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a b s t r a c t

Gradient features play important roles for the problem of pedestrian detection, especially the histogram of
oriented gradients (HOG) feature. To improve detection accuracy in terms of feature extraction, HOG has
been combined with multiple kinds of low-level features. However, it is still possible to exploit further
discriminative information from the classical HOG feature. Inspired by the symmetrical characteristic of
pedestrian appearance, we present a novel feature of gradient self-similarity (GSS) in this work. GSS is
computed from HOG, and is applied to capturing the patterns of pairwise similarities of local gradient
patches. Furthermore, a supervised feature selection approach is employed to remove the non-informative
pairs. As a result, the selective GSS (SGSS) feature is built on a concise subset of pair comparisons. The
experimental results demonstrate that significant improvement is achieved by incorporating HOG with
GSS/SGSS. In addition, considering that HOG is a prerequisite for GSS/SGSS, it is intuitional to develop a
two-level cascade of classifiers for obtaining improved detection performance. Specifically, the first level is a
linear SVM with the multiscale HOG features to efficiently remove easy negatives. At the second stage, the
already computed HOG features are reused to produce the corresponding GSS/SGSS features, and then the
combined features are used to discriminate true positives from candidate image regions. Although simple,
this model is competitive with the state-of-the-art methods on the well-known datasets.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Vision based pedestrian detection is a challenging task of great
practical interest in the field of computer vision because of variant
appearance and shapes of human. A popular paradigm for pedestrian
detection is to convert the problem to binary classification. Discrimi-
native methods extract features inside local regions and construct
classifiers for detection. A sliding window strategy is often used. How-
ever, this problem involves searching a large number of local image
regions for a few objects. Cascade classifiers have been applied to cope
with this problem of imbalance [1]. In contrast to conventional class-
ifiers designed for a low overall classification error rate, cascade cla-
ssifiers are required to obtain a very high detection rate and moderate
false positive rate within each layer. Another breakthrough was the
introduction of gradient-based features to pedestrian detection. Insp-
ired by SIFT [2], Dalal and Triggs proposed the histogram of oriented
gradients (HOG) feature and reported its impressive performance [3].
Currently, HOG is considered to be an unexcelled single feature. There
are many works that fused HOG feature with other features to improve
its performance [4–7].

The success of the HOG-based methods indicates that contour
is an important clue for pedestrian detection. The existing meth-
ods are usually based on partitioning a detectionwindow into a set
of subregions, extracting contour features in each subregions, and
combining the obtained local features. Although impressive pro-
gress has been made in local contour representation, the symme-
trical characteristic of pedestrian appearance was been ignored. As
shown in Fig. 1, the fragment contours in local regions located in
the symmetrical positions on pedestrian's body are similar; on the
other hand those located in the foreground are dissimilar to the
one in the background. In addition, we found the fact that both the
front and profile of pedestrians look symmetrical in most
instances. A few examples are shown in Fig. 2. There is apparent
symmetry in shape even in different views between the subre-
gions of shoulders, trunk, arms and legs. Therefore, it is possible to
measure the similarities among the subregions within the detec-
tion window and include the similarities into the representation
vector for enhancing contour description.

Improving feature extraction is one of valuable research directions
for pedestrian detection as suggested in [8]. Inspired by the fact that
pedestrian appearance is usually symmetrical, we present a new
feature based on local gradient similarity in this work. This feature,
termed gradient self-similarity (GSS), captures pairwise statistics of
spatially localized gradient orientation distribution. Since HOG is one
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of the most commonly used and effective features for capturing local
gradient patterns, we adopt this feature to represent each block in a
sliding window. The similarities among the blocks are measured by
the Euclidean distance in the feature space. We define the GSS feature
as a vector composed of the upper triangular elements of the similarity
matrix of the HOG features associated with the blocks. However the

high dimensionality of GSS may make the computational cost of
feature extraction expensive. Considering that some pairs play more
important roles than others, we use the feature generation machine
(FGM) [9] to perform feature selection. FGM employs a sparse SVM to
determine a subset of the feature for classification while retaining the
discriminative information. As a result, only a few informative pairs

Fig. 1. Illustration of pairwise similarity of HOG blocks. For an image example (left), we show the total energy in each orientation of the HOG cells (middle), and the
pairwise similarity matrix of the HOG blocks (right). In the matrix, cells with higher similarity are darker. As shown in the zoomed subfigure, the two blocks located in the
foreground are similar because of the symmetric characteristic of pedestrian's appearance. On the other hand, the block in the foreground is dissimilar to the one in the
background.

Fig. 2. Examples of pedestrians with symmetrical appearances in different views.
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are selected to construct the selective GSS (SGSS) feature. GSS/SGSS is
a kind of HOG based mid-level features, and achieves additional gains
from HOG in terms of exploring the association between fragment
features. For the purpose of improving detection efficiency and
effectiveness, our proposed framework for pedestrian detection is a
short cascade, which has two levels: the first level is a linear SVM
classifier combining with multiscale HOG to efficiently reject as many
of the negative samples while keeping almost all positive samples to
the next stage. For the candidate image regions, the HOG features are
already computed and reused to produce the corresponding SGSS
features. At the second level, we combine the HOG feature and the
SGSS feature to discriminate true positives. We also explore the
application of the combined feature associated with different classi-
fiers including linear SVM, histogram intersection kernel based SVM
(HIKSVM) and AdaBoost. The AdaBoost based cascade achieves the
best performance, and is comparable to the state-of-the-art methods
on multiple well-known datasets.

The main contributions of this work are twofolds: first, according
to our observation on the symmetrical characteristics of pedestrian
appearance, we develop the SGSS feature as a mid-level feature cap-
turing the patterns of similarities among local gradient distributions to
significantly improve pedestrian detection rate. Second, considering
that our SGSS feature is computed from HOG, we design a two-level
cascade for pedestrian detection, in which the HOG feature computed
on the first level is reused to construct the SGSS feature at the second
stage. Our method is therefore based on the computation of a single
low-level feature (the HOG). This is an interesting simplification
considering that feature extraction is often a computationally costly
step in classification approaches. Moreover, we show that the pro-
posed approach provides competitive results. The remainder of this
paper is organized as follows. In Section 2, we discuss relevant works
on feature extraction and discriminative methods for the pedestrian
detection problem. In Section 3, we provide details on the propo-
sed GSS feature and the corresponding feature selection approach.
In Section 4, we introduce our cascade of classifiers. In Section 5,
we provide the implementation details of the proposed model. In
Section 6, we present experimental results based on the proposed
approach, and the comparison results with existing methods are also
reported. Finally, the conclusion of this paper is presented in Section 7.

2. Related work

In the past decade, great progress in the research of pedestrian
detection has been made through the investigation of different app-
roaches for feature extraction, classification, and articulation handling.
The surveys [10,8] provide comprehensive introductions on the
existing pedestrian detection approaches. For feature extraction, Haar
wavelet feature was used in the early work of pedestrian detection
[11]. In contrast, HOG [3] is a popular feature used in the modern
pedestrian detectors. This feature collects gradient information in local
cells into histograms using normalizing overlapping blocks. Local
normalization makes this representation robust to small pose varia-
tions and changes in illumination. Although there is no single feature
outperforming HOG, multiple kinds of features have been reported to
complement HOG, such as the motion descriptor based on histogram
of optical flow (HOF) [4], the texture descriptors based on local binary
patterns (LBP) [7] and center symmetric local trinary patterns (variants
of LBP) [12], and the color self-similarity (CSS) feature [6]. To combine
multiple kinds of low level pixel-wise features, Enzweiler and Gavrila
[13] proposed a multilevel mixture-of-experts model built on HOG
and LBP features computed from intensity, depth and dense flow data.
Dollár et al. [14] proposed an uniform framework for integrating
grayscale, LUV color, and gradient magnitude quantized by orientation.
A near real-time version of this method was provided in [15]. Based on
HOG, a number of high-level features were developed, such as the

global pose invariant descriptor [16]. Shape is also a commonly used
cue for object detection [17–21]. In [18], the shape descriptors
(shapelets) were learned from gradients in local patches, and com-
bined by boosting to build an overall detector. Another way to
represent mid-level edge features is based on contour. Lim et al. [21]
clustered patches of hand drawn contours to generate sketch tokens to
capture local edge structure. Combining with other multiple image
channels, the representation of per-pixel token labeling is utilized as a
feature for a boosted detector. Another dictionary based feature is to
use sparse coding to construct the histogram of per-pixel sparse codes
for local representation in [20]. The dictionaries are unsupervised
learned by K-SVD. Also using an unsupervised technique to learn
features from data, a convolutional network model is used to learn
multi-stage shape features in [19]. In this work, we are inspired by the
symmetrical characteristic of pedestrian appearance, and propose the
GSS feature to capture the patterns of the similarities of fragment
contours in local regions. HOG is used as a source of low-level features
from which our GSS feature is computed. Different from CSS, we here
explore the pairwise statistics of spatially localized gradient distribu-
tions instead of color. Furthermore, a supervised feature selection
method is used to remove the non-informative components in GSS,
and produce the SGSS feature. To the best of our knowledge, SGSS has
not yet been used as a feature for pedestrian detection.

The most commonly used discriminative approaches to the pedes-
trian detection problem are various boosting classifiers [14,22,23] and
SVM classifiers [3,24,25] which are usually in the form of cascade. For
instance, in the work of Viola and Jones [26], the integral image
concept is used for fast feature computation, the AdaBoost algorithm is
used for automatic feature selection, and a cascade structure is used
for efficient detection. In [27], boosted decision trees were applied to a
two-level cascade architecture. Felzenszwalb et al. [24] proposed a
deformable part model (DPM) in which unknown part positions was
modeled in a latent SVM. In another work [28], based on DPM, an
ordering of the model's parts was used to define a hierarchy of the
models to gain speed which is analogous to a classical cascade. In
addition, the histogram intersection kernel has been shown to be
more effective than the Euclidean distance for many classification
problems when using histogram features. However, for non-linear
SVM classifiers, the runtime complexity is high. Maji et al. [25] pro-
posed an approximated intersection kernel SVM which provides great
speedup such that the nonlinear SVM can be used in sliding window
detection. Recently, deep models have begun to be applied to ped-
estrian detection [29–31]. Different from the classical cascaded classi-
fiers trained sequentially without optimization, Zeng et al. [31]
proposed a multi-stage contextual deep model which jointly trains
the classifiers at each stage through back-propagation.

Algorithmically, we use in this work a two-level cascade in which
the first level is a linear SVM, and the second level is a linear SVM,
HIKSVM or AdaBoost. This design is justified by the fact that the first
level is efficient and can quickly remove most false positives, and the
already computed HOG features can be reused to generate our SGSS
features for further discrimination on the second level. We study
here the effectiveness of these classifiers when used in conjunction
with the proposed SGSS feature.

3. Gradient self-similarity

The concept of HOG is to represent objects by dense grids of
gradient histograms that characterize an object's contour and its
spatial information to some extent. The detection window is
usually divided into cells represented by gradient histograms,
and each 2�2 neighboring cells constitute a block. The L2-
normalization is performed on each block, which makes the
HOG feature robust to illumination changes. Since HOG has
exhibited excellent performance in representing local gradient
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distributions, we employ HOG to encode the local regions (blocks)
in a detection window, and measure the similarities of these
blocks by computing the distances in the feature space. To present
the patterns of similarities between spatially located blocks, we
begin with the introduction of the GSS feature in Section 3.1. In
Section 3.2, we present an effective approach of feature selection
to remove the redundant components, which provide no more
information than the selected subset of components in GSS.

3.1. GSS feature

Let H ¼ ðH1;H2;…;HMÞ be the HOG feature in a detection
window, where Hi, i¼ 1;2;…;M, denote the features of the blocks.
Since each block consists of 2�2 neighboring cells, let
Hi ¼ ðh1

i ;h
2
i ;h

3
i ;h

4
i Þ be the concatenated histogram of the i-th

block. We measure the similarities of fragment contours through
the distances of HOG blocks in the feature space. Since pedestrians
are vertically symmetrical, we consider that the blocks located on
the symmetrical positions of pedestrian's body, such as the left
and right shoulders, should be similar, but the distances between
them may be very large because of the complementarity of their
gradient orientations. To solve this problem, one feasible way is to
horizontally flip the HOG blocks. Let ~H i ¼ ð ~h3

i ;
~h
4
i ;

~h
1
i ;

~h
2
i Þ denote

the flipped vector of Hi. We define the distance matrix as follows:

Di;j ¼minðdðHi;HjÞ; dð ~H i;HjÞÞ; i; jAf1;2;…;Mg; ð1Þ
where d denotes the distance metric. Eq. (1) indicates that the
similarity between a pair of HOG blocks is determined by the min-
imum distance between the flipped and non-flipped cases. There are
many possibilities to define d. We tested a number of widely used
distance functions including the Euclidean distance, χ2-distance, dot
product, and cosine of the angle between dominant gradient orien-
tations in the experiments. We use the Euclidean distance as it yields
the best performances. The corresponding similarity matrix is
computed by applying the following transform which guarantees
that the similarity values are within the range ð0;1�:

Si;j ¼
1

1þ Di;j�Dmin

Dmax�Di;j

� �2 ð2Þ

where Dmin and Dmax denote the minimum value and the maximum
value respectively (for the cases of the distance defined by dot
product and cosine, the formula of similarity computation in Eq. (2)
is slightly adjusted by inverting the fraction of the denominator
because the similarities between the blocks are proportional to the
corresponding distances).

Since S is a symmetric matrix, only the corresponding upper
triangular matrix Supper is taken into consideration for character-
izing local gradient similarities. In Supper , each element represents
the similarity of a pair of blocks in the HOG feature space.
Although there may exist some elements with the same value,
they encode the similarity patterns at different positions. As a
result, the GSS feature FGSS is defined as a vector composed of all
the elements of Supper as follows:

FGSS ¼ ðg1; g2;…; gNÞ;
gnASupper ¼ fSi;jjio jg; n¼ 1;2;…;N; ð3Þ
where FGSS has N¼M � ðM�1Þ=2 dimensions. We exhibit the cap-
ability of GSS in capturing pairwise local similarity patterns of
pedestrian appearance by means of an example in Fig. 3. Fig. 3(a)
exhibits the average similarity matrix of all the positive training
samples in the INRIA dataset. In order to provide a more intuitive
representation, we visualize each row of the average similarity matrix
as an indicative image composed of a set of patches. The number and
the positions of the patches are the same as those of the blocks in the
detection window. For a certain row, the intensity value of each patch

is equal to the similarity value between the corresponding block and
the reference block. The average similarity matrix contains 105 rows
such that there are 105 indicative images generated. Since many of
them are similar, we here exhibit a few representative ones. It is
noted that there exist pedestrian structures in the indicative images in
Fig. 3(b).

To further explore the discrimination capability of the proposed
GSS feature, we use power-law transformation through the fol-
lowing operation applied on each component independently to
adjust the similarity values:

ϕðzÞ ¼ j zj α; ð4Þ
with α40. The power-law transformation is useful for general-
purpose contrast enhancement, especially successful for image
enhancement. Fig. 4 shows the plot of power-law transformation
with various values of α. Since all the elements in the similarity
matrix S are within the range ð0;1�, the role of this transformation
is to perform contrast stretching to the relatively small (large)

Fig. 3. Gradient self-similarity as a mid-level feature captures pedestrian struc-
tures. (a) The average similarity matrix of positive samples. (b) The representative
rows of the similarity matrix visualized by spatial layout.
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values when αo1 (α41). In our case, we are interested
in contrast stretching within the range ð0:5;1� such that similar
pairs with high reliabilities can be better discriminated from the
ones with a lower similarity. It can be seen from the plot of the
power-law transformation that this expected contrast stretching
occurs when choosing α41. An example of the power-law
transformation (α¼ 2) is shown in Fig. 5. After applying this
transformation, the contrast of the GSS feature is enhanced.
We empirically observed that this transformation indeed improves
the discrimination capability of our GSS feature. Finally, the
transformed GSS feature is subsequently L2-normalized by
FGSS≔FGSS=JFGSS J2.

3.2. Selective GSS feature

For cases where there are many features and comparatively few
samples, feature selection techniques are often used. They bring the
benefit of shortening training times and enhancing generalization
by reducing overfitting. High dimensional vectors may indeed result
in great challenges for computation and training, and in the case of
our GSS feature, it is clear that the similarities of some block pairs
may be non-informative. We therefore opt for FGM as a tool to
perform feature selection such that the trained classifier will be
made of simplified decision rules for faster prediction. In contrast to
the principal component analysis (PCA) [32] that transforms the

data into a set of linearly uncorrelated variables in an unsupervised
way, FGM is a supervised method which reduces the dimensionality
of GSS, while preserving discriminative information. Although the
partial least square (PLS) analysis [33] is a supervised dimension-
ality reduction technique and has been shown to be effective for the
pedestrian detection problem [34], full features still need to be
computed before PLS projection which maintains the complexity of
the feature extraction process.

Given a set of labeled samples fxl; ylg, l¼ 1;2;…; L, where xl is
the feature vector and yl is the label, FGM aims at finding a sparse
solution with respect to the input features to a linear SVM can be
learnt by minimizing the following structural risk functional:

min
tAT

min
ω;ξ;ρ

1
2
JωJ2þλ

2

XL
l ¼ 1

ξ2l �ρ

s:t: ylω0ðxl � tÞZρ�ξl; ð5Þ

where the positive constraint ξl40,ω is the weight vector, the feature
selection vector t ¼ ðt1; t2;…; tNÞAT , T ¼ ftjtnAf0;1g;n¼ 1;2;…;Ng
which controls the sparsity of the SVM decision hyperplane:ω0ðx � tÞ,
and λ is the regularization parameter that balances the model complex-
ity and the fitness of the decision hyperplane. Eq. (5) is a mixed-integer
programming problem. After convex relaxation, Tan et al. [9] proposed
an efficient cutting plane algorithm to find a sparse feature solution.

Once feature selection is performed on the training data by
applying FGM, the feature subset composed of the selected
elements in the GSS feature is concise, while maintaining the
discriminating power almost as high as the original GSS feature as
it will be shown in Section 6. Thus we define the selective gradient
self-similarity (SGSS) feature as the selection of FGM:

FSGSS ¼ ðgp1 ; gp2 ;…; gpK Þ;
gpk Afg1; g2;…; gNg;
s:t: tpk ¼ 1; pkAf1;2;…;Ng; k¼ 1;2;…;K ; ð6Þ

where K is the number of the selected elements that belong to the
GSS feature. An example of selected pairs of FGM is shown in
Fig. 6. It is noted that most selected pairs involve the blocks, which
are located near the contours of the pedestrian structures for the
anchor blocks shown in Fig. 3(b). This fact indicates that the
contours contain discriminating information, which is consistent
with human perception. In contrast to the HOG feature represent-
ing the contour information piece by piece, the SGSS feature is
capable to explore the association patterns of pieces of contour,
which can be seen as a mid-level feature on top of HOG blocks. For
this reason, the SGSS feature is considered to be, to a certain
extent, complementary to the HOG feature.Fig. 4. The plot of power-law transformation with various values of α.

Fig. 5. An example of the power-law transformation (α¼ 2). Compared to the GSS feature without the transformation (a), the contrast of the transformed GSS feature (b) is
enhanced.
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4. Cascade

Another major component for pedestrian detection systems is the
classifier. We therefore explore the applicability of the developed
feature combined with the commonly used classifiers including linear
SVM, HIKSVM and AdaBoost. As explained before, the proposed GSS
feature is computed from the HOG feature. In order to obtain excellent
detection performance while keeping a low computational cost, we
introduce a framework composed of two-level cascade of classifiers.
On the first level, a linear SVM is trained in the HOG feature space. The
goal of this level is to reject as many negatives as possible, while still
passing almost all of the positives to the next level. The first level is
computationally efficient. The second level makes the final decisions
for the candidates including positives and difficult negatives accepted
by the first level. Since the HOG features of the candidates have
already been computed on the first level, it is straightforward to
compute the corresponding GSS features to build more discriminative
descriptors combining HOG and GSS. Although GSS feature is high
dimensional and the computation cost is expensive, the number of the
candidates is usually small. In addition, since we performed feature
selection using FGM, the obtained SGSS feature is composed of a small
number of informative components. These ones are combined with

the HOG feature to train the classifier of the second level to make the
final decision. We here apply three different classifiers to the second
level of our short cascade.

4.1. Linear SVM

For simplicity, we propose to use a linear SVMmodel as a baseline
classifier at the second level of the cascade. A linear SVM classifier
learns the hyperplane that optimally separates pedestrians from
background, and usually provides good performance in comparison
to other linear classifiers. The combined representation vectors of the
HOG feature and the corresponding SGSS feature are then fed to the
linear SVM for efficient classification.

4.2. Approximated intersection kernel SVM

Kernelized SVMs are typically used for machine learning based
discriminant. Replacing the linear SVM with a nonlinear kernel
usually improves performance at the cost of much higher run
times because the application of kernelized SVMs to classification
requires computing the kernel distance between the input vector
and each of the support vectors. As a result, kernelized SVMs are

Fig. 6. The selected pairs associated with the anchor blocks shown in Fig. 3(b) after using FGM based feature selection. The squares denote the blocks in the detection
window, and the lines denote the selected pairs.
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rarely used for detection task because of their high computational
load. To make this computation more efficient, we employ an
approximated intersection kernel SVM [25] on the second level of
the cascade which has the benefit of being independent to the
number of support vectors.

For a trained HIKSVM, the decision function is given as follows:

J ðxÞ ¼
XR
r ¼ 1

aryrKðx; xrÞþb

¼
XR
r ¼ 1

aryr
XU
u ¼ 1

min xu; xru
� � !

þb; ð7Þ

where Kð�; �Þ is the kernel function, and xr ¼ ðxr1; xr2;…; xrU Þ,
r¼ 1;2;…;R, are the support vectors. Exchanging the summations
in Eq. (7), we obtain

J ðxÞ ¼
XU
u ¼ 1

XR
r ¼ 1

aryr min xu; xru
� � !

þb

¼
XU
u ¼ 1

X
1r rrq

ar
uy

r
ux

r
uþxu

X
qo rrR

ar
uy

r
u

 !
þb

¼
XU
u ¼ 1

J uðxuÞþb; ð8Þ

where xru denotes the increasingly sorted values of xr in the u-th
dimension, and ar

u and yr
u are the corresponding weight and label.

After computing J uðxruÞ, J uðxuÞ can be estimated by first finding q
and then linearly interpolating between J uðxquÞ and J uðxqþ1

u Þ. In
practice, the input data is quantized in each dimension, and the
piecewise constant approximation is used to compute J u. As a
result, only a lookup table is required for prediction. In our case,
the SGSS feature can be quantized before training the intersection
kernel model. The discrete SGSS feature is then made more robust
to changes in gradients. The quantization distortion of the SGSS
feature does not cause loss in classification accuracy because of the
piecewise constant approximation of J u.

4.3. AdaBoost

AdaBoost offers another fast approach to learning over high dim-
ensional data. In contrast to SVMs, boosting methods minimize the
classification error on the training data by combining weak classifiers
iteratively. Choosing the appropriate weak classifier is important to
produce a strong classifier. We use the regression stumps as our
weak classifiers, which are very simple and computationally inex-
pensive because they classify input samples according to a single
dimension of the combined feature vector of HOG and SGSS. We use
the gentle AdaBoost algorithm [35] to train the model on the second
level of our cascade, which is very similar to other AdaBoost
algorithms. During the training phase, the same weight is initially
assigned to each sample. A weak classifier is then trained on the
weighted training set. The misclassified samples are assigned to
higher weights, which enable the training process to more focus on a
subset of misclassified data. However, classic AdaBoost algorithm is
sensitive to noisy data and outliers. Gentle AdaBoost fits a regression
function by minimizing a weighted least-squares loss, and modifies
the weighting method to put less weight on outlier samples, which
leads to better generalization performance. When the number of
individual regression stumps is met, the output of the trained weak
classifiers is combined into a weighted sum, which is defined as the
final output of the boosted classifier. The runtime of this model is
linear in the number of regression stumps.

5. Implementation

Since our objective is to explore the applicability of the SGSS
feature, we here use a simple two-level cascade for the task of
pedestrian detection. The first level is the commonly used HOG
and linear SVM combo. For the candidates passing the first level,
the already computed HOG features are used to compute the corr-
esponding SGSS features. The HOG feature and the SGSS feature
are then concatenated and fed to the classifiers (linear SVM,
HIKSVM, or AdaBoost) on the second level. We will first present
the details on the parameter setting and the training procedure for
this model, and subsequently introduce the postprocessing tech-
nique in the following subsections.

5.1. Parameter setting

Our classification model scans a 64�128 detection window
with a stride of 8�8 across the image, running a pre-trained
classifier on the descriptors extracted from each resulting image
window. For multiscale detection, we use a scale stride of 1.05. The
widely used version of the HOG feature consists of 7�15 blocks of
histogram features with 36 dimensions per block. Thus there are
5460 block pairs and the corresponding GSS feature is a 5460
dimensional vector of similarities. For feature selection on the GSS
feature, the regularization parameter λ in Eq. (5) controls the
tradeoff between the model complexity and the fitness. The
greater the value of λ is, the higher the dimension of the SGSS
feature is. In the experiment, the value of λ is empirically set to 10.
In the cascade model, the threshold of the first level is set to 0. For
the second level, we use the SVM tool LIBSVM [36] to train a linear
SVM and a HIKSVM setting both the values of the parameter C
balancing the training error and the rigid margin to 0.1. In
addition, we also trained a boosted classifier with 500 regression
stumps.

5.2. Training procedure

We train the classifiers on both the two levels of the cascade on
the INRIA dataset. Generally, for machine learning algorithms, more
training data means better performance. However, for the scanning
window classifiers, there are too many negative samples to fit into
memory at a single time, and another relevant issue is that training
becomes time consuming in the case. As a result, the bootstrapping
process is crucial to obtain best performance while keeping the
memory requirements manageable. We train the classifiers involved
in the cascade with initial subsets of negative samples. For the linear
SVM on the first level, 2 negative samples are selected at random for
each negative training image. For the classifiers on the second level
of the cascade, 2 negative samples having responses from the first
level greater than a preset threshold are selected randomly. Next, the
negative samples that are incorrectly classified by the initial classi-
fiers are extracted. The training procedure is repeated by including a
subset of these difficult negatives into the training set. In our case,
we limit the number of hard negative samples added to the training
set to 2 for each image. This process is repeated until the change in
the miss rates between two iterations is smaller than a pre-specified
threshold.

5.3. Postprocessing

In the test phase, the proposed cascade is performed on each
test image in all positions and scale with the window stride and the
scale factor specified above. Each object is usually detected in mul-
tiple overlapping bounding boxes. To eliminate repeated detections,
non-maximal suppression is used to merge the multiscale nearby
predictions having the final classifier responses greater than a
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certain threshold. Specifically, we sort the surviving windows by
response, then iteratively take the highest one and remove the less
confident windows that sufficiently overlap it. In the experiment,
the overlap threshold is set to 0.65.

The PASCAL evaluation criterion is usually used to assess detec-
tion performance. A detection is considered to be a true positive if
the detected bounding box overlaps more than 50% with the ground
truth bounding box, where the overlap is measure as the ratio of the
intersection area to the union area. For the test images, the ground
truth bounding boxes are tight in both height and width of pede-
strian. However, the positive training samples are normalized only
according to the height such that the change in the foreground area
is significant, especially for the case of profile. As a result, it may
occur that a detected bounding box well fits a pedestrian in height
but fails to match the ground truth because of the width. To solve
this problem, we roughly divide the positives into two groups
according to the width of pedestrian. For each group, an appropriate
cropping solution is made. Once detection is obtained, we compare
the detection with the prototypes of the two groups in the
HOG_SGSS feature space, and adopt the cropping solution of the
closed group.

6. Experiments and discussion

In this section, we evaluate our GSS/SGSS feature and the pro-
posed cascades on well-known datasets. All detection rates are com-
pared using false-positive-per-image (FPPI) curves. First, to confirm
the improvement on detection accuracy by introducing the GSS
feature, we employ a linear SVM, and compare the detection perf-
ormance with HOG and the combinations of HOG and GSS based on
various distance metrics and various power-law transformations.
Second, to show the effectiveness of feature selection, we study the
involved parameters, and compare the performance of using GSS and
SGSS. We also evaluate the cascades associating SGSS with different
classifiers. Finally, we compare the AdaBoost based cascade using
multiscale HOG and the corresponding SGSS with state-of-the-art
approaches. In the experiments, we found that receiving about 0.17%
of the detection windows is sufficient for the second level to obtain a
significant performance boost when compared to the baseline
method. In addition, our SGSS feature is composed of the discrimi-
native elements (about 26%) that belong to the GSS feature, therefore
it also reduces the computational effort. We performed our experi-
ments on a 3.5 GHz Core i7 PC, and it takes on average 0.4146 s to
process a 640�480 image. Note that only 6.5% of the time is taken in
the SGSS computation and the additional classifier evaluation on the
second level.

6.1. Dataset

The test dataset includes the INRIA [3], ETH [37], TUD-Brussels
[5], and Caltech [38] pedestrian datasets. Although the scale of the
INRIA dataset is relative small, it is popular for evaluating the
methods of pedestrian detection due to variable appearance, wide
variety of articulated poses, complex backgrounds and illumina-
tion changes. The training set includes 2416 images of mirrored
pedestrian samples and 1218 pedestrian-free images, and the test
set includes 288 images with 589 annotated pedestrians and 453
pedestrian-free images. Only the positive testing images are used
for evaluation. The ETH and TUD-Brussels datasets are captured in
urban areas using a camera mounted to a stroller or vehicle. In the
TUD-Brussels dataset, there are 508 image pairs with overall 1326
annotated pedestrians. In addition, the ETH dataset consists of
three test sets including 999, 450 and 354 consecutive frames with
5193, 2359 and 1828 annotated pedestrians respectively. The
Caltech dataset is the most challenging and the largest by far. It

contains 11 subsets of videos, the first 6 for training and the last
5 for test. There are total 350k pedestrian bounding boxes around
2300 unique pedestrians annotated. The evaluation on this dataset
is performed using every 30-th frame.

6.2. Distance metric

The definition of the distance metric in Eq. (1) is the key to con-
struct discriminative GSS features. The first experiment is to explore
several possibilities for defining the function d. Having obtained the
HOG feature of a sliding window, we here test the common distance
functions including the Euclidean distance, dot product, χ2-distance,
and cosine function (for each pair of HOG blocks, the value of d is
defined as the mean of the cosine values of the angles between the
dominant gradient orientations of the corresponding cells). We
evaluate the different combinations of the HOG feature and these
types of GSS features by training linear SVMs and testing them on the
INRIA dataset. The results shown in Fig. 7 demonstrate that the
addition of our GSS feature gives a significant boost to detection
accuracy, which indicates that these GSS features are complementary
to HOG indeed. Some representative results shown in Fig. 8 more
specifically demonstrate the enhanced discriminability in the cases of
occlusion and deformation. Compared with the other three types of
distance functions, the Euclidean distance is the best. HOG_GSS
(Euclidean) is consistently better than HOG, and improves by 0.17
the detection rate at 10�1 FPPI. In the subsequent experiments, we
will use the Euclidean distance based GSS feature.

6.3. Power-law transformation

In this experiment, we assign a set of values to the parameter α in
Eq. (4), and test the corresponding GSS features on the INRIA dataset
to investigate its effect on the classification result. We here train a
linear SVM fed with the combination of HOG and different GSS to
obtain the detector. Fig. 9 shows the resulting detection-error-tradeoff
curves for different values of α: 0.5, 1, 2, 3, 4, and 5. At 10�1 FPPI, when
compared to the case where no power-law transformation is applied
(α¼ 1), the performance of the detector is the worst for α¼ 0:5.
When α41, the differences in similarity measurement between the
highly similar pairs and the ones with a lower similarity are amplified,
and the detector exhibits better performance. When α¼ 2, the
detector achieves the highest detection accuracy. In this case, the
transformed GSS feature becomes more discriminative, and the
detection rate is improved by 5 percent points.

Fig. 7. Comparison of the different types of GSS features on the INRIA dataset.
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6.4. Feature selection

To reduce the computation cost of the GSS feature while
keeping discriminative information, we apply FGM to determine

a concise subset of GSS components as the SGSS feature. Since
FGM is supervised, it is guaranteed that the obtained feature will
be discriminative. The parameter λ controls the dimension of
SGSS. We here test different values of λ: 0.1, 1, 10 and 100. In each

Fig. 8. Some representative results of (a) HOG and (b) HOG_GSS (Euclidean).
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case, we combine the HOG feature and the obtained SGSS feature
to retrain a linear SVM, and the performance is shown in Fig. 10.
With the value of λ increasing, the dimension of SGSS becomes
higher, and the corresponding performance is closer to that of GSS.
Even in the case of λ¼ 0:1, combined with the HOG feature, the
SGSS feature of 426 dimensions improves the detection rate by
0.15 at 10�1 FPPI on the INRIA dataset. The change in performance
is not significant when λ¼ 10 and 100. In the following experi-
ments, we set the value of λ to 10 because the dimensionality of
the SGSS feature is less than half that of the GSS feature (5460
dimensions) with only a minor loss in detection rate at 10�1 FPPI.

6.5. Cascade evaluation

In a sliding window setup, most candidate regions do not show
an instance of pedestrian. No need to apply a complex classifier at
all possible positions and scales. Our solution is to adopt a two-
level cascade of increasingly powerful classifiers. The first level of
the cascade proposes a small number of candidate regions, which

are then classified on the second level by using more discrimina-
tive features (and a more powerful classifier). An ideal first level of
the cascade should reject all regions in which no pedestrian is
present, while keeping all regions that do contain a pedestrian
instance. To decide which potential regions to forward from the
first level to the second of the cascade, we set a threshold γ on the
response of the first classifier, which controls the number of
potential candidates that will be accepted by the first layer. The
lower the threshold is, the more candidate there will be. Of course,
if this threshold is set to low, then there will be a large number of
candidate windows that will have to be tested by the second layer,
thus reducing the efficiency of the classification process. We
introduce the miss rate–γ curve to seek an operating point with
respect to this tradeoff. We evaluate the effect of this cascade
parameter on the miss rate. Inspired by [39,40], the detail of our
evaluation procedure is described as follows: for each test image in
the INRIA dataset, we perform the first level of the cascade to
obtain the responses of all detection windows. For each value of γ,
we extract the candidates with responses greater than this value,
and compute the maximal overlap with any of the ground truth
bounding boxes (an overlap of 50% or greater is labeled as true

Fig. 9. Comparison of GSS features using different power-law transformations on
the INRIA dataset.

Fig. 10. Comparison of the GSS feature and the SGSS features on the INRIA dataset.

Fig. 11. The plot of the miss rate–γ curve for the classifier on the first level.

Fig. 12. Comparison of linear SVM, HIKSVM and AdaBoost as the second level of the
cascade on the INRIA dataset.
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positive). From the result, we calculate the miss rates, and plot
them against the values of γ. Fig. 11 shows the resulting plot, and
we can see that when γo�0:5, the curve hardly changes, which
means that proposing to the second layer a larger number of
candidates does not lead to a higher detection rate.

We also evaluate the detection performance of the cascades
introduced in Section 4 on the INRIA dataset. To fully explore the
discrimination capability of the SGSS feature, we use the multi-
scale HOG feature, which includes 3 different window sizes:
64�128, 32�64 and 16�32. Specifically, for a 64�128 sliding
window, we resize the image region to 32�64 and 16�32, and
compute the corresponding HOG features. To compute the corre-
sponding GSS feature, we take the similarities of the blocks in
different scales into consideration. As a result, there are total 129
HOG blocks, and the corresponding GSS feature has 8256 dimen-
sions. After feature selection, the SGSS feature only has 2162
dimensions (about 26% of the GSS feature dimensions). A common
linear SVM trained with the multiscale HOG feature is adopted on
the first level of the three two-level cascades to be evaluated. On
the second level, a more discriminative feature composed of the
multiscale HOG feature and the SGSS feature is then fed to a linear
SVM, HIKSVM or AdaBoost classifier. The results shown in Fig. 12
demonstrate that the two-level cascade significantly outperform
the linear SVM associated with a single scale HOG. This is mainly
due to the multiscale representation and our complementary SGSS
feature. In addition, both the HIKSVM and the AdaBoost used on
the second levels of the cascade are better than the linear SVM,
and the performance of the AdaBoost is the best.

Table 1 shows how the performance of the three cascades is
affected as the value of γ is increased. Although the average
number of candidates is rapidly decreased, the cascades keep
stable performance due to the reason that the candidate windows,
which better overlap the pedestrian ground truth bounding boxes,
are usually classified with a higher score than others, and thus the
weak candidates are filtered first without impacting on the
detection performance. However, insufficient candidate windows
may lead to that there is no one well overlapping some ground
truth bounding boxes. In this case, the detection rate of the
cascade will decrease, e.g. γ ¼ 1. In addition, neighboring candi-
dates will be merged at the post-processing stage such that the
miss rate at 10�1 FPPI may not be available, e.g. γ ¼ 1:5. The three
cascades achieve relatively better performance when the value of γ
lies in the range ½0;0:5�. In this case, compared with the first level,
considered here as a baseline method (the miss rate 0.31 at 10�1

FPPI), only about 100 candidate windows (0.17% of total detection
windows) are used to extract SGSS features fed to the second level
to generate significant improvement in detection accuracy by
above 10 percent points.

6.6. Comparison

We finally evaluate our SGSS feature based classifier on the
INRIA, ETH, TUD-Brussels and Caltech pedestrian datasets, and
compare the proposed approach with the existing methods. We
here employ the AdaBoost-based cascade using the multiscale HOG

and the corresponding SGSS as the one used in the above experi-
ment. The results are shown in Figs. 13–16; note that for all the
experiments, our classifier has been trained on the INRIA dataset.
Our detector significantly outperforms the baseline detector (HOG)
by about 0.32, 0.15, 0.23 and 0.17 in the detection rate of 10�1 FPPI
on the four datasets respectively. Although the proposed model is
simple, our detector is close to DPM (LatSvm-V2) as the best det-
ector purely based on the HOG feature on the INRIA dataset, and
exhibits better performance on the other three datasets. The other
state-of-the-art methods consider more feature channels such as

Table 1
Comparison of linear SVM, HIKSVM and AdaBoost on the second level at various settings of γ (with the corresponding average number of candidates) in terms of miss rate at
10�1 FPPI on the INRIA dataset (The numbers in bold show the best results of the classifiers).

γ �2.5 �2.0 �1.5 �1.0 �0.5 0 0.5 1.0 1.5
(# Candidates) (1736) (984) (556) (318) (185) (109) (65) (37) (23)

Linear SVM 0.2340 0.2340 0.2340 0.2357 0.2357 0.2149 0.2028 0.2578 –

HIKSVM 0.1867 0.1867 0.1867 0.1872 0.1854 0.1768 0.1958 0.2426 –

AdaBoost 0.1854 0.1854 0.1750 0.1794 0.1872 0.1837 0.1733 0.2270 –

Fig. 13. Comparison of different methods on the INRIA dataset.

Fig. 14. Comparison of different methods on the ETH dataset.
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color and gradient magnitude. Despite this fact, our approach pro-
vides very competitive results, especially on the ETH, TUD-Brussels
and Caltech datasets. The relative ordering of the proposed method
is roughly preserved across different datasets, which indicates that
our SGSS feature is robust to imaging condition changes.

7. Conclusion

Given a HOG based baseline method for pedestrian detection,
we intend to re-use the already computed HOG feature to produce
a new mid-level feature instead of computing other low-level
features to boost the performance. According to our observation
on the symmetrical characteristics of pedestrian appearance, we
design the SGSS feature to capture the pairwise similarity patterns
of local regions in the HOG feature space. The main topic of this
study is to verify the complementarity of the HOG feature and
the corresponding SGSS feature, and explore the application of the
SGSS feature to improving detection rate, while keeping computa-
tion manageable. As demonstrated in the experiments, when
combining HOG and GSS/SGSS, the performance of the baseline

method becomes better. Furthermore, when combining the base-
line method and an additional SGSS based classifier to build a two-
level cascaded architecture, the performance results are better
than that of the other existing methods purely based on HOG, and
is comparable to that of state-of-the-art methods. Comparing
to other features used for pedestrian detection, such as LBP and
Haar-like features, the main advantage of our SGSS feature is that
it constitutes a mid-level feature built on top of HOG, and provides
an effective clue to capture pairwise similarity patterns which are
beneficial to pedestrian detection task. We also think that the SGSS
feature can be easily applied to other detection systems.

Note that the proposed GSS/SGSS feature is built on simple
regular grids and composed of comparisons of a number of HOG
block pairs in the sliding window. This leads to the question on
how to design an ideal sampling pattern, which would work better
than regular grids. Inspired by the work of Alahi et al. [41] mim-
icking the human visual system, we now would like to design a
center-symmetric sampling pattern which has higher density of
points near the center with a variation of the Gaussian kernel size
in order to gain performance in our future work.
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