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Abstract – This paper presents a novel method for the 
segmentation of probabilistic two-dimensional occupancy 
maps, based on the analysis of their texture characteristics. The 
texture is represented by means of a double distribution of 
“Local Binary Pattern” and “Contrast”. The logarithmic 
likelihood ratio, G-statistic, is used to measure the degree of 
similarity between different regions; this pseudo metric 
measure compares LBP/C distributions linked to different 
segments. The innovative algorithm is used to segment the 
probabilistic images in regions that characterize the space 
according to the certainty of its occupancy level. For a better 
interaction between an autonomous system and its environment, 
the segmentation scheme is also able to differentiate between 
objects present in the scene by analyzing the proximity between 
occupied segments. Along with experimental results, a 
comparison with other algorithms is provided in order to 
demonstrate the efficiency of the proposed approach.   

Keywords – segmentation, probabilistic maps, local binary 
pattern, contrast, texture. 

I. INTRODUCTION 

This research work constitutes a bridge between two 
relatively complex domains: the representation of 
probabilistic images and their segmentation. The 
development of segmentation approaches for probabilistic 
maps is innovative since very few researches have dealt with 
applications on this specific type of images. In addition to 
the fuzziness of texture distribution which increases 
considerably the degree of complexity, no consensus is 
currently established concerning the representation of 
probabilistic images. Heterogeneity in the representation 
implies that each model is treated on a purely individual 
basis and methods of extrapolations are necessary in order to 
generalize the concepts which have been validated on a 
particular scheme. The third complication arises with the 
fact that existing segmentation methods are extremely 
specialized as they generally treat only one preset type of 
images. This makes the process of extrapolation to cover the 
case of probabilistic images more laborious. 

Segmentation algorithms try to classify the pixels of an 
image based on their properties and their relationship with 

their entourage. Thereafter the goal of the segmentation is to 
divide an image into areas characterized by homogeneous 
properties. Several segmentation approaches have been 
proposed in the literature, these methods can be classified 
either as region-based, boundary-based or as a combination 
of the two. In addition the segmentation is either supervised 
or unsupervised. Unsupervised segmentation is applied in 
the case where, a priori, no information concerning the 
contents or the textures which characterize the image, is 
available. Approaches based on classical methods such as 
split and merge [1], pyramid node linking [2, 3], as well as 
the quad-trees [4] for the combination of statistical and 
spatial data, were the first to treat the unsupervised region-
based segmentation. Recent segmentation methods explore, 
on one hand multi-resolution filtering, using Gabor filters [5, 
6, 7] or the wavelets [8, 9], and on the other hand statistics 
with hidden Markov fields [10, 11]. 

This research work being performed in the context of 
autonomous mobile robotic exploration in cluttered 
environments, the value associated with each cell in a 
probabilistic map corresponds to the probability of this cell 
being occupied. Therefore, region-based segmentation 
appears to be well suited to ensure obstacle detection and 
allow shape recognition. Indeed the explored space is 
characterized by a series of edges corresponding to the rays 
emitted by an active range sensor used to monitor space 
occupancy. The combination of contrast and texture 
measures reveals to be an appropriate strategy for 
differentiating between segments present in probabilistic 
images. 

The work of Ojala et al. [12, 13, 14] on “Local Binary 
Pattern” and “Contrast” (LBP/C) segmentation explores 
these concepts on images with sharp patterns. However, the 
major problem with the segmentation of probabilistic images 
comes from the fact that transitions between free and 
occupied spaces do not define clear boundaries and are 
spread out according to the margin of error introduced by the 
sensor model. The present work proposes a refinement to the 
original LBP/C segmentation mechanism to handle smooth 
transitions in complex images while achieving accurate 
contours definition. 
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The following section introduces the concept of 
probabilistic occupancy grids which constitute the basis of 
probabilistic imaging. Next the double distribution of "Local 
Binary Pattern" and “Contrast” used to describe textures is 
reviewed. Then the proposed segmentation technique is 
detailed before experimental results and potential 
applications are discussed. 

II. PROBABILISTIC OCCUPANCY GRIDS 

In the context of space mapping with uncertainty for 
autonomous robotics, probabilistic images are the 
representation of occupancy grids. This approach was 
mainly developed by Alberto Elfes [15, 16, 17] and 
incorporates notions from areas such as probability theory, 
optimal estimation, random field models and decision 
theory. Elfes [17] defines the occupancy grid representation 
as a multi-dimensional random field model that maintains 
stochastic estimates of the occupancy state of each cell in the 
environment, symbolized by a spatial lattice. The number of 
relevant additions which were carried out thereafter is 
limited. 

Generally, in order to build a representation of its space 
from sensors data, a robot must estimate the state of the cells 
by analyzing the acquired range information. The 
interpretation step is carried out using the probabilistic 
models of the sensors. So as to allow an incremental update 
of the occupancy grid, several methods of data fusion were 
developed, they are able to combine readings relative to 
various sensors and points of view. Fusion methods [18] 
include Probability Theory [19], Dempster-Shafer or 
Evidence Theory, Fuzzy Sets, and various ad hoc methods 
used in Artificial Intelligence [17].  

The combination of data resulting from various 
occupancy grids obtained using various sensors (such as 
sonars and laser range sensors), has various advantages [16]. 
In the first place, if the model is well designed, the 
representation can exploit the complementarity of the space 
coverage as well as the strengths of each sensor, which can 
increase considerably the fault tolerance of the global 
system. Second, since the probabilistic occupancy grids 
represent the data on a common basis, no matter their 
source, their processing is simplified and homogenized. In 
third place, each sensor can be treated in a modular way, and 
probabilistic grids are built for each of them. At the end, the 
intermediate representations are merged to represent the 
environment. Finally, the probabilistic occupancy grids 
make possible to take into account various levels of 
precision in the representation of the sensor’s measurements 
and uncertainty in the position of a moving robot. This 
uncertainty is modeled in [15] by a Gaussian function which 
clouds the current grids. 

III. TEXTURE REPRESENTATION 

As proposed in [12], region content can be described by a 
multi-variable distribution consisting of the “Local Binary 
Pattern” (LBP) and the “Contrast” (C). For each pixel in a 
given region of the original image, a block of [3x3] pixels is 
considered (Fig. 1a). In order to obtain a binary 
representation, the central pixel is applied as a threshold on 
the neighboring ones. The pixels that have a value equal or 
higher to that of the central pixel are set to one, the others to 
zero (Fig. 1b). Thereafter, these binary values are multiplied 
by binomial weights (Fig. 1c), and the values obtained (Fig. 
1d) are added in order to define the LBP value of the texture 
unit. In parallel, the “Contrast” (C) value for a given pixel is 
equal to the difference between the average values of the 
pixels in the block of size [3x3] having a binary value of one 
and those having a binary value of zero. 

Fig. 1. Evaluation of the LBP and C values for a texture unit. 

The C measure is meant to complement that of LBP since 
the latter describes only the spatial structure of the local 
textures without taking into account the intensity difference. 
The value of the LBP parameter varies theoretically between 
0 and 255 for a total of 256 possible values. As for C, its 
value is decimal and is bounded in the interval spreading 
from -254 to 255. These ranges presuppose a representation 
of the pixel values on eight bits. Thereafter, in order to limit 
the number of values that the contrast can take and speed up 
the classification procedure, a discretization process is 
carried out in which C is mapped to b possible integer values 
(e.g. if C = -254, it is represented by 0, and if it is equal to 
255, by b).

In a given region, once the (LBP, C) pair is calculated for 
each pixel, a three-dimensional histogram of size [256 (LBP)
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x b (C) x number pixels characterized by a specific LBP/C
pair] representing the distribution is computed. The selection 
of a proper number of bins, b, for the “Contrast” values 
remains a compromise between precision and performance.  

Although Ojala et al. [12] did not observe significant 
difference in performance between 8 and 16 bins, our 
experiments have shown that a value of 8 provides a better 
ratio between precision and performance, and thus it is used 
in our implementation. 

In order to classify map segments, the logarithmic 
likelihood ratio, the G-statistic [20], is used to compare two 
histograms of LBP/C distributions. The value of G indicates 
the probability that two distributions have the same 
population as origin. In other words, it specifies the 
likelihood that two regions have similar textures and 
contrasts, and make up a single segment. The larger is the G-
statistic value, the less would be the odds in the 
segmentation. This measurement of similarity is calculated 
as follows:  

( )
, 1 , 1 1

1 , ,

, 1 , 1

2 log 2 log

2 log

2 log

n n n

i i i i
s m i s m i i

n

i i
i s m s m

n n

i i
s m i s m i

G f f f f

f f

f f

= = =

=

= =

= × − ×

− ×

+ ×

    (1) 

where fi corresponds to the number of pixels characterized 
by a pair of LBP/C values in bin i. s and m represent the two 
distributions to compare and n is the number of bins in each 
of the analyzed histograms. 

IV. SEGMENTATION ALGORITHM 

In a similar way to the approach introduced by Ojala et al.
[12], the proposed segmentation algorithm can be divided in 
three phases. That is the hierarchical division, the segments 
creation and the refinement step. The first phase of the 
proposed method is similar to that of the algorithm proposed 
in [12]. The innovation in the proposed scheme mainly 
comes from major changes introduced into the second and 
third stages. These modifications not only adapt and 
optimize the original algorithm to handle probabilistic 
images, but also significantly reduce computation time.  

The first phase divides the image into areas characterized 
by roughly uniform textures. Thereafter the segments 
creation step combines similar adjacent regions into 
segments. At this level the segments only approximate the 
various regions present in the image, the refinement stage is 
applied to increase the accuracy on contours localization. 

A. Hierarchical Division 

This phase hierarchically subdivides the original image 
into square blocks of variable sizes but of relatively uniform 
textures. 

A uniformity test has been developed to determine if a 
given parent region contains heterogeneous textures and 
therefore must be subdivided into four sub-regions of equal 
size. The procedure starts by identifying the four sub-regions 
and calculating the logarithmic likelihood ratio between each 
of the six possible pairs. The largest and the smallest G-
statistic values, eq. (1), denoted respectively by Gmax and 
Gmin, are identified among those pairs. The parent block is 
considered non-uniform and thus subdivided if the relative 
difference between Gmax and Gmin is higher than a certain 
threshold designated by X:
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Experimentation demonstrated that a relatively low value 
of X provides better end results given that supplementary 
subdivisions that do not segment regions with strong 
distinctive features can easily be corrected in the second 
phase. On the opposite, segments missed in the first phase 
cannot be introduced afterwards. An over-segmentation is 
therefore privileged in this early phase. In the case of 2D 
probabilistic maps, a choice of X=1.2 performed well, since 
20% of difference between Gmax and Gmin indicated a 
perceptible deviation in the region’s local texture. 

The hierarchical division phase starts by subdividing the 
probabilistic image into blocks of size Smax, whose value is 
[64x64] pixels. For each of the blocks, the decision to 
operate a first level of subdivision depends on the result of 
the uniformity test introduced above. If the test’s result is 
positive for a given block, four sub-blocks of size [32x32] 
each are obtained. In this case, each of these is submitted to 
the uniformity test which decides if a second level of 
subdivision is necessary. The subdivision process continues 
iteratively until a stopping condition is met. The minimum 
size, Smin, that a sub-region size can reach was chosen as a 
criterion. Ojala et al. claim in [12] that two levels of 
subdivision are sufficient and provide an adequate 
segmentation final result, but our experiments showed that a 
third level, leading to a value of [8x8] for Smin, is necessary 
in the case of the probabilistic images. Fig. 2 illustrates the 
recursive subdivision process. Despite the computational 
overhead that is added by this supplementary step, the final 
phase is relieved from a costly classification burden, and 
better segmentation results are achieved. 
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Fig. 2. Representation of the subdivision scheme. 

B. Segments Creation 

This phase aims at merging similar neighboring regions 
until a convergence criterion is met. Mainly, fusion involves 
adjacent blocks characterized by an average Occupancy 
Probability, OP, which is in the same range. This parameter, 
defined as the average pixels intensity level in a region Ri of 
size [N x M], is determined using the following equation:  
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The choice of the OP parameter, used to evaluate texture 
similarity between adjacent regions, is related to the 
structure of the probabilistic occupancy grid in which pixel 
values correspond to the probability of space occupancy. 
After normalizing the pixels’ values in the range [0;1], if a 
region is totally unknown it will be characterized by an OP
of 0.5; if the region was scanned by the range sensor 
mounted on a mobile vehicle, two possibilities exist: the first 
one generates an OP below 0.5 and corresponds to the case 
where the region of space is mostly free; the second 
produces an OP higher than 0.5 and involves a region of 
space which is mostly occupied. 

For the purpose of safe robot navigation, the probabilistic 
map can then be segmented into regions characterized by 
deterministic states, S, that is  S(Ri) ∈ {free, unknown, 
occupied}. These fall respectively in the following ranges of 
OP’s values: [0;0.5[, [0.5] and ]0.5;1]. Following this 

evaluation, if a group of adjacent regions have OPs in the 
same range, they are merged together and are classified as a 
segment with a uniform occupancy level. On the other hand, 
if two different segments with OP values in the same range, 
are not adjacent in space, they are kept as two separate 
objects to avoid confusion in objects recognition. 

C. Refinement 

In this last phase, segmentation results are refined by 
reclassifying the pixels located on the edge between two 
adjacent regions. If the hierarchical division and segments 
creation phases were successful, the segmentation results at 
this stage should already be coherent, but the level of 
precision on the localization of segments’ contours can still 
be improved by this refinement procedure. 

The refinement step is based on the fact that the range of 
OP values leading to an unknown segment classification is 
very narrow and is limited to a single value [0.5]. Even if a 
segment overlaps between an unknown space and a known 
one (free or occupied) by a limited number of pixels, it will 
still be considered as known by the segments creation phase. 
Therefore, the space whose occupancy is known always juts 
out into the unknown one. A process of compaction must be 
applied to the free and occupied segments in order to delimit 
them well and to expand the unknown ones. At the 
implementation level, this process consists of scanning the 
probabilistic image from each of the four possible sides: 
right-left, left-right, bottom-top and top-bottom. In each of 
the scans, when a boundary between an unknown and a 
known space is found, pixels of the known space which have 
a value of 0.5 are reclassified as belonging to the unknown 
region, until a pixel whose value is different is met. The four 
sides scanning procedure ensures coverage of all possible 
boundary shapes. 

The refinement step implements this compaction process 
between the free/occupied segments and the unknown 
segments adjacent to them. Since free and occupied spaces 
do not define clear boundaries and are spread out according 
to the margin of error introduced by the sensor model, the 
application of a similar compaction process cannot improve 
the segmentation result between the two types of known 
spaces and thus adjacent free/occupied segments are not 
concerned by this step. 

V. EXPERIMENTAL RESULTS 

In this section, segmentation results on three probabilistic 
images each of size [320 x 320] are presented. These images 
are obtained using a laser range finder simulator for 2D 
surface mapping that was developed in previous work [18]. 
Occupied spaces’ shape as well as the number and position 
of the range sensor’s points of view differ from an image to 
another. In Fig. 3a, 4a and 5a, white pixels represent the 
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surface of objects, dark pixels correspond to free space, and 
intermediate grayscale pixels map unexplored areas. The 
first image (Fig. 3a) contains an object resembling an 
electrical plug, while the objects used in the following 
images (Fig. 4a and 5a) have a rectangular shape. Three 
range sensor scans are taken with Gaussian error (σ2=25) on 
the range measurements and merged to build the 
probabilistic maps shown in Fig. 3a and 4a, while four scans 
are used in Fig. 5a. The step angle between two adjacent 
sensor’s rays which defines the resolution is fixed to 1 
degree in all generated images. 

The parameters used in the segmentation technique’s 
implementation are the same as the ones described in the 
preceding sections. In the hierarchical division phase, the 

size of the first level of subdivided blocks, Smax is [64x64], 
and three subdivision levels are conducted, leading to a Smin
of [8 x 8]. Fig. 3b, 4b and 5b present the results of the 
hierarchical division phase of the algorithm, while Fig. 3c, 
4c and 5c show the segmented maps after the segments 
creation phase. The segments obtained at the end of the 
second step approximate well the shape of the regions 
present in the probabilistic images; nevertheless, some 
isolated regions are generated. These originate from the 
absence of range measurements from certain points of view 
materialized by an insufficient exploration of the 
environment, especially where complicated objects are used, 
such as in Fig. 3. The rough localization of contours between 
free and unknown space is also obvious. 

(a) (b) (c) (d) 
Fig. 3. Probabilistic map segmentation on a complex object. 

(a) (b) (c) (d) 
Fig. 4. Probabilistic map segmentation on an incomplete occupancy grid. 

(a) (b) (c) (d) 
Fig. 5. Probabilistic map segmentation with extra viewpoints. 
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Segmentation results obtained after the refinement phase 
are showed in Fig. 3d, 4d and 5d respectively for the three 
probabilistic images. Important improvement on contours 
definition is achieved and isolated regions are removed as 
they get merged with the corresponding areas 

From a qualitative point of view, segmentation results 
obtained with the proposed approach advantageously 
compare with those obtained by Ojala et al. [12]. The 
technique can be directly used for applications such as path 
planning, collision avoidance and interaction control for a 
mobile robot navigating in an unknown environment 
mapped by sensors with high uncertainty level. From a 
quantitative point of view, the proposed algorithm is also 
computationally efficient. The segmentation process takes 
between 35 and 40 seconds for a [320 x 320] probabilistic 
image when running on Matlab 7.0. Compared with the 
implementation that we have realized of the algorithm 
proposed in [12], the proposed scheme leads to more 
accurate segmentation and performs more than a hundred 
times faster. 

VI. CONCLUSION 

This paper proposes a refined unsupervised segmentation 
algorithm for two-dimensional probabilistic occupancy 
maps. The method is based on the comparison for two given 
regions, between the distributions of local texture 
characteristics termed in function of “Local Binary Pattern”
and “Contrast”. The segmentation technique leads to the 
creation of homogeneous texture regions, which characterize 
the environment according to its occupancy level. The 
region-based algorithm corresponds to an adapted and 
improved version of the approach proposed in [12]. The first 
two phases split the original image in segments whose shape 
approximate the regions present in the image. Subsequently 
the refinement step achieves a high level of convergence 
between the segmented areas and the real physical model. 
Smooth transition zones between regions of various 
occupancy levels that make classical segmentation 
techniques fail on probabilistic maps are efficiently handled 
to classify pixels on the proper side of the edges. 

The new method proved to be effective and efficient in the 
case of probabilistic images constructed by means of a laser 
range sensor. Since the probabilistic environment is 
characterized by areas with relatively uniform texture, 
regions can be linked to create segments having similar 
occupancy level. 

This work provides a strong basis for our research on 
robot guidance from probabilistic models. Segmented 
probabilistic maps are now being used to optimize mobile 
platforms navigation in uncertain environments. This 
approach is also being extended for the segmentation of 
three-dimensional probabilistic environment models.  
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