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Abstract The chapter discusses recent research achievements related to sensing
issues and interfacing techniques to enable safe interaction of commercial-grade
robot manipulators with objects exhibiting rigid or soft surfaces. The main chal-
lenges are described, including the identification of proper combinations of vision
and touch sensor technologies, and their placement and trajectory with respect to
the objects of interest to enable safe navigation and close interaction. Various
selective data acquisition procedures are also examined to ensure fast and sufficient
monitoring of the interaction behaviour of the object under forces imposed by a
robotic manipulator or a multi-finger gripper. Issues related to sensor calibration
and data fusion are detailed. Potential solutions are presented in the context of
various interaction tasks, including adaptive surface and contour following, object
characteristics identification, and dexterous robot hand manipulation of soft objects
using the Barrett hand. Numerous experiments demonstrate the validity of the
proposed solutions.

1 Introduction

Modern robotic systems to be employed in industrial, security and space applica-
tions require the development of a new generation of autonomous robot manipu-
lators able to intelligently perform sophisticated manipulation tasks [1] in
environments that are often unknown, variable or unstructured. Over the past
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decades, a huge research effort was invested in the design and development of robot
systems able to sense and react intelligently to their environment and safely handle
rigid and deformable objects. Building such systems that can interact autonomously
with unknown objects is a complex task, requiring a combination of sensing
technologies, control systems, knowledge of computer and mechanical engineering,
as well as an understanding of human abilities that could be mimicked in order to
produce more flexible, general and intelligent solutions.

Human vision-touch experience shows the ability of vision in assisting grasping,
handling and manipulation tasks. In a similar manner, autonomous robot manipu-
lators can count on the coordination of these two sensory capabilities to adapt to
unpredictable situations and work efficiently in unknown environments. Vision
sensing, as provided by stereo cameras, RGB-D sensors or range scanners provides
rich information on the geometry and topology of the objects to be manipulated.
Along with advanced image processing techniques, it can also enable the moni-
toring or tracking of soft object deformations under forces exerted by the manip-
ulator. Visual feedback can improve the grasping and manipulation process by
guiding the robot manipulator and assist in the estimation of the relationship
between the object and the end-effector. Integrating visual feedback with touch
(contact, force) sensing also compensates for the inaccuracy of vision systems alone
due to occlusions and the inability of vision sensors to provide force measurements.
Moreover, the use of vision sensing in the system can guide the touch probing
towards areas of relevant features in order to shorten the exploration time which can
be long, as the manipulator must execute multiple complex motions to collect tactile
data.

Most of current research effort in the robotics literature is focused on manipu-
lation and grasping of rigid objects. Relatively few researchers yet dedicated their
interest to the interaction with deformable objects, while in fact numerous
real-world objects are mostly unsymmetrical, compliant, and exhibit alterable
shapes. The robotic manipulation of deformable objects still offers an important
challenge to the robotics community and makes it a subject of significance for the
development of future generations of autonomous robots. This chapter discusses
challenges in rigid and deformable object grasping and manipulation based on a
combination of vision and touch sensor technologies. The authors’ research groups
investigated their placement and trajectory with respect to the objects of interest to
enable safe navigation and close interaction, the various selective data acquisition
procedures to ensure fast and relatively complete monitoring of the interaction
behaviour of the object under forces imposed by a robotic manipulator, as well as
object modelling techniques. These issues and some potential solutions are exem-
plified in the context of various interaction and manipulation tasks, including
adaptive surface and contour following, surface characteristics identification, and
dexterous robotic hand manipulation of soft objects using the Barrett hand.
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2 Challenges of Robotic Interaction with Soft or Rigid
Objects

While the interaction with objects exhibiting soft or rigid surfaces is one of the
fundamental capabilities of autonomous robot systems, the design and development
of comprehensive autonomous robotic systems able to interact with surfaces and
manipulate objects, in particular soft deformable objects, without human inter-
vention remains a challenging task. As briefly highlighted in the introduction, such
complex interaction can only take place with the assistance of multisensory data
acquisition systems that combine vision and touch (tactile, force-torque) measure-
ments. Such sensors allow for the recuperation of crucial information on the
interaction, including the location (pose) of the object in the environment, the
occurrence of a contact between the manipulator and the object, the size and shape
of the object, its material properties, the magnitude and position of forces exerted by
the manipulator or the detection of slippage of the object from the manipulator.
A coordinated fusion of this information opens door to dexterous manipulation.
However, there are several issues that complicate the automation of this information
acquisition and fusion.

In the case of large rigid objects, if multiple vision sensors are involved, a
calibration process is required prior to their use. An object model is indispensable to
represent the geometry of the object and to enable its close inspection or the
interaction with it. Ideally, this model needs to be compact to support the robot’s
operation in real time. Moreover, because local tactile probing is time consuming,
intelligent selective algorithms should be employed to only select areas of interest,
such as areas where the local geometry changes, for enhancing the sensing pro-
cedure. Path planning algorithms have to be employed accordingly to guide the
interaction with the object.

In contrast to the manipulation of rigid objects which has been extensively
studied in the literature and for which well-established procedures exist, the
investigation of the manipulation of soft deformable objects represents a more
recent undertaking. While several 1D and 2D solutions tackle the issue of grasping
and manipulation of soft objects [2, 3], few researchers have addressed the
manipulation and grasping of 3D objects [4–7]. This is due to its complexity and to
the fact that a majority of researchers hope to tackle simpler 1D and 2D modelling
problems before generalizing to a 3D solution. One of the most critical issues is the
difficulty to estimate or predict in real-time the deformation properties of the object
[8]. These properties tend to vary greatly among various objects. Their under-
standing and their prediction, ideally without making assumption on the material
(such as linearity, homogeneity and isotropy), is necessary to coordinate the motion
of the manipulator and its interaction with the object. If touch sensors are involved
as well (i.e. force-torque sensors), a synchronization of visual and force (or tactile)
data is required as different sensing technologies work at different sampling rates.
As well, in this case, as for rigid objects, the probing should be restricted only over
areas of interest. Furthermore, monitoring the coupling between the contact forces
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and the object deformation is also necessary to study the impact of the position, the
magnitude and the angle of forces applied to the object over the various stages of
the shape deformation. In order to implement and evaluate the interaction tasks of a
soft object with a robot manipulator, a soft object model is required to represent the
deformation characteristics during the physical interaction. In classical models, the
deformation characterization generally implies the approximate identification of
elastic parameters of the model, generally a mass-spring model [5, 9] or a finite
element representation [10–12], by comparing the real and simulated object subject
to interaction and aiming to minimize the differences. However, these approaches
work only by making assumptions on the object material, such as linearity,
homogeneity or isotropy, which do not transpose well to multiple materials such as
foam or rubber. These justify our interest in the development of methods that do not
make assumptions on the material of the object, but rather directly employ
experimental data to make decisions on the properties of the object and capture
implicitly the deformation behaviour.

Once the model is developed, a control scheme has to be proposed to ensure
smooth interaction with the object. For rigid object exploration or contour fol-
lowing, a path planning algorithm is required to guide the motion of the manipu-
lator to achieve the desired task. In case of dexterous grasping and manipulation of
soft objects, this operation needs to be performed robustly in spite of possible
uncertainties in the robot environment in which a deformable object is neither
located at a precise position, nor modelled with high accuracy. For such dexterous
manipulation, it is important to consider the difference between the ways of han-
dling a rigid or a deformable object, in particular the major distinction between the
definitions of grasping and manipulation respectively [13]. The manipulation of a
rigid object requires only the control of its location and therefore grasping and
manipulation can be performed independently. Grasping of a rigid object requires
the control of grasping forces only, while manipulation of a freely moving rigid
object results in the change of its position and orientation. On the other hand,
grasping and manipulation interfere with each other in the manipulation of
deformable objects. Handling of a deformable object requires controlling both the
location of the object and its deformation. But grasping forces yield the deformation
of a deformable object, which may change the shape and location of the object.
Hence contact between fingers and the object may be lost and grasping may be
compromised due to the deformation at the fingertips. Therefore, in the handling of
deformable objects, grasping and manipulation must be performed in a collabora-
tive way.

These issues will be exemplified in the context of practical interaction (manip-
ulation) applications in Sect. 4, after the following section describes some of the
relevant work on robotic interaction with rigid or soft objects, respectively.
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3 Related Work on Robotic Interaction with Rigid or Soft
Objects

The literature reports on relatively few research that has been performed in the
context of 3D soft object modelling and on robotic interaction with 3D rigid and
deformable objects. In [7], an approach is proposed for the in-hand modelling of 3D
rigid objects using RGB-D data. An estimate of the position of a robot manipulator,
the object and the Kinect sensor is produced at each frame by a Kalman filter based
on depth and visual information. These estimates enable the segmentation of the
object and its model is built using a series of surfels. Also using surfel models, the
authors of [14] propose a registration method on multi-resolution surfel maps that
provides a dense displacement field between deformable object shapes monitored in
RGB-D images. Petit et al. [11] explore the issue of real-time tracking of 3D elastic
objects in RGB-D data. Assuming that a prior segmentation of the object of interest
is available, the object is tracked using a graph-cut approach. The iterative closest
point (ICP) method is then applied on the resulting point-cloud to estimate a rigid
transformation from the point-cloud to a linear tetrahedral finite element model
(FEM) representing the object. Linear elastic forces exerted on vertices are com-
puted from the point cloud to the mesh based on closest point correspondence and
the mechanical equations are solved numerically to simulate the deformed mesh.
A linear isotropic 3D deformable object in interaction with a three-fingered robot
hand is modelled by Zaidi et al. [12] as a mass-spring system based on a tetrahedral
mesh. The object deformations and the contact points estimation is based on
tracking the node positions by solving the dynamic equations of Newton’s second
law. The authors of [15] measure the stiffness of a 3D planar elastic object by the
curvature of surface points from the object geometry and describe the local
deformation in terms of a level curve set. In the same line of research, the authors of
[16] inscribe markers on the surface of a paper to track its folding in the visual data
input. The paper in interaction with a robot hand is represented as a 2D grid of
nodes connected by links that specify the bending constraints, namely a resting
distance between two nodes and the stiffness coefficient that are tuned manually.
Choi et al. [9] propose to tune elasticity parameters of moving deformable balls,
painted red against a blue background, by tracking their global position in a video
stream and optimizing the differences between the real object captured and its
mass-spring representation. In [17], models are acquired and tracked via a webcam.
While visual features alone work correctly for some objects, many objects lack
sufficient texture for this type of tracking. Sparse sets of oriented 3D points along
contours of objects manipulated by a robotic manipulator are monitored in Kraft
et al. [18] using a stereo camera, and then predicted based on the motion induced by
the robot. Schulman et al. [19] track deformable objects from a sequence of
point-clouds by identifying the correspondence between the point-cloud and a
model of the object composed of a collection of linked rigid particles, governed by
dynamical equations. An expectation-minimization algorithm aims at finding the
most probable node positions for the model given the measurements. Tests are
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performed in a controlled environment, against a green background that limits its
applicability to normal conditions. A solution for robot manipulation of elastic
objects that allows to control simultaneously the object’s final position (i.e. points
of interest over the object and its centroid) and its deformations (i.e. compression
distance between points of interest, folding angle and normalized curvature of the
object, as estimated by the curve passing through 3 points of interest) is proposed in
[8]. In Hur et al. [20], a 3D deformable spatial pyramid model is introduced to find
the dense 3D motion flow of deformable objects in RGB-D data without assuming a
prior model or template for the object. The point-cloud is corrected with a depth
hole-filling algorithm and treated with a Gaussian filtering prior to the computation
of a series of perspectively normalized descriptors. The 3D deformable spatial
pyramid finds dense correspondences between instances of a deformed object by
optimizing an objective function, in form of an energy corresponding to a Markov
random field that takes into consideration the translation, the rotation, the warping
costs and the descriptors matching costs.

4 Vision and Touch Sensing Systems for Soft Object
Interaction

The main challenge in developing autonomous robotic systems able to handle
deformable objects originates from the fact that a series of interconnected problems
have to be solved, starting with data acquisition, data fusion, data modelling,
simulation and validation of objects properties, and the definition and tuning of a
control scheme to safely handle the manipulation or the interaction with an object.
Figure 1 illustrates these issues in the context of a combined use of vision and
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Fig. 1 The series of interconnected problems in rigid or soft object interaction with a manipulator
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tactile sensing to enable an autonomous interaction and/or manipulation of rigid or
soft objects.

These issues and some possible solutions are discussed in the following
subsections.

4.1 Data Acquisition

In the data acquisition process, there are multiple aspects to be taken into account in
practical applications, including: the sensor technologies to be used, the placement
of the sensors in the environment, the calibration between multiple sensors and
sensor technologies, data sampling strategies and selective acquisition schemes to
allow for the collection of only relevant data and acceleration of sensing.

4.1.1 Sensor Type and Placement

Realistic, plausible models for objects require the acquisition of experimental
measurements using physical interaction with the object in order to capture its
complex behavior when subject to various forces. Tests can be carried out based on
the results of instrumented indentation tests and usually involve the monitoring of
the evolution of the force (e.g. its magnitude, direction, and location) using a
force-feedback sensor (i.e. force-torque) (Fig. 2a) or measuring forces applied by
the fingers of a robot hand (Fig. 2b, c) accompanied by a visual capture of the
deformed object surface to collect geometry data.

In order to collect 3D geometry data, a classical solution offering high precision,
are laser scanners. However, they are expensive and the acquisition is often lengthy.
In this case, algorithms should be employed to only collect relevant data
(Sect. 4.1.3). Stereo systems (Fig. 2b) provide good results, but at the price of a
significant computational load and they are prone to important feature matching
constraints which often lead to low density depth maps [21].

Moreover, most of the current sensors cannot capture color and depth simulta-
neously. To overcome these limitations, several attempts have been made to cap-
italize on the use of the RGB-D Kinect sensor (Fig. 2a, c). The sensor proves to be
a simple, fast and cost-effective alternative to collect high density depth maps and
the associated color information in a fraction of a second. In spite of the low
resolution of the depth map, it generally offers enough precision for most robot
manipulation tasks.

Visual data provided by Kinect, has been successfully used for the reconstruc-
tion of 3D point clouds of objects by merging data from multiple viewpoints
(Fig. 2a), for rigid [7] and non-rigid objects [24, 25] as well. A few open-source
[26] and commercial solutions [27] are also available. To collect a full 3D model
the sensor is turned around the object of interest following a trajectory similar to the
one marked by blue arrows in Fig. 2a and integrating the partial collected point
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clouds. Alternatively, a partial 2.5D point cloud obtained from a single sensor is
sufficient to track contours and detect the object material characteristics (Fig. 2c).

Vision data obtained by Kinect can be also used to locate the object in an
unknown environment and to guide the robot arm in proximity to the object.
Located behind the robot at a given distance, it can provide the global shape and
depth information in complex contour following tasks (Fig. 2d) [23]. This infor-
mation can, in this case, complement the higher accuracy measurements on the
contour location recuperated from an eye-in-hand camera.

4.1.2 Calibration

In the case of large objects, a single Kinect cannot be used to capture the entire
surface. When multiple sensors are grouped and operated as a collaborative network
of imagers in order to enlarge the overall field of view and allow for modelling large
objects, such as automotive vehicles (Fig. 3), a precise mapping between the color
and depth components of all the Kinect sensors must be achieved. The internal and
external calibration processes proposed in [28] can be used in such situations. The
internal calibration corresponds to estimating intrinsic parameters for the color and
IR cameras inside a given Kinect, while the extrinsic process provides accurate
estimates of the extrinsic parameters in between any respective pair of Kinect
devices.

Fig. 2 Multi-sensory vision and tactile data acquisition platforms systems for: a–c soft object
deformation—a Kinect sensor and force-torque sensor collecting 3D data on an object of interest,
b object handled with a Barrett hand observed by a stereo-system [22], c 3D soft object
deformation monitoring using a Kinect sensor—and d contour following operation [23]
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4.1.3 Data Acquisition Schemes

In terms of visual data acquisition schemes, several options are possible. Uniform
sampling offers a straightforward solution to ensure complete coverage of a surface.
However, in order to achieve adequate sampling density over regions where the
local geometry is most likely to vary, the sampling density must be uniformly high
over the entire surface and this may lead to inefficiency in certain applications. Each
point of the object has an equal chance of being measured in random sampling, but
only a lower number of points are actually collected. With an increase in the
percentage of sampled points, the cost gets higher to eventually become equal to
that of uniform sampling. As well, sampling points randomly might lead to missing
important features. In stratified sampling, spaced samples are generated by subdi-
viding the sampling domain into non-overlapping partitions and then by sampling
independently from each partition. Such a technique ensures that an adequate
sampling is applied to all partitions. It can also be employed in the context of
post-processing of large point clouds or meshes [29, 30], where a subdivision of
models into grid cells occurs and sample points falling into the same cell are
replaced by a common representative. However, all these methods are not meant to
be incorporated in the actual sampling procedure, but they rather post-process
collected data.

Meant to be incorporated directly in the sampling procedure, a framework to
achieve automated selective scanning over large workspaces [31] is illustrated in
Fig. 4. A self-organizing neural network architecture, namely a growing neural gas
network, adaptively selects regions of interest for further refinement from a cloud of

Fig. 3 a Sensor system using 5 Kinect sensors K0-K4 for vehicle inspection [28], b calibration of
sensor using checkerboard, c data acquisition over vehicle, and d views of reconstructed vehicle
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3D sparsely collected measurements. Starting from an initial low resolution scan of
an object, the network is employed to model the resulting point cloud. Those
regions that are worth further sampling in order to ensure an accurate model are
detected by finding higher density areas in the resulting map. This is achieved by
applying a Delaunay tessellation to the resulting growing neural gas output map and
by subsequently removing from the tessellation all the triangles that are larger than
a set threshold. The latter is automatically computed based on the length of vertices
for every triangle in the tessellation.

Rescanning at higher resolution is performed for each identified region (shown
in yellow over the car door model in Fig. 4) and a multi-resolution model is then
built by augmenting the initial sparse model with the higher resolution data from
regions of interest. In this way, a much more compact model can be achieved (i.e.
for the car door model in Fig. 4 only 17% of the total number of points that would
have resulted from a full-scan) and that contains accurate details only in the regions
of interest.

In terms of data acquisition schemes for tactile measurements, current research
concerns itself with computer generated objects and their simulation. Conducting
strain-stress relationship measurements for objects made of materials that exhibit
nonlinear behavior is extremely challenging. Therefore, many applications leave the
choice for the selection of elastic parameters to the user, or values are chosen
according to some a priori knowledge regarding the deformable object model. This
is a subjective process that cannot be applied where accuracy is expected. When
measurements of elastic behavior are performed, often a single probing of the object
is collected. While this procedure gives satisfactory results for objects made of
homogeneous materials, it is unsuitable for objects that are non-homogeneous and
have varying elastic properties in different parts of their bodies. Furthermore, the
procedure for the acquisition of tactile measurements from each point of an object is

Fig. 4 Selective vision and tactile scanning scheme (adapted from [31])
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extremely time-consuming. These two aspects explain the considerable interest in
finding fast sampling procedures for the measurement of the tactile properties of 3D
object surfaces. Appropriate sampling control algorithms should be able to mini-
mize the number of the sampling points by selecting only those points that are
relevant to the elastic characteristics.

Due to the human vision-touch experience showing the ability of vision in
assisting grasping, handling and manipulation tasks, visual information and par-
ticularly the regions of interest into visual information can be used for the collection
of tactile measurements. This approach is also justified by the fact that changes in
the geometry are very often associated with changes in the elastic behaviour of
objects. Using the same framework shown in Fig. 4, if the growing neural gas
network is applied not only over the geometry data, but is supplemented with
compliance information (an approximate measure of elasticity), during the learning
procedure, the model contracts asymptotically towards the points in the input space,
respecting their density and thus taking the shape of the object encoded in the point
cloud. The regions of interest are identified in a similar manner to the one followed
for visual data, but removing from the tessellation not only all the triangles that are
larger than a set threshold, but also those which have the same compliance. Due to
these properties, if tactile measurements are collected over these identified regions
of interest (marked with yellow boxes over the triceratops model in the bottom of
Fig. 4), the density of the tactile probing points is higher in the regions with more
pronounced variations in the geometric shape. The advantage of such a model is not
only to identify relevant sampling points, but also to allow for the determination of
clusters of sampling points with similar geometric properties, due to its ability to
find an optimal finite set that quantizes the given input space. This provides a robust
mechanism that can be extended to model non-homogeneous objects.

It is expected that the collection over points of interest inspired from a visual
attention mechanism in vision data [32] could also improve the tactile data
acquisition process. The consideration of various aspects derived from psycho-
logical studies could also be included in advanced intelligent sensing systems to
enable the next generation of intelligent autonomous robotic manipulators. For
example, the bias of visuo-haptic estimates towards vision, that is the fact that
stimuli are judged to be slightly softer under vision-only condition than under
touch-only condition and that the haptic softness perception is more reliable with
deformable as compared to rigid surfaces [33] can efficiently guide sensing
strategies. Additional testing is required before confirming the effectiveness of these
procedures.

4.1.4 Data Cleaning and Synchronization

Data collected using the vision sensors, such as Kinect, often contains undesired
elements, such as a background or a surface over which an object is placed, some
fixed landmarks required by the software to merge 3D data from multiple view-
points, or the probing tip when a force-torque sensor is used, as it can be noticed in
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Fig. 2a. These can be eliminated in part automatically (e.g. supporting surface and
landmarks). However, when a tactile sensor probing tip touches the surface and gets
acquired as part of the object, a manual intervention might be required to remove
the tip and fill the resulting holes. A mesh processing software (e.g. Meshmixer
[34]), can be employed for this purpose.

Due to the different sampling rates found in vision (3D data collection on one
side and image analysis to recuperate the angle of the probing tip with respect to the
surface on the other side) and force-torque sensors (force magnitude measure-
ments), a synchronization process is also required in order to associate the correct
surface deformation with the corresponding force magnitude and angle measure-
ments. This can be achieved by calculating a mean of all the recorded force
magnitude and also of the angle of measurement over the time it takes for the 3D
object model to be collected. The deformed object model can be considered as a
result of the application of a force with a magnitude equal to the mean magnitude
and applied at an angle equal to the mean angle value.

4.2 Object Modelling and Simulation

4.2.1 Object Position Recuperation and Segmentation

The object of interest is normally selected in the visual environment using user
guidance. A user-selected point can guide the segmentation algorithm towards the
location of the object of interest. Such user guidance is common in current tracking
literature, going from more extreme approaches in which a prior segmentation of
the object of interest is assumed to be available in [11], to cases when the user is
asked to crop the object in the initial frame [9]. Other solutions capitalize on the
automation of the process, by exploiting the fact that the manipulation of objects
takes generally place in relatively controlled environments. Therefore the solutions
need to be insensitive to smooth changes in lighting, contrast and background, but
do not have to deal with multiple moving objects, or with severe changes in the
environment. One such solution based on growing neural gas [6] is illustrated in
Fig. 5, where the segmentation is treated as a clustering problem based on color
information (HSV color components) and spatial features (X and Y coordinates of
each pixel in a color image extracted from a video stream). The HSV color space is
chosen because it represents better the color similarities and is able to more
accurately identify pixels on the same surface in spite of some differences between
their colors due to non-uniform illumination or shading effects. A growing neural
gas is adapted over the color and spatial information and the resulting map is then
classified as one of two categories: object of interest or background based on the
mean HSV value computed for the two clusters and making the assumption that
generally the background is darker in color than the object of interest. The latter
assumption is generally satisfied due to the controlled environment in which the
experiments are performed. To identify the color of the object of interest, the mean
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is computed for all HSV values in the corresponding cluster. The identified color is
then searched in the initial image and over all images in the sequence where
movement occurs and all pixels with this color code or a very similar code (within a
tolerance level required due to different lighting conditions and due to the fact that
the object edges are perceived darker in the image because of shadow effects) are
replaced with 1 and the rest with 0 in order to segment the object of interest in
subsequent frames. A median filter is finally applied on the result to reduce isolated
patches of color and the contour of the object is identified based on the filtered
image with the aid of the Sobel edge detector.

4.2.2 Monitoring/Tracking the Object

Once the soft object contour is extracted, it can be tracked over the video sequence
as it progressively deforms. To achieve this, a second growing neural gas is initially
used to detect the optimum number of points on the contour that accurately rep-
resent its geometry. This compact description is employed as an initial configura-
tion for a sequence of neural gas networks that track the contour over each frame in
the image sequence in which motion occurs. In each case, a new neural gas network
is applied, initialized with the contour of the object in the previous frame, to predict
and adjust the position of its neurons to fit the new contour. As illustrated in the
flowchart of Fig. 5, this process is repeated until the end of the sequence (i.e. last
frame). Due to the choice of a fixed number of nodes used in the neural gas network
and to the proposed learning mechanism, the nodes in the contour retain their
correspondence with specific points throughout the deformation. This one-to-one
correspondence of the points during tracking helps to avoid their mismatch during
deformation and ensures a unified description of the contour throughout the frames.
Methods such as fast level sets [35] are also an interesting alternative to the

Fig. 5 Object segmentation and tracking (adapted from [6])
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proposed neural gas solution for tracking. However, in this case, the one-to-one
correspondence of the contour representation cannot be guaranteed.

The resulting contours (in a number equal to the number of frames with motion)
representing each neural gas network can be analyzed in order to detect the object
material properties (Sect. 4.2.3) or further associated to the measured interaction
parameters (e.g. position of the fingers of a robotic hand and applied force mag-
nitude at each finger) for a comprehensive description and prediction of the object’s
deformation under manipulation (Sect. 4.2.4).

4.2.3 Object Material Characterization

The contour of the object recuperated from video data or the profile of an object as
recuperated from a laser scanner can be used to characterize the object elastic
properties based on the following observations: elastic objects return to their initial
shape or profile once the interaction with them stops (Fig. 6). Therefore, in order to
detect if the object is elastic, the final deformation profile, after the interaction stops
is compared to the initial deformation profile, collected in the beginning of the
measurement procedure, before any force is applied. If the two contours are almost
identical, within a certain tolerated noise margin, the object is elastic. The com-
parison between the initial profile, the profile under force and final profile after
force removal can also be exploited to detect plastic and elasto-plastic deformations.
If these are different (more than a threshold to cover the noise in the recuperated
profiles), it means that either a plastic or an elasto-plastic behavior occurred. The
distinction between the plastic and elasto-plastic behaviors can be made by com-
paring the final deformation contour with the contour while force is applied. If they
are identical, it means that a plastic deformation occurred.

Fig. 6 Object material characterization [31]
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If they are different, the material exhibits elasto-plastic properties or the object is
within its elasto-plastic deformation stage. If the three profiles are identical, the
object is rigid. If a one-to-one correspondence is maintained in the tracked contours,
as it is the case of the neural gas solution in Sect. 4.2.2, this comparison is trivial. If
one has to deal with profiles or contours of different lengths, an efficient solution to
automatically compare them is dynamic time warping [36].

4.2.4 Data Fusion and Deformation Prediction for Multisensory
Vision and Tactile Models

Capitalizing on the automated selective scanning framework in Sect. 4.1.3, data
selectively collected over regions of interest in terms of vision and tactile mea-
surements can be fused in a representation based on tactile patches (Fig. 7). Such a
representation is coherent with psychological studies that have shown that the
synthesis of a complex shape is based on the geometric properties of simpler
primitives and that this phenomenon occurs in human vision and tactile sensing as
well [37]. In such a model, regions of interest from vision are probed at higher
resolution and the geometric component of the multi-resolution object is based on
the sparse collected data enhanced with these regions. The identification of regions
where changes occur in the elastic behavior can lead into the separation of the
object in “tactile patches” each exhibiting different elastic properties (i.e. the bottle
cap and the bottle body in Fig. 7). A feedforward neural architecture is then used
for each patch to capture the relationship between the measured parameters (force
magnitude, angle of application, point of interaction of the probe with the object,
and object pose with respect to measurement equipment) and the object surface

Fig. 7 Modelling of 3D objects as tactile patches (adapted from [31])

Harnessing Vision and Touch for Compliant … 283



deformation. Due to its properties, any of the neural networks is able to provide
real-time estimates of the elastic behavior (providing the deformation profile) for
those points where the behavior was not probed, therefore eliminating the need for
any interpolation of values that normally occurs in any classical model for
deformable objects.

The use of neural networks also avoids the problem of recuperating explicitly
elastic parameters, which is almost impossible to solve for highly nonlinear elastic
materials. The proposed scheme deals easily with piecewise homogeneous mate-
rials, due to the existence of tactile patches.

In a similar manner, feedforward architectures can capture and predict the local
deformations when the deformed contour is recuperated from a sequence of images
of an object under interaction with a robot hand (Fig. 8). If instead of tracking the
contour or the profile of an object, the deformation of a 3D object is monitored
using a Kinect sensor turning around an object of interest under the interaction of
forces exerted with an ATI force-torque sensor (Fig. 2a), a solution to capture
implicitly the object behavior capitalizing on a stratified sampling procedure based
on the deformation depth, followed by a neural gas-tuned simplification [39] is
illustrated in Fig. 9.

Fig. 8 Prediction of object shape under manipulation with a robot hand (adapted from [38])

Fig. 9 Data-driven representation of deformable objects under interaction with force-torque
sensor
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After the cleaning and synchronization of collected data, in order to better
characterize the deformation around the probing tip, instead of using the entire
collected point cloud, a selectively-densified mesh is first constructed, in which the
area around the point of interaction between the probing tip and the object surface is
preserved at higher resolution, while the other areas are simplified. This ensures the
small deformed area around the probing tip has a higher density of points with
respect to the rest of the object’s surface. Each deformed mesh is then clustered
according to the distance to the initial non-deformed mesh (i.e. blue in Fig. 9 is the
closest, and progressing to green, yellow, orange and red as the distance gets
higher). Points are sampled randomly but in various proportions from each cluster
to identify the adequate amount of data to be used by monitoring the evolution of
errors (see Sect. 4.2.5). These proportions are varied by taking into consideration
the fact that a good representation is desired specifically in the deformed area and
therefore more samples are desired for regions in which the deformation is larger.
But this stratified sampling is not sufficient, as the fine differences around the
deformed zone might not be appropriately represented, which is the reason why a
neural gas-tuned mesh simplification is also applied. The latter is important in order
to ensure that fine differences around the deformed zone can be captured in the
model. This fitting allows a redistribution of triangles over the mesh such that the
fine details are accurately reproduced. The type of model obtained is denser in the
region of the deformation (i.e. an average of 97% perceptual similarity with the
collected data in the deformed area), while still preserving the object overall shape
(i.e. average of 71% similarity over the entire surface) and only using on average
30% of the number of vertices in the mesh. If desired, a feedforward neural network
can then be trained to predict the position of the vertices in the neural gas fitted
mesh representing each deformed shape of an object based on an applied force
magnitude at a given angle.

4.2.5 3D Model Quality Assessment

The quality of a 3D geometrical model can be evaluated from the quantitative and
qualitative points of view. In terms of quantitative approaches, Metro [40] allows
comparing two models based on the computation of the Hausdorff distance and
returns the maximum and mean distance as well as the variance. The second
category of quantitative errors can be a form of perceptual error, such as the
normalized Laplacian pyramid-based image quality assessment error [41] that takes
into account human perceptual quality judgments. As this error is meant to be used
on images, images have to be collected over the models of objects from multiple
viewpoints and these images can be used pairwise to compute the error. The error
measures for each object are then to be reported as an average over the viewpoints.
A qualitative evaluation of the results is obtained using Cloud Compare [42] that
allows visualizing in an intuitive, color-coded manner the regions most affected by
error with respect to its original version.
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If the model is a predictive one, in the sense that it is able to predict the
deformation of an object for unknown force measurements, the model can be
validated qualitatively and quantitatively by using the same metrics as above, but
by comparing the predicted mesh with a limited number of real measurements, in
which the prescribed forces are exerted on the object.

4.3 Control Schemes for Object Interaction

Combining vision sensors with touch sensing has been explored in recent research
to determine the appropriate forces to be applied by the fingers of a robotic hand on
a deformable object under manipulation. The goal is to ensure that the hand adapts
its behavior to the type of object and to the interaction scenario to achieve an
intelligent autonomous manipulation. The stereoscopic vision system depicted in
Fig. 2b provides global information by detecting and tracking the deformation of
the object in three dimensions. Force and tactile sensors embedded in a Barrett
robotic hand are used to provide local information about the deformation at contact
points. This knowledge is then used to estimate an object’s elastic characteristics
and a corresponding control law is defined to maintain a stable and stationary grasp.

From a control system point of view, hand grasping and manipulation processes
are carried out by controlling interaction forces at the contact points with an object.
Most of the developed control algorithms follow either one of two classical control
strategies to solve the force control problem. These are respectively the hybrid
position/force control scheme [43] and the impedance control scheme [44]. How-
ever, there still exist only limited solutions to the control of robotic manipulation of
deformable objects, as the classical approaches require in-depth a priori knowledge
of the manipulated object dynamics. The various vision and touch sensing strategies
explored in the previous sections can better support the control process by pro-
viding live and more comprehensive information about the behavior of soft objects
under manipulation.

In general, the typical sequence to grasp and manipulate an object with a robotic
hand involves a sequence of logical steps: (i) estimate the object’s pose and
geometry using 2D or 3D vision sensors; (ii) safely approach the hand with position
control to perform the grasp; (iii) determine the contact points and required forces to
ensure stable grasp and prevent damages; and (iv) perform manipulation process
under force feedback. Vision sensors generally remain involved but mainly to
monitor the overall process and detect possible failures. In the initial research that
we performed, the focus has been placed on testing the object with a robotic hand
immediately after the first contact and the initial grasp is established in order to
automatically determine its elasticity characteristics and fine tune the grasping and
manipulation process.

Closed-loop manipulation with a robotic hand typically involves a certain form
of compliance. Conventional PID controllers have proved successful to ensure
stable contact against a compliant surface. However, such an approach requires the
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modeling of the hand dynamics through which torques, or forces, at joints are
determined to drive the fingers’ motion during the manipulation. In a real imple-
mentation, estimating the dynamic system’s parameters with full accuracy proves
very difficult, even impossible, which compromises the tuning of a PID controller.
Consequently, adaptive control [45] offers a promising alternative to tackle the
modeling and control issues for robotic hand control. Considering parameter esti-
mation and adaptive dynamic control simultaneously copes with varying operating
conditions, non-nonlinearities, or un-modeled dynamics, as those characterizing
deformable objects. Therefore an adaptive feedback control algorithm is being
developed for the purpose of dexterous robotic hand manipulation. While the
detailed development of the control scheme remains beyond the scope of this
chapter, the multisensory systems presented in Fig. 2b, c, that combine stereoscopic
and 2.5D RGB-D imaging with force and tactile sensing, along with the charac-
terization process for deformable objects reported earlier, are being put to advantage
to control in real-time the motion of a robotic hand with specific determination of
the amount of force to be applied at the fingertips. Fine tuning the interaction at
each contact point is critical when manipulating deformable objects in order to
ensure stable grasp, integrity of the object, or achieving desired shape forming.

5 Conclusion

The chapter discussed some recent research achievements related to sensing issues
and interfacing techniques to enable safe interaction of commercial-grade robot
manipulators with objects exhibiting rigid or soft surfaces, as developed over years
in the authors’ research groups. The main challenges of such systems are described,
and recent trends in the literature are presented. The main objective being the
development of autonomous robotic systems able to handle a wide variety of
objects, the solution is decomposed in a series of interconnected challenges to be
solved, starting with the data acquisition, data modelling and simulation of objects,
and the definition and tuning of control schemes to handle safely the manipulation
or the interaction with the object. Within each of these problems potential solutions
are proposed and exemplified in the context of practical applications such as:
adaptive surface and contour following, object characteristics identification from
video and RGB-D data and dexterous robot hand manipulation of soft objects using
the Barrett hand.
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