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Alberto Chávez-Aragón, Robert Laganière and Pierre Payeur

Abstract— This paper presents a method for the visual
detection of parts of interest on the outer surface of vehicles.
The proposed method combines computer vision techniques
and machine learning algorithms to process images of lateral
views of automobiles. The aim of this approach is to determine
the location of a set of car parts in ordinary scenes. The
approach can be used in the intelligent transportation industry
to construct advanced monitoring and security applications.
The key contributions of this work are the introduction of a
methodology to locate multiple patterns in cluttered scenes of
vehicles which makes use of a probabilistic technique to reduce
false detection, and the proposal of a method for inferring
the location of regions of interest using a priori knowledge.
The results demonstrate excellent performance in the task of
detecting up to fourteen different car parts over a vehicle.

I. INTRODUCTION

This paper describes an approach for visual detection

of regions of interest on the outer surface of vehicles.

The approach uses computer vision techniques and machine

learning algorithms to process images of lateral views of

vehicles in search of parts of interest that characterize au-

tomobiles such as bumpers, door handles, windows, wheels,

lateral mirror, windshield, center, roof, head light and rear

lamp. Also, using the location of detected features, it is

able to infer the most likely position of those parts that

were not located successfully. The proposed solution is

scale and rotation invariant, which provides the ability to

inspect vehicles from various distances and without specific

constraints on the location and orientation of the camera. The

approach discussed in this work determines with precision

the location of vehicle parts in cluttered scenes which opens

the door to a wide variety of applications in the intelligent

transportation industry, including automotive assembly lines

and traffic surveillance systems.

There are three main contributions in this work. The first

contribution is a reliable method for implementing a machine

vision system to detect multiple car parts in ordinary images.

The second is the introduction of a statistical model to

accomplish two tasks: elimination of false detections and

inference of the most likely position of undetected parts. The

third contribution is the definition of feasible search zones.

The latter allows to narrow down the search area for each

car part from the complete image to a small segment.

The rest of the paper is organized as follows. Section 2

describes related work. Section 3 introduces the proposed
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approach. Section 4 presents the evaluation of the method

and experimental results. Finally, Section 5 provides some

concluding remarks.

II. RELATED WORK

Different computer vision systems have been developed

in the past that aimed at detecting regions of interest in

images of vehicles. Applications of these systems are mainly

in the area of Intelligent Transportation Systems (ITS). Many

ITS applications involve the use of Artificial Intelligence

techniques for pattern recognition. Recently, some authors

have reported the use of a technique proposed by Viola and

Jones [1] called Cascade of Boosted Classifiers (CBC). This

technique has proven to be useful in detecting faces, wheels,

back views of cars and license plates among others [2] [3]

[4]. A Cascade of Boosted Classifiers combines a pool of

weak classifiers to quickly discard areas where the features

of interest are not presented. Then, complex classifiers focus

their attention on promising regions of the image. Classifiers

use very simple features that are fast to evaluate; as a result,

this technique can run in real time. In this work, use is made

of the CBC technique to detect not only one pattern in a

scene but more than ten different patterns.

Automatic vision systems have also been developed to

inspect final products on assembly lines. This kind of system

requires techniques to simultaneously locate many reference

points and many regions of interest [5] [6]. The use of

templates is a popular solution. Templates contain semantic

information about the problem domain [7]. Those techniques

consist in the translation of a template over the image com-

bined with semantic information. To determine the correct

position of a template over the image, similarity measures are

used. Those similarity measures are based on the Euclidean

distance, Mean Square Error cross-correlation functions and

probabilistic functions among others.

In this work, machine learning algorithms are used to

detect car parts. Then a probabilistic function calculates the

probability that each car part has been detected in the right

place using information of pre-defined templates. We called

those templates geometrical models. They store semantic

information about the location of features of interest in a car

image. Finally, if there are any missing features, geometrical

models combined with a probabilistic technique permit to

infer the position of those car parts.

III. PROPOSED APPROACH

Our main objective is to determine the locations of a set of

key car parts over the outer surface of a vehicle. The system
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works with color or gray scale images of lateral views of

vehicles. Images are 800 pixels wide and 600 pixels high.

To detect a particular key vehicle part, the proposed

method narrows the complete image down to a small region

which contains that car part. The process involves three

stages: 1) identification of the region containing the vehicle,

2) definition of a feasible zone most likely to contain a given

key part and 3) localization of a small bounding box around

the part.

A. Vehicle Location

The first stage of the approach establishes a frame of

reference on the vehicle which will be used in the next stages.

The frame of reference is a Cartesian coordinate system

whose origin is the center of the rear wheel. The direction

of the x-axis corresponds with the directed line that goes

from the origin to the center of the front wheel. A coordinate

system based on the position of the wheels allows the system

to estimate the size of the car in the scene and the slope of the

plane where the vehicle is located. To detect the wheels two

methods are used. The primary method is a trained classifier

and as a backing method the Hough transform algorithm for

circles was selected. The classifier for wheels detection uses

Haar-like features instead of working directly with image

intensities [1].

In order to establish a bounding box around any vehicle in

the database, it was necessary, in a previous stage, to extract

knowledge from an expert user about the areas of interest in

car images. To accomplish this task, a semantic annotation

tool was built. The annotation tool allows an expert user to

define a set of features of interest on the surface of vehicles

from a set of training images. A detailed description of

this tool is outside the scope of this paper, but the result

of the annotation tool is a set of structures that are called

geometrical models (GMs) that define the spatial relationship

among parts of interest.

B. Geometrical Model and Feasible Search Zones

A geometrical model which defines the spatial relationship

between the features of interest and a fixed point (frame of

reference) is composed of a set of Euclidean vectors, where

each vector points to a region of interest. Vectors are defined

by (r, θ), where r is the norm and θ is the deviation angle

with respect to a fixed axis (polar axis). To achieve scale

invariance, each vector is normalized with respect to the

length between the wheels’ centers. The direction of the

vector that points toward the center of the front wheel is

used as the fixed axis, achieving rotation invariance.

Table I illustrates a geometrical model of a car. The second

row shows the normalized distance between the center of

each area of interest and the fixed point. The third row

shows the deviation angle with respect to the polar axis. The

deviation angles, expressed in radians, are negative because

the upper-left coordinate reference system is used. A patch

size is assigned to each geometrical model. The size of the

patch depends on the resolution of the image. Figure 1 shows

the regions of interest recreated from a geometrical model.

TABLE I

GEOMETRICAL MODEL OF AN ANNOTATED IMAGE

tag rear front rear front mirror rear front

wheel wheel bumper bumper handle handle

d 0 1 0.41 1.26 0.83 0.27 0.55

θ 0 0 -2.78 -0.08 -0.35 -1.09 -0.42

tag head rear roof front back center wind-

light lamp window window of car shield

d 1.19 0.38 0.59 0.66 0.44 0.51 0.80

θ -0.14 -2.47 -0.87 -0.54 -0.91 -0.57 -0.46

Fig. 1. Areas of interest of an annotated image

The geometrical models permit to define Feasible Search

Zones (FSZ) for each part of interest. A FSZ is triangular

and it is defined by two Euclidean vectors. A FSZ for

a specific vehicle part is the area between those vectors

with the highest and lowest deviation angle from the set of

geometrical vectors constructed for that specific vehicle part.

Fig. 2 shows a FSZ for lateral mirrors. It is expected that

inside each defined zone one part car is detected.

Fig. 2. Example of a feasible search zone for mirrors

C. Detection of Vehicle Parts

The detection of the car parts in FSZs is performed using

a Cascade of Boosted Classifier (CBC) based on Haar-like

Features [1]. This machine learning approach can process

images very rapidly with good detection rates. This technique

uses a set of classifiers to detect desired patterns. First,

simpler classifiers quickly reject false sub-windows and then
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more complex classifiers are used to recognize the pattern

we are looking for. In this work we experimented with the

use of CBC to detect multiples patterns in a cluttered scene.

To make viable the use of CBC to recognize more than

ten different patterns in a single scene, it was necessary to

semi-automatize the task of gathering positive and negative

examples from the training database. An expert user defined

geometrical vectors for each part in our training image set.

These vectors were then used to train a separate classifier

for each car part we wanted to detect. To train the set of

classifiers, 67% of a collection of images containing 110

images was used.

D. Estimation of the Location of Car Parts

The CBC technique focuses on speed more than on

accuracy, therefore two problems can arise: detection of

multiple parts in a single FSZ, or failure to detect one or

more parts anywhere in the image. To address these problems

a probabilistic method for discarding extra parts within a

FSZ and for inferring the location of missing parts was

developed. The method calculates the most likely position

of a vehicle part using the Geometrical Models calculated

from the Training Set (GMTS). To calculate the similarity

between models m1 and m2 we propose a measure d defined

as follows:

d(m1,m2) =
∑

P (ai) ·G(fi, ai) (1)

where P (ai) is the probability of the successful detection

of the classifier for a particular feature ai. This probability

distribution was determined experimentally. G(fi, ai) gives

the probability that a detected feature was found in the

correct place. This Gaussian distribution was calculated

based on geometrical models from the training image set

and it is defined as follows:

G(fi, ai) =

[

1

σ
√
2π

e−1/2( δ
σ )

2

]

(2)

δ =

√

∑

(fij − aij)2 (3)

where fij and aij are the geometrical model elements to be

compared. Function δ is the euclidean distance between two

vectors. Parameter σ = 8, which was estimated experimen-

tally, allow us to tune the probabilistic model to be more or

less restrictive.

The car parts detected are arranged in a new geometrical

model where extra parts have been left out. Then, to complete

the geometrical model, the probabilistic method estimates the

position of the missing parts taking into account two aspects:

the location of features of interest in the new model and the

location of those features in a template that best fit the partial

geometrical model.

Algorithm 1 details in pseudo code the proposed method

for the visual detection of car parts. Algorithm 2 presents

the proposed method to infer missing car parts.

Algorithm 1 Algorithm for detection of multiple car parts

Input: An image containing a side view of a vehicle

Output: An image where the vehicle features

are highlighted

wheels ← CBCwheelsDetector(image)
if notDetectedWheels(wheels) then

wheels ← HoughTWheelsDetector(image)
if notDetectedWheels(wheels) then

Exit
end if

end if

D ← Distance(wheels)
S ← SlopeBaseLine(wheels)
set up frame of reference

for each car part C to be detected do

for each Geometrical Model in GMTS do

v1 ← leastDeviationAngle(C,GMTS)
v2 ← greatestDeviationAngle(C,GMTS)

end for

v1 ← normalize(v1, D)
v1 ← rotate(v1, S)
v2 ← normalize(v2, D)
v2 ← rotate(v2, S)
FSZ ← setFSZ(v1, v2)
F ← CBCcarDetector(C,FSZ)
for each feature c in F do

Pc ← ProbabilityCorrectLocation(c)
end for

discartFalseDetections(F, Pc)
PGM ← addDetectedFeature(F )
HighlightAreaOfInterest(image, F )

end for

completedGM ← InferMissingParts(
image, PGM,GMTS)
showResult(image, completedGM)

Algorithm 2 Algorithm for inferring missing car parts

Routine: InferMissingParts

Input: An image IM , a partial geometrical model PGM
of IM and GMTS
Output: A completed geometrical model

for each missing car part C in PGM do

for each Geometrical Model GMi in GMTS do

Pi ← probabilisticSimilarityMeasure(
GMi, PGM)
Hp ← highestProbability(Pi)

end for

GMBestF it ← (GMTS,Hp)
F ← PositionOfFeature(GMBestF it)
PGM ← addInferredFeature(F )

end for

Return(PGM)
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IV. EXPERIMENTAL EVALUATION

A. Data Set and Metrics

A collection of one hundred and ten 800x600 color images

of vehicles was partitioned into two subsets: the training set

and the testing set. The training set contains 67% of the

collection. The remaining 33% of the images were used to

evaluate the proposed method. The distribution of the testing

set according to types of vehicle are: 70% 4-door sedan, 10%
SUV, 7% pickup truck, 6% 4-door hatch back, 4% 2-door

sedan and 3% 2-door hatch back. On the other hand, the

training set has the following distribution: 57% 4-door sedan,

16% SUV, 13% 4-door hatch back, 4% 2-door hatch back,

3% 2-door sedan, 4% wagon and 3% 2-door hatch back.

Two standard metrics were used to measure the success of

the proposed method : Precision and Recall. They are defined

in terms of true positives (tp) (features correctly classified),

false positives (fp) (features incorrectly classified) and false

negatives (fn) (missing features). Precision is defined as

Precision = (tp)/(tp + fp) and Recall is defined as

Recall = (tp)/(tp + fn). Both metrics scores go from 0

to 1. In the context of this work, a precision of 1.0 means

that every detected feature in the image was correctly labeled.

A recall of 1.0 means that all the features presented in the

image were successfully detected and labeled.

B. Experiments

The first evaluation consists in testing each classifier

separately, the performance of the set of classifiers is reported

in the ROC curves shown in figure 3. The ROC curves, which

plot true positive rate vs. false positive rate, compare the

accuracy and sensitivity of the classifiers for each part of

interest. The analysis does not make a distinction between

detectors for rear and front handles, and between detectors

for front and back wheels. The ROC curves show that

the classifiers for wheels present a perfect discrimination.

The classifiers for Windshields and rear lamps present a

discrimination value close to 85%. The set of classifiers for

mirrors and rear bumpers have the worse ratio of accuracy to

sensitivity. Rear bumpers and mirrors are difficult to detect

due to the fact that in many modern vehicles these parts are

integrated with the bodywork; moreover, rear bumpers are

located in a region of poor contrast while mirrors frequently

are very small.

The next experiments were conducted using the set of

classifiers along with geometrical models. Table II shows

the average successful classification rate for each part of

interest over the entire testing set, taking into account the

successful rate of each classifier working individually. In this

case, classifiers for rear and front handles and rear and front

wheels are evaluated individually.

In these experiments, although there are fourteen parts of

interest to be detected in most of the images, the classifiers

were trained for detecting twelve for each image in the

testing set. The positions of the remaining features (windows)

are inferred later on.

Fig. 3. ROC curves according to detected vehicle features

TABLE II

AUTOMOTIVE FEATURES SORTED ACCORDING TO THEIR

CLASSIFICATION RATE

Classification rate

Feature Percentage Feature Percentage

rear wheel 100% front wheel 100%

front bumper 96% roof 93%

front handle 90% rear bumper 86%

windshield 86% rear handle 85%

rear lamp 80% head light 66%

center of car 56% mirror 53%

Then each detected object was categorized as either true

positive, false positive or false negative. The true positive

curve in figure 4 indicates that all the features were correctly

detected and classified in 13% of the images, eleven features

in 23%, ten features in 30% and from nine to seven features

in the remaining 34%. The false positive curve indicates the

number of features incorrectly classified. Three or two false

detections occurred only once, the rest of the images have

one or zero. The false negative curve is the complement of

the true positive curve. For images 21 and 28 the number of

features to be detected is 11, since those images correspond

with a 2-door sedan and a 2-door hatch back.

Fig. 4. True positive, false positive and false negative detections for 12
features of interest over the testing set of 30 vehicles
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For these experiments the resulting Precision was in the

interval [0.7, 1] and averaged 0.95. The Recall was in the

interval [0.58, 1] and averaged 0.82. Figure 5 shows the

results for a set of queries.

Fig. 5. Precision and Recall metrics for the testing set

Next, the performance of the system when inferring the

location of missing features was analyzed. In order to

determine if a feature was correctly inferred we use the

same criteria as for calculating precision and recall. In

63% of the images all the missing features were inferred

correctly. The overall successful rate of the proposed method

for inferring missing features is 79.66%. Finally, some

resulting images sorted according to their precision, recall

and inference values are presented. Features detected by the

set of classifiers are circled while the features inferred by

the probabilistic method for missing parts are marked by

squares. Figure 6 shows two examples of images processed

by the proposed method. Vehicles presented in those images

differ in orientation, size, background and slope of the road;

however, the method succeeded in detecting all the features.

Windows are normally inferred after other parts are detected

given the lack of visual features that they exhibit.

Figure 7 shows some results of the method in the presence

of other car parts from different vehicles. The proposed

method automatically focuses on the vehicle which has its

full side view in the scene without a need for cropping the

image before processing. Since the system uses the location

of the wheels in the image to set up the frame of reference,

it is not expected, at this time, to find more than one pair of

full wheels in an image.

The proposed approach has shown a good performance

working with different kinds of vehicles as shown in Figure

8. It is important to mention that no pick-up truck was used

in the training stage and very few minivans. The system,

however, was able to locate and label the two door handles

of the minivan which are located very close to each other and

did not try to infer a rear door handle in the case of the pick-

up. These apparently simple decisions made for the system

are very important because that indicates that the system can

deal with very few information and classify correctly the type

of vehicle. It can also generalize the knowledge it had about

2-door cars and apply this information to another type of

vehicle such as pick-up trucks.

Fig. 6. Successful detection of all car parts of interest for different types
of vehicles in real outdoor images

Fig. 7. Successful detection of car features over the vehicle of interest
even when parts of others vehicles are present in the scene
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Fig. 8. Few minivans and no pick-up truck were used to train the system;
in spite of this, the system can locate, label and infer the desired vehicle
features

Fig. 9. Most of the features were detected successfully; however, the
system mistook the rear lamp for a small part of the bodywork

The great variability in between types of vehicles and the

physical characteristics of some parts such as: front lights,

rear lamps, bumpers and door handles makes difficult to

locate those features on vehicles with unusual shapes. Figure

9 shows a false detection of a rear lamp. Increasing the

number of examples of unusual vehicles in the training set

could help the system to succeed in locating atypical parts.

The system was implemented in C++ and run on a

computer with an Intel Core 2 duo at 3.0 Ghz, 2.0 GB RAM

and Windows XP. Table III summarizes the performance of

the algorithms in the task of detecting vehicle parts.

TABLE III

PERFORMANCE OF THE SYSTEM

Performance

Feature detection minimum time per feature 55.00 ms
maximum time per feature 170.00 ms

Overall time Average time
detecting plus inferring 3048.79 ms

V. CONCLUSION

In this paper, an approach for the automatic visual de-

tection of car parts on the outer surface of vehicles was

presented. The approach is able to determine, with a high

level of precision, the location of up to fourteen regions

of interest on vehicles such as bumpers, handles, windows,

wheels, lateral mirror, windshield, center, roof, head light

and rear lamp. The method has immediate applications in the

intelligent transportation, security and automobile industries,

but also it can be adapted easily for applications where

multiple patterns have to be detected in cluttered scenes.

The proposed approach contributes to the area of object

recognition with the introduction of a probabilistic method

to reject false detections and to infer the position of missing

objects based on pre-defined semantic patterns. In this work

two key concepts were introduced: Geometrical Models

(GM) and Feasible Search Zones (FSZ). GMs are used to

model the spatial relationship among regions of interest in

training images. FSZs delimit search areas over images for

each part of interest. GMs and FSZs along with the proposed

probabilistic method permit to infer the location of missing

objects and eliminate false detections. Experiments with the

task of detecting car parts of interest in outdoor environments

show an average precision of ninety five percent.
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