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Abstract – In order to fully reach its potential, virtualized reality 

needs to go beyond the modeling of rigid bodies and introduce 

accurate representations of deformable objects. This paper proposes 

an exploration of various image-based strategies that have been 

considered to address this issue and investigates into the intricate 

processes of acquisition and mapping of properties characterizing 

deformable objects. It applies an original neural network framework 

to characterize the relationship between surface deformation and 

forces exemplified in non-rigid bodies. The proposed network allows 

to map elastic behavior from data collected using a joint sensing 

strategy, combining tactile probing and range imaging. Beyond the 

complexity of the force/displacement relationship that can be 

encoded into the neural network without the need for sophisticated 

mathematical modeling tools, the neural network behaves as a guide 

for further probing by clustering measurements representing 

uniform elasticity regions. The sensor can therefore be readily 

directed toward areas of elasticity transitions where higher 

sampling density is required.

Keywords – Deformable objects, elasticity modeling, tactile sensing, 

range imaging, neural networks, probing guidance.

I. INTRODUCTION 

The problem of sampling and modeling 3D elastic objects 

is subject to extensive research mainly resulting from the 

growing need to explicitly represent elastic behavior in a 

plethora of applications. However, the difficulties 

encountered in conducting strain-stress relationship 

measurements for objects made of materials that exhibit 

nonlinear behavior, the need for sophisticated equipment, and 

the complexity of developing relatively accurate material 

models introduce important challenges into this research 

effort.

In the majority of current applications, the selection of the 

physical constants is performed on the basis of a visual 

evaluation of the deformation of an object submitted to a 

given force, or numerical values are chosen according to 

some a priori knowledge regarding the material of which the 

object under measurement is made. There are four main 

categories of solutions encountered in the literature for 

gathering elastic behavior of objects: indentation [1, 2, 3, 4, 

5, 6], vibration-based measurements [7], sound-based 

measurements [8, 9] and vision-based measurements [10, 11, 

12, 13]. The most popular for daily engineering problems are 

indentation and vision-based measurements, while in medical 

applications, vibration and sound measurements are preferred 

due to the inaccessibility of measured organs. 

This paper mainly addresses vision-based solutions to 

measure elasticity. The principle usually employed is to 

collect a series of images before and after the deformation, 

analyze them individually and extract profiles in order to 

compute displacements that give a hint on the elastic 

properties of the objects. A point-wise correspondence is also 

needed between the deformed and undeformed profiles in 

order to compute the displacement. Several methods have 

been proposed for this purpose. Markers can be mounted 

directly on the objects [11, 12, 14], or the correspondence can 

be established using speckle patterns [15,16]. In the latter 

case, a thin film coating is applied on the surface of the object 

to generate the necessary speckle and the change of patterns 

with the deformation of the object is observed. 

Wang et al. [14] use a grid of markers that also serves as 

nodes in a finite element–method model. Using digital image 

processing (corner extraction), the coordinates of various 

feature points in the grid and their displacement are obtained. 

From this information a strain field and the corresponding 

work-conjugate stress field are constructed and the forces are 

computed by balancing the internal stresses at each node. A 

similar idea is exploited by Kamiyama et al. [11, 12]. A 

tactile sensor, which uses a transparent elastic body with 

markers and a color CCD camera are employed to measure 

elastic behavior of objects. By taking images of a certain 

marker in the interior of an elastic body, the variation 

information of the interior is measured when a force is 

applied to the surface of an object that is considered 

homogeneous and with linear elasticity. The variation 

information of the interior is then used to reconstruct a force 

vector distribution. Vuskovic et al. [13] use a specially 

designed instrument to measure hyperelastic, isotropic 

materials, such as living tissues. The measurement method, 

based on pipette tissue aspiration, consists in leaning a tube 

against the tissue and gradually reducing the pressure in the 

tube. As the organ remains fixed to the tube, there are well-

defined boundary conditions and a complete description of 

the deformation is given by the profile of the aspirated tissue. 

The measurements are done with a vision setup. An optical 

fibre illuminates the scene and the deformation is captured by 

a camera via a small mirror placed beside the aspiration hole. 

From the pictures, the material parameters are determined 

using the inverse finite element method. A Levenberg-

Marquart parameter identification algorithm performs a 

minimization of the difference between the measured load-

deformation data and the data obtained using the finite 

element method [13]. 
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Ferrier et al. [15] and Hristu et al. [16] describe a 

deformable image-based tactile sensor consisting of a roughly 

elliptical membrane, filled with fluid-like gel and inscribed 

with a grid of dots at precisely computed locations of the 

inner surface of the membrane. A fibre optic cable 

illuminates the interior surface and images of the grid are 

taken as the membrane deforms. A solution for the 3D 

coordinates of the grid is obtained based on the assumption 

that the volume enclosed by the membrane remains constant, 

the boundary of membrane is fixed, and that the portion of 

the membrane which is not in contact will assume a shape 

that minimizes its elastic energy.  

A neural-based solution without explicit computation of 

elasticity is presented by Greminger et al. [10], who take 

images after and before deformation to train a back-

propagation neural network that defines the deformation of an 

elastic object submitted to an external force. The inputs to the 

network are the coordinates of a point in an undeformed body 

and the applied load on the body, and the outputs are the 

coordinates of the same point in the deformed body. The 

training data pairs are obtained directly from images of the 

object under known loads and therefore the neural network 

model is created without explicit computation of the elastic 

modulus. A computer vision deformable body tracking 

algorithm based on a boundary-element method is applied to 

measure the displacement of a point in the undeformed body.  

The majority of these methods make the assumption that 

the material exhibits linear elastic behavior, that objects are 

homogeneous from the elasticity point of view, or make use 

of another method (e.g. finite element method, boundary 

element method) to recuperate the elasticity information 

and/or model the object. In this paper, an approach is 

investigated to develop a model that is not specific for a 

certain application, but provides a representation for different 

objects to be introduced in virtualized reality environments. 

The proposed scheme leads to a model that is stand-alone 

and does not imply the use of heavy mathematical 

deformable objects representation techniques. Also, the 

neural architecture that is considered provides guidance 

toward the sampling points that are most relevant for a neural 

network to learn the elastic behavior of an object. This 

provides a critical advantage by allowing at the same time to 

model objects that have nonlinear elasticity and that can also 

be non-homogeneous. The modeling of elasticity is based on 

a separate neural network that stores the elasticity 

information without the need for recuperating elastic 

parameters explicitly. 

While slightly similar from this perspective to the work of 

Greminger et al. [10], the proposed model is rather dedicated 

to build models of objects for virtualized reality applications 

and implies non-homogeneous objects that were not 

considered in the previous work. Here the interest is focused 

on the manner an object submitted to an external force 

deforms. Therefore, the elasticity neural network is analyzed 

from the perspective of being able to provide the deformation 

of a certain object as result of an interaction with a known 

force. 

II. PROPOSED MODELING SCHEME 

The proposed framework advantageously combines 

various neural network architectures to achieve diversified 

tasks as required for data collection and modeling of elastic 

characteristics. During the first phase, a non-uniform adaptive 

sampling algorithm based on a self-organizing neural 

architecture is implemented to selectively collect data only on 

those points that are relevant for mapping the elastic behavior 

of an object [17, 18]. Starting from a 3D point-cloud 

collected on an object or a scene of objects via an active 

range finder, a neural gas network obtains a compressed 

model for the dataset in which the weight vector consists of 

the 3D coordinates of the object’s points. During the learning 

procedure, the model contracts asymptotically towards the 

points in the input space, respecting their density and thus 

taking the shape of the objects encoded in the point-cloud. 

These modeling properties ensure that the density of the 

tactile probing points is higher in the regions with more 

pronounced variations in the geometric shape. The advantage 

of such a model is not only to identify relevant sampling 

points, but also to allow for the determination of clusters of 

sampling points with similar geometric properties due to its 

ability to find an optimal finite set that quantizes the given 

input space. This provides a robust mechanism that can be 

extended to model non-homogeneous objects as well. 

  A feedforward neural network is then employed to model 

the force/displacement behavior of selected sampled points 

that are probed simultaneously by a force/torque sensor and 

the active range finder.  Such an approach allows not only to 

recover the elastic parameters in the sampled points but also 

provides an estimate on the elastic behavior on surrounding 

points that are not part of the selected sampling point set. Fig. 

1 illustrates the structure of the proposed approach. 
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Fig. 1. Structure of the proposed neural-based                                                   

sensing and mapping framework.

Using this selective data collection scheme, advantage is 

taken of the quantization properties of neural gas networks to 

split objects into clusters therefore insuring that different 

regions of possibly non-homogeneous objects are treated 

distinctly. Each cluster is sampled more than once, under the 

control of the selective sampling algorithm, in order to ensure 

enough data for an accurate representation of elasticity. This 

approach also copes with possible noise and errors induced 

by the measurement equipment. 
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III. FORCE/DISPLACEMENT ACQUISITION SETUP 

Given that elastic constants are material-oriented 

parameters and do not accurately describe real-world objects 

in general, there is no attempt to explicitly recover elastic 

constants, nor stress or strain tensors for an object under 

loading. Instead, quantities of interest are those that can be 

observed on the surface of an object, namely the 

displacement of the surface as the object is loaded by a 

measured external force at a given point. The experimental 

setup used to collect force/displacement data is comprised of 

a multi-axis ATI force/torque sensor [19] attached to a 

console computer, an active triangulation line-scanning 

Jupiter laser range finder [20] controlled via a second PC 

system, as depicted in Fig. 2(a). The force/torque sensor is 

used to record the force components applied on the object 

while the range finder captures the deformation of the surface 

of the object under the given load. Fig. 2(b) illustrates the 

force/displacement data collection procedure on a deformable 

object representing one uniform cluster. The range finder is 

positioned such that the scanline intersects with the point 

where the external force is applied, as highlighted by the red 

trace of the laser on the object. At this stage of the work, the 

approach is validated on measurements taken with increasing 

forces applied perpendicularly to the surface of the object. 

Forces applied at different angles from the normal to the 

surface are not considered due to experimental constraints. 

a) b) 

Fig. 2. a) Range sensor and force/torque setup producing b) a laser trace to 

capture object deformation resulting from the applied force. 

The raw deformation profiles are encoded under the form 

of a 2D distribution of points in the Y-Z space, as shown in 

Fig. 3, where Y is the lateral displacement along the scanline 

and Z the depth along the optical axis with respect to a back 

reference plane. The laser range finder providing fast scan of 

512 samples distributed along a straight line on the surface, 

75 to 100 scans of the same area are collected within a few 

seconds while the applied force is kept constant. This 

provides efficient means to cope with the noise in the range 

data. Moreover, the success of the range data collection being 

highly sensitive to the texture and orientation of surfaces, 

missing measurements usually appear along the scan line.

The use of an iterative sampling procedure over a short 

period of time partially alleviates the impact of this 

constraint.

In order to filter out average noise and include as many 

valid measurements as possible in areas where points can be 

missing in some of the scans, the mean value is computed on 

the depth (Z-axis) over all deformation profiles obtained 

under a given force from the sampling points belonging to 

each cluster. The resulting profiles are then saved for each 

magnitude of normal force applied on the object and for each 

cluster of similar elasticity.

Fig. 3. A deformation profile mapped in the Y-Z space. 

Given the nature of the modeling framework, there is no 

need to recuperate the explicit displacement information from 

the range profiles. Instead the neural network models the raw 

range data mapped in the Y-Z space as a function of applied 

force, F, without explicitly defining values for the 

displacement. For each cluster of similar elasticity, a 

feedforward neural network with two input neurons (Y and 

F), 25 hidden neurons (H1-H25) and one output neuron (Z), as 

shown in Fig. 4, is employed to learn the relation between 

forces and the corresponding profiles provided by the range 

finder. One network is used to model the elastic behavior of 

each material (cluster). Once trained, the network tasks as 

inputs the Y coordinate and the force, F, and outputs the Z 

coordinate.

Y

F

Z

...

H1

H25

H2

Fig. 4.  Feedforward neural network to learn elastic behavior 

from deformation profiles under various force magnitudes. 

The use of range profiles rather than full intensity images 

eases up the training procedure as only significant 

deformation features are retained. The dimensionality of the 

vision dataset is reduced to a vector, which can be directly 

fed into the neural network. 

deformation
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IV. EXPERIMENTAL RESULTS 

In order to validate the proposed modeling framework, 

experimentation was conducted on a simple composite object 

made of a square cardboard box (medium elasticity) mounted 

on the top of a covered foam pillow (high elasticity), itself 

lying on a table top (no elasticity), as depicted in Fig. 5.

Fig. 5. Composite deformable object used for experimentation. 

From the 3D point-cloud corresponding to the composite 

object initially obtained with a complete scan of its entire 

surface with the laser range finder, the neural gas network 

returns a set of significant sampling points, as shown in Fig. 

6. Points located along the contours of each element of the 

composite object are automatically highlighted, thus 

providing immediate target areas for tactile probing with the 

force/torque sensor. 

In this experimentation, the fact that objects were selected 

with different elastic characteristics helps study the case of 

objects with non-homogenous elastic behavior. The selected 

sampling points are clustered in two groups, corresponding to 

the two deformable materials. In Fig. 6, the blue points 

belong to the box, the red ones to the pillow. 

Force/displacement data is then collected for each of them, 

using the setup described in the previous section. 

Fig. 6. Sampling points selected with the neural gas network. 

Different magnitudes of a normal force are applied 

successively on the selected sampling points using the probe 

attached on the ATI force/torque sensor and an averaged 

range profile is collected with the laser range finder for each 

force magnitude. Fig. 7 and 8 show two examples of the 

average deformation profiles resulting from the application of 

increasing forces. The first material, cardboard, depicted in 

Fig. 7 is semi-stiff, presenting symmetric deformation around 

the interaction point, while the second material, foam, shown 

in Fig. 8, is relatively smooth and exhibits a highly nonlinear 

elastic behavior, with asymmetric deformation profiles 

around the interaction point. 

Fig. 7. Deformation profiles for semi-stiff material (cardboard). 

Fig. 8. Deformation profiles for smooth material (foam). 

The point-wise correspondence required between the 

deformed and undeformed range profiles is insured by the 

fixed position of the range sensor and of the objects during 

data collection. As seen in Fig. 7 and 8, the range sensor data 

is more compact and less noisy for the semi-stiff material, 

while measurements get scattered on a wider range of values 

and exhibit a larger number of gaps in the case of the smooth 

material. This effect is mainly due to the rough texture of the 

fabric that covers the piece of foam. As the laser range finder 

operates on the principle of active triangulation, laser rays are 

expected to reflect on the object’s surface before reaching 

back the sensor. When projected on a rough surface, laser 

rays are partially absorbed or diffused in all directions, 

depriving the range sensor from the expected echo or creating 

Interaction
point

Interaction 
point
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false reflections that introduce errors on range estimation. 

This phenomenon gets amplified as the external force applied 

on a smooth object increases given that the orientation of the 

local surface is significantly modified.

Even though the data is noisy and contains important gaps 

for large forces, the network was trained directly with the 

averaged range profiles, as described section III, to avoid 

losing essential information. The only data processing applied 

is a normalization in the [0 1] interval prior to training, as 

required by the neural network implementation. 

The networks associated with each material were trained 

for 10000 epochs using the Levenberg-Marquardt variation of 

the backpropagation algorithm [21], with the learning rate set 

to 0.09. The whole data set is used for training in order to 

provide enough samples. The training takes approximately 10 

min. on a Pentium IV 1.3GHz machine with 512MB memory. 

For the semi-stiff material, the mean square error reached 

during training is 3.50x10-7, while for the smooth material it 

reached 1.78x10-5. As expected, the error is lower for the first 

material where data is more compact and less noisy, while it 

remains slightly higher for the second material. But in both 

cases, excellent convergence is achieved.

The accuracy of the model is validated by the results 

obtained while testing the network for both materials. Fig. 9 

presents the deformation characteristics for the semi-stiff 

material under the six different force magnitudes shown in 

Fig. 7. Fig. 10 presents corresponding characteristics for the 

smooth material submitted to a subset of force magnitudes 

shown in Fig. 8. In both figures, blue points represent the 

measured data and red points correspond to the estimation 

made by the neural network model under identical forces. 

a) b) c)

d) e) f) 

Fig. 9. Real and modeled deformation curves using neural network for semi-stiff material (cardboard) 

under a normal force of: a) F=0.1N, b) F=0.2N, c) F=0.37N, d) F=0.69N, e) F=2.22N, and f) F=2.65N.

a) b) c)

Fig. 10. Real and modeled deformation curves using neural network for smooth material (foam) 

under a normal force of: a) F=0N, b) F=0.93N, and c) F=3.37N.
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These curves demonstrate the high potential of neural 

networks in extracting the main features of highly 

nonlinear datasets, while being fault-tolerant and 

insensitive to noise inherently present in any real data. 

Sparse errors in the deformation profiles are successfully 

eliminated by the network. But the neural model remains 

fully capable of capturing the peak of the deformation 

profile, even in cases where the profile does not contain 

numerous sampling points, as exemplified in Fig. 10(c). 

V. CONCLUSIONS AND FUTURE WORK 

This investigation demonstrates that the benefit of using 

neural networks to model deformable objects is three-

folded. First, neural networks provide continuous output 

behavior, thus being able to provide estimates for data that 

was not part of a training set. When compared with most 

of the work found in the literature where a priori 
knowledge about the characteristics of the material is 

assumed available, this paper proposes a robust approach 

for modeling force/deformation relationships from realistic 

experimental data with noisy and incomplete 

measurements, the latter being exemplified here by 

missing values for some of the points along the scan line. 

Second, the use of a neural network modeling scheme 

avoids the complicated and frequently impossible to solve 

problem of recuperating explicit elastic parameters, 

especially for highly nonlinear elasticity. Finally, neural 

networks provide an accurate and fast response, without 

requiring the high computation times associated with the 

solving of mathematical models of deformable objects. 

Combined with the neural gas network that reduces 

significantly the number of sample points needed to 

accurately represent a 3D deformable object, the proposed 

approach to model elasticity proves to be an efficient way 

to construct and represent elastic deformable objects since 

tactile probing on large surfaces would be prohibitive. 

As future work, we plan to enhance the accuracy of the 

proposed approach by collecting data for different angles 

of force application, and add these angles as 

supplementary inputs in the network. This would improve 

the modeled behavior especially for objects exhibiting 

highly nonlinear characteristics. We also plan to extend the 

study of the performance of the approach to other objects. 
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