constraint, eq. (5), can be extended to form a 
system of equations, eq. (6), to explicitly consider color 
information coming from different channels of the image, e.g. 
red, green and blue. The system becomes: 

0=
∂
∂+

∂
∂+

∂
∂

t
Rv

y
Ru

x
R

0=
∂
∂+

∂
∂+

∂
∂

t
Gv

y
Gu

x
G

(7)

0=
∂
∂+

∂
∂+

∂
∂

t
Bv

y
Bu

x
B

This over-determined set of equations can be solved using 
least squares techniques.   

Another idea proposed in [17] is based on the concept of 
“color conservation” or color constancy rather than 
brightness conservation. Accordingly, a single linear system 
of equations can be defined from color components only 
while the illumination is allowed to change. 

Based on this concept, four color models were investigated 
in [3] and [18]. These are RGB, normalized RGB, HSV and 
YUV. The RGB color model decomposes colors into their 
respective red, green and blue components. Normalized RGB 
is calculated by normalizing each color by the sum of all 
three colors at a certain point. The HSV (Hue, Saturation, 
Value) model expresses the intensity of the image (V) 
independently of the color (H, S). While YUV decomposes 
the color as intensity (Y) and color coordinates (U, V)  

Barron and Klette [16] apply a color optical flow approach 
to the particular case of panning and zooming in image 
sequences. They demonstrate that the use of three color 
channels provides important improvement in the resulting 
optical flow over the use of grayscale images. 

V. ALTERNATIVE COLOR METHODS 
In this paper two alternative color optical flow algorithms 

inspired from [3] are investigated for an application in the 
guidance and collision avoidance of MAVs. 
A. Fusion of Horn and Schunck 

The first algorithm, named Fusion of Horn and Schunck, 
extends the Horn and Schunck‘s grayscale algorithm to 
estimate recursively the optical flow of each color plane 

using least squares, and then fuses the results into one flow 
field.

In the original grayscale of Horn and Schunck [14], which 
imposes a global smoothness constraint, the optical flow is 
assumed to be smooth across the image such that: 

02

2

2

2
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where∇ represents a spatial domain differentiation by which 
the optical flow constraint, eq. (5), can be written 
alternatively as:  

tIvI −=⋅∇ (9)

where: 
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Combining eq. (8) with eq. (5) results in the minimization 
of the following expression [2]: 
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over the domain  where the smoothness can be controlled 
by . Eq. (11) leads to solve iteratively the following two 
Euler-Lagrange equations: 
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where  is a smoothness weighting factor. 
After estimating the flow at each color channel 

independently, the proposed extension that results in the 
Fusion of Horn and Schunck method combines the three 
recovered flow fields by taking their average. The recovered 
motion vector could also be selected among the three 
channels as the one with the smallest estimated error at each 
point. But this cannot be carried out without a confidence 
measure that adds extra computational burden on the 
algorithm. 
B. Neighborhood Least Squares 

The second proposed color algorithm, named 
Neighborhood Least Squares, utilizes a simple neighborhood 
least squares algorithm equivalent to Lucas and Kanade’s but 
without considering any weighting values.  

In the traditional Lucas and Kanade’s grayscale method 
[15], which implies a local smoothness constraint, the 
assumption of the constant flow in a local neighborhood is 
made. In this method weighted least squares are used to solve 
for v  in eq. (9) by minimizing: 

( ) ( ) ( )[ ]
∈

+⋅∇
Rx

t txIvtxIxW 22 ,, (13) 

where )](),...,([ 1 nxWxWdiagW = and denotes a 
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window function that assigns larger weight to the 
constraint at the center than at the edge of the domain. R
is a spatial neighborhood. The optimal solution to this 
problem in the least squares sense is:  

bWAAWAv TT 212 )( −=  (14) 
where  A and b are constructed according to eq. (5). 

The purpose of the proposed color method is to extend this 
algorithm to calculate the optical flow from the three color 
planes, and then have an over-determined set of linear 
equations formed from a 3x3 window. However, to provide a 
computationally efficient algorithm, the calculations can also 
be carried out without considering the weighting matrix, W.
In this case, when considering the three color planes, values 
in a 3x3x3 neighborhood around the central pixel are directly 
incorporated into the bA =v  system. This over-determined 
system of equations is then solved using least squares. 

VI. ERROR MEASUREMENT 
Despite the large volume of research work on optical flow, 

only two major attempts have been reported in [2] and [19] to 
evaluate quantitatively the performance of optical flow 
algorithms on complex image sequences. The difficulty of 
performing this qualitative evaluation is due to the lack of 
ground truth data sets, i.e. known correct optical flow for 
such complex scenes. As a result, the majority of evaluations 
so far have been mainly qualitative or limited to simple 
synthetic scenes from which ground truth is easy to extract. 
Also, few comparative works have been performed on color 
optical flow estimation. 

The error measure considered earlier by Barron et al. [2] is 
the difference in angle between the correct and estimated 
vectors such that:  

)arccos( FGerr ⋅=θ (15) 

where errθ is the angular error measure, G  is the correct 

optical flow vector, and F  is the estimated or recovered 
optical flow vector. 

Conversely, Otte and Nagel [19], who opposed the angular 
error measure of Barron et al. for its asymmetry and bias in 
case of large flow vectors, define the following simple 
magnitude of difference between correct and estimated flows: 
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where errM is the magnitude error measure. 
In this work, in order to evaluate and compare the 

performance of the algorithms to each other, error analysis is 
carried out based on statistical quantities (mean and standard 
deviation) of both the angular and magnitude errors adopted 
in [2] and [19]. 

VII. RESULTS AND ANALYSIS 
The comparative study and error analysis of the four 

optical flow algorithms described previously was carried out 

using a modified verson of the OFCat software simulation 
package [18]. OFCat is an extensible GUI-driven optical flow 
computation and analysis tool based on Matlab and Intel’s 
IPL [20] and OpenCV [21] libraries. 

The algorithms were implemented on two image 
sequences, respectively named Rock and Tree, representing 
scenes of various complexity as found around a flying MAV. 
Fig. 2 and 3 show the first frame of each sequence. The Rock 
sequence is a synthetic image sequence [22] for which the 
ground truth (correct flow) is unknown. In this sequence the 
optical flow sensor is assumed to aim forward and the MAV 
moves along its line of sight toward nearby the rock, and 
hence the focus of expansion (FOE) is near the center of the 
scene. The FOE is the point from which the optical flow 
vectors radiate and indicates the MAV’s direction of heading. 
In the Tree sequence case, which is a real image sequence 
[23], the ground truth is also unknown. In a similar manner to 
the Rock sequence, the sensor in this sequence is also 
assumed to be aimed forward and the MAV moves along its 
line of sight toward the tree with the FOE at the center of the 
scene.

Fig. 2. First frame of the Rock image sequence. 

Fig. 3. First frame of the Tree image sequence. 
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Given that the ground truth for the two sequences is 
unknown, the performance analysis was carried out by 
generating a synthetic flow field. For this matter, an image set 
has been created from a subsample of the first frame by 
controlling the relative motion of pixels between successive 
images in the sequence. The resulting set is used for 
estimating the optical flow and then comparing the recovered 
flow with the synthetic flow considered as the ground truth. 

For each sequence, the recovered optical flow and hence 
the motion field induced by the corresponding movement is 
shown in Fig. 4a and 5a respectively. The two sequences 
were initially encoded with the YUV color model, and the 
color Neighborhood Least Squares method was used to 
recover the optical flow. In these two figures, visual 
observation of the flow field is used to validate the 
correctness of the recovered field. The optical flow measured 
in the forward direction of the MAV is related to the 
existence of any obstacle in front of the sensor. In the Rock 
sequence (Fig. 4b), the MAV is considered to have a flight 
path that will cause it to fly nearby the rock (the optical flow 
field has a large divergence or expansion only on the side of 
the image containing the obstacle and the FOE is not located 
inside the obstacle, the rock in this case. In the Tree sequence 
(Fig. 5b), the MAV approaches the obstacle (the tree), and 
then turns away   to   prevent   a collision. In this case, the 
flow field has a large divergence or expansion, and the FOE 
is located inside the obstacle (the tree) in the visual field.  

Tables 1 and 2 compare the performance of the two 
alternative color optical flow methods (Fusion of Horn and 
Schunck and Neighborhood Least Squares) with the common 
grayscale optical flow methods of Horn and Schunck [14], 
and Lucas and Kanade [15] that were applied on the same 
sequences after conversion to grayscale images by averaging 
the three color components. The results presented in the 
tables are the mean and standard deviation values computed 
over all pixels of the image for the angular error, and for the 
magnitude error, as defined in section VI. These results 
demonstrate that Neighborhood Least Squares performs 
better than the other tested methods. The Fusion of Horn and 
Schunck also outperforms its grayscale counterpart, 
demonstrating the advantage of using color optical flow 
computation over traditional grayscale image sequences. 

Table 3 provides a comparison between the two proposed 
color optical flow estimation methods applied on the Tree 
sequence using different color models, respectively, YUV, 
HSV, RGB, and nRGB. This table shows the same measuring 
values (mean and standard deviation) calculated for each 
color model. The YUV color model shows more accurate 
motion estimation for this case where lighting and scene 
complexity are relatively uniform. 

a)

b) c) 
Fig. 4. a) Recovered optical flow for the Rock sequence using Neighborhood 
Least Squares with b) the magnified region around the FOE and c) the 
corresponding ground truth optical flow. 

a)

b) c) 
Fig. 5. a) Recovered optical flow for the Tree sequence using Neighborhood 
Least Squares with b) the magnified region around the FOE and c) the 
corresponding ground truth optical flow. 

18



Table 1. Optical flow errors on the Rock sequence. 

Angular Error  
(degrees) Magnitude Error (%) Method 

Mean Std Dev Mean Std Dev 
Neigh. LS (color) 0.467 0.445 1.611 1.402 

Fus. H&S (color) 0.553 0.516 1.793 1.594 

L&K (grayscale) 1.062 0.698 2.067 1.444 

H&S (grayscale) 1.099 0.716 2.495 3.234 

Table 2. Optical flow errors on the Tree sequence. 

Angular Error  
(degrees) Magnitude Error (%) Method Mode 

Mean Std Dev Mean Std Dev 
Neigh. LS YUV 0.467 0.445 1.611 1.402 

Neigh. LS HSV  0.587 0.543 1.803 1.690 

Neigh. LS RGB 0.779 0.685 2.123 2.209 

Neigh. LS nRGB  1.255 0.179 3.730 1.390 

Fus. H&S YUV 0.553 0.516 1.793 1.594 

Fus. H&S HSV 0.654 5.980 1.963 2.003 

Fus. H&S RGB 0.840 0.695 2.335 2.593 

Fus. H&S nRGB 1.256 0.179 3.731 1.390 

Table 3. Errors with different color models on the Tree sequence. 

VIII. CONCLUSION 
Grayscale optical flow methods have received much 

attention for recovering optical flow in numerous 
applications. Color optical flow, on the other hand, has not 
been investigated as extensively and was not yet considered 
for UAV vision despite the supplementary information that is 
available from the three channels of color data. 

 In this paper, an analytical and comparative study of the 
traditional optical flow techniques with their extensions to 
color is carried out. Simulation results show that the two 
alternative color optical flow methods, namely Fusion of 
Horn and Schunck and Neighborhood Least Squares, perform 
better than the corresponding grayscale approaches for 
estimation of optical flow on complex scenes. This research 
work demonstrates that the use of these color optical flow 
techniques could significantly enhance the performance of 
micro aerial unmanned vehicles (MAVs) for the completion 
of autonomous tasks and maneuvers like collision avoidance, 
altitude control, takeoff and landing in near-Earth 
environments.
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Angular Error  
(degrees)

Magnitude Error 
(%)Method 

Mean Std Dev Mean Std Dev 
Neigh. LS (color) 0.615 0.538 2.225 1.901 

Fus. H&S (color) 0.729 0.590 2.439 2.106 

L&K (grayscale) 1.094 0.683 2.733 2.003 

H&S (grayscale) 1.113 0.691 2.918 3.341 
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