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Abstract—The collection of the rich flow of information pro-
vided by the current generation of fast vision sensing systems
brings new challenges in the selection of only relevant features out
of the avalanche of data generated by those sensors. This paper
discusses some aspects of intelligent sensing for advanced robotic
applications, with the main objective of designing innovative ap-
proaches for automatic selection of regions of observation for fixed
and mobile sensors to collect only relevant measurements with-
out human guidance. The proposed neural-gas-network solution
selects regions of interest for further sampling from a cloud of
sparsely collected 3-D measurements. The technique automatically
determines bounded areas where sensing is required at a higher
resolution to accurately map 3-D surfaces. Therefore, it provides
significant benefits over brute-force strategies as scanning time is
reduced and the size of the data set is kept manageable. Experi-
mental evaluation of this technology is presented for 3-D surface
measurement and modeling.

Index Terms—Feature detection, neural gas, neural networks,
selective sensing, surface modeling, 3-D vision.

I. INTRODUCTION

THE CURRENT generation of 3-D vision data acquisition
devices (e.g., laser scanners) offers high measurement

speed, which often results into a large amount of data. Due to
the general lack of knowledge on appropriate accuracy levels
for correct description of shape and geometry, the data acqui-
sition process is often long and complex. Reducing the com-
plexity and size of these data sets is one of the key techniques
required to operate subsequent applications at a reasonable
computational cost. To tackle this issue, the most widely ex-
ploited trend in the literature implies the postprocessing of
large data sets obtained by acquisition devices. Frequently,
the proposed algorithms rely on the user input for providing
parameters such as the desired density of sampling, the regular-
ity of sampling, and the minimum distance between samples.
This is a difficult task as the user is not always aware of the
appropriate level of accuracy required for a model to be further
processed, and the adjustment of such parameters can lead
to a lengthy trial-and-error procedure. A significant advance
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is expected from the implementation of automated selective
procedures to determine regions of interest and collect only
relevant measurements that are contributing to the modeling
applications.
The main objective of this research is the design of an

innovative approach to achieve automatic selection of regions
of observation for vision sensors to collect only relevant mea-
surements without human guidance. The relevant regions of
interest are extracted from 3-D point clouds during the acquisi-
tion procedure to prevent an avalanche of data and the related
excessive processing load. Starting from an initial fast sparse
scan of an object, a neural-gas network is used to selectively
identify areas of interest for additional scanning to improve the
accuracy of the model. The final model is a multiresolution 3-D
model with a higher resolution in areas rich in features.
The paper, which is an extension of our previous work [1],

is structured as follows. We start by showing the state of the
art in postprocessing and sampling of large data sets in the
form of point clouds in Section II. We detail our proposed
solution for selective sensing in Section III. Section IV presents
a comparison with classical sampling solutions. It also shows
experimental results for data sampling using vision sensors,
including the quantitative evaluation of errors and training
times. Finally, we present future research directions and draw
the conclusions.

II. LITERATURE REVIEW

In general, there are three sampling policies proposed in the
literature: uniform sampling, random sampling, and stratified
sampling. In uniform (regular or grid) sampling, samples are
spread such that the probability of a surface point to be sampled
is equal for all surface points. The method is popular because
it can easily be implemented and ensures complete coverage of
the surface within the sensor’s field of view. However, the cost
is high, since to achieve adequate sampling density over those
regions requiring the highest resolution, the sampling density
must be uniformly high everywhere. In random sampling, each
point of the object has an equal chance of being selected, but
only a lower number of points are collected. As the percentage
of sampled points increases, the cost gets higher to eventually
reach the one of uniform sampling. The risk here is that samples
randomly collected can miss important features.
Another type of sampling is stratified sampling. This tech-

nique involves the collection of evenly spaced samples by
subdividing the domain into nonoverlapping clusters and by
sampling independently from each partition. Such a method
ensures that an adequate sampling is applied to all partitions.
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Fig. 1. Proposed framework for selective sensing.

It is often exploited in the context of postprocessing of large
point clouds or meshes [2]–[8], where a subdivision of models
into grid cells occurs. In such cases, sample points that fall into
the same cell are replaced by a common representative.
The 3-D model is first voxelized with an octree, and one

sample is output for each voxel. The common representative
for a voxel can be selected according to a probability that
decays as the distance of the sample to the center of the voxel
increases [2]. The representative sample can be chosen to be the
measured point that is closest to the average of points that fall
into the same voxel [3] or the point whose normal is closest to
the average of the points in the same voxel [4]. Alternatively,
principal component analysis can be performed for each cell of
the octree to efficiently decimate data [5].
Surface-based clustering can be employed as well instead of

volumetric voxelization. With this technique, clusters are built
by collecting neighboring samples while taking into account
the local sampling density [6]. Points are incrementally added
to a cluster until a maximum size and/or a maximum allowed
variation is reached.
Another category of solutions for the decimation of large data

sets is based on boundary segmentation [7], [8]. Meshes are
segmented into the boundary of the original domain and the
interior samples. Each part is separately simplified.
All the above methods are not meant to be incorporated in the

actual sampling procedure but rather to postprocess collected
data. An approach to integrate the sampling procedure into the
measurement process is proposed by Pai et al. [9], [10]. They
consider a known mesh of the object under study, as well as
a set of parameters such as the maximum force exerted on the
object, the maximum probing depth, and the number of steps for
the deformation measurement. During probing, an algorithm
generates the next position and orientation for the probe based
on the specifications and the mesh of the object under test.
It simultaneously performs proximity checks and verifies the
expected contact location of the probe with the mesh based on
line intersection. However, the procedure is not selective and
therefore can result in the collection of data for all the points
over the mesh.
The work detailed in this paper proposes an innovative auto-

mated selective data acquisition algorithm to guide online the
probing of only relevant points for the objects under study. The

relevant regions of interest are extracted from 3-D point clouds
during the acquisition procedure to prevent an avalanche of
data and the related excessive processing load. “Online” in this
context refers to the use of the algorithm in each successive step
of the measurement procedure, as opposed to postprocessing
the data collected by a sensor as performed in [2]–[8]. The
proposed algorithm has the purpose of increasing the relevance
and speed of probing by online progressive refinements. The
algorithm is not adaptive like the one proposed in [9] and [10]
in that it does not adjust the probing procedure as a result of
the interaction with the object. It is rather selective, in that it
picks out the main geometrical features that characterize the
object under study. An iterative use of the algorithm results in
multiresolution object models, with a higher resolution in the
areas rich in geometrical features.

III. PROPOSED FRAMEWORK

Meant to be incorporated directly in the sampling procedure,
the proposed automated selective scanning framework uses a
self-organizing neural network. The latter automatically selects
regions of interest for further refinement from a cloud of 3-D
sparsely collected measurements. The framework is depicted
in Fig. 1.
Starting from an initial low-resolution scan of n 3-D points

of an object, denoted N in Fig. 1, a neural-gas network is em-
ployed to model the corresponding point cloud. The resulting
neural-gas map containsm nodes, denotedM , that approximate
the point cloud. The regions that require additional sampling to
ensure an accurate model are detected by finding higher density
areas in the neural-gas map. This is done by first applying a De-
launay tessellation to the neural-gas output map. Subsequently,
all the edges of triangles that are larger than a set threshold are
removed from the tessellation. The threshold is automatically
computed based on the length of vertices for every triangle in
the initial tessellation. The subset of nodes R extracted from
the neural-gas map drives the rescanning over the regions of
interest to obtain an extra set of pointsH at a higher resolution.
A multiresolution model is then built by augmenting the initial
sparse model with the points collected at a higher resolution
over the regions of interest (H ∪ N). If slightly less accurate
but more compact models are desired, the initial 3-D points can
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be approximated by their corresponding nodes in the neural-
gas map. In this case, the selectively densified model can be
obtained by augmenting the initial neural-gas map with the
higher resolution data samples (H ∪ M).

A. Neural-Gas Network

The use of a self-organizing architecture is justified by its
ability to quantize the given input space into clusters of points
with similar properties. As mentioned in the literature review,
clustering is an efficient way to compress data. In our previous
research, we proved that a neural-gas network is able to cluster
both geometric and elastic properties of the objects embedded
in a modeled point cloud [11]. The neural-gas network is
selected instead of other self-organizing architectures due to
its capability to capture fine details, unlike other architectures
that tend to smooth them, such as the Kohonen self-organizing
map [12].
The neural-gas algorithm can formally be described as fol-

lows [13], [14]. The algorithm starts by initializing the set S
of network nodes to contain m units ci with corresponding
reference vectors wci

∈ �p. Each unit c has an associated
p-dimensional reference vector that indicates its position in
the input space. The reference vectors are randomly chosen
according to a probability density function or from a finite set.
In each training step, an input vector x is presented to the

network, and the winning neuron that best matches the input is
identified using the equation

s(x) = arg min
c∈S

‖x − wc‖ (1)

where ‖.‖ denotes the Euclidean vector norm. The neurons to be
adapted in the learning procedure are selected according to their
rank. The rank of neurons is the rank they have in an ordered
list of distances between their weights and the input vector.
Each time a new input vector x is presented to the network,
a neighborhood ranking index list is built (j0, . . . , jN−1); here,
wj0 is the reference vector closest to x, wj1 is the reference
vector second closest to x, and wjk

is the reference vector such
that k vectors wi exist with

‖x − wi‖ ≤ ‖x − wjk
‖. (2)

In each training step, the best matching neuron s(x) at time
t is computed using the minimum Euclidean distance criterion
(1). All neurons are then ordered according to (2). Based on this
rank, a certain number of units are adapted.
The neurons’ weights are updated according to the fol-

lowing rule:

wj(t + 1) = wj(t) + α(t)hλ (kj(x,wj)) [x(t) − wj(t)] (3)

where α(t) ∈ [0, 1] describes the overall extent of the modifi-
cation, and hλ is one for kj(x,wj) = 0 and decays to zero for
higher values according to

hλ (kj(x,wj)) = exp
(
−kj(x,wj)

λ(t)

)
(4)

where kj(x, wj) is a function that represents the ranking of each
reference vector wj [14]. If j is the closest to input x, then
k = 0, for the second closest, k = 1, and so on. The learning
rate α(t) and the function λ(t) are both time dependent. These
parameters are slowly decreased during the learning process to
ensure that the algorithm converges. Usually, the following time
dependences are used [13], [14]:

α(t) =α0

(
αT

α0

)t/T

(5)

λ(t) =λ0

(
λT

λ0

)t/T

(6)

where the constants α0 and λ0 are the initial values for α(t)
and λ(t), αT and λT are the final values, t is the time step,
and T is the training length. For the time-dependent variables,
some initial and final values have to be chosen. The algorithm
continues to generate random input signals x while t < T .
In the context of this paper, the neural gas is employed

to model point clouds collected during a sparse scan of an
object via an active range finder. The network starts with the
points N in this point cloud (as defined in Fig. 1) in the
form of (Xi, Yi, Zi), i = 1, . . . , n, with n being the size of
the point cloud, and an initial configuration of unconnected
nodes. During adaptation, the latter moves over the data space,
and the model asymptotically contracts toward the points in
the input space, respecting their density. Therefore, the nodes
progressively take the shape of the objects encoded in the
point cloud. The final map obtained by the neural gas after
the adaptation (learning) procedure is denoted M , as shown
in Fig. 1.
The training is stopped early to avoid that the nodes become

uniformly distributed instead of capturing details. The point
clouds collected are rasterlike models, and their density is
uniform. Therefore, the neural gas, which inherently tends to
respect the density in the point cloud, would tend to build
uniformly dense maps after a long training time, as opposed
to keeping nodes in the regions rich in features. This justifies
the shortened training period and ensures that the density of the
selected probing points will be higher in the regions with more
pronounced variations in the geometric shape.

B. Regions of Interest Selection

A simple technique is used to detect higher density regions,
which are the ones of interest in the neural-gas map. The
principle is illustrated in Fig. 2, where a typical configuration of
the nodesM in the neural-gas map is shown after the adaptation
procedure [Fig. 2(a)]. A Delaunay triangulation is first applied
over the output map to connect the nodes of the neural-gas
map. The resulting tessellation is depicted in Fig. 2(b). It
can be observed that two areas of high density of points are
identified in the present example, both related to the existence
of 3-D features (due to the modeling properties of neural gas).
These two areas are shown shaded in Fig. 2(b). Such areas of
high density of points are represented by small triangles (short
edges) in the tessellation. Next, the triangulation is successively
traversed, and the length of vertices between every pair of
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Fig. 2. Delaunay triangulation and triangle-removal procedure. (a) Example
of a possible configuration of nodes in the neural-gas map after adaptation.
(b) Delaunay triangulation applied on the nodes with long edges between the
two regions of 3-D features marked in red. (c) Configuration after the removal
of the long edges from the Delaunay triangulation.

points for every triangle is computed. The mean value of all
these lengths is estimated, and a threshold is set equal to this
value. All the vertices longer than the threshold value are then
removed from the model. The removal of the edges longer than
the threshold ensures the identification of close points and,
therefore, dense areas. The long edges, marked with red in
Fig. 2(b), are removed from the tessellation. The result of the
removal procedure is shown in Fig. 2(c) and represents the set
of points R belonging to the regions of interest. The remaining
triangles and the associated points identify those regions where
the density of nodes is higher and that require additional sam-
pling. Supplementary data are collected only over these regions
to further collect the set of points H that will augment the
model in the higher resolution regions. A selectively densified
multiresolution model is constructed either by augmenting the
initial sparse low-resolution point cloud with the higher resolu-
tion data samples (H ∪ N) or by augmenting the initial neural-
gas map with the higher resolution data samples (H ∪ M).

IV. EXPERIMENTAL RESULTS

A. Test Objects

The proposed method for range imaging with selective sam-
pling is experimentally evaluated on three objects with different
sorts of features: a toy triceratops, a foam armchair, and a

Fig. 3. Objects used for testing. (a) Toy triceratops. (b) Foam armchair.
(c) Mock-up car door.

Fig. 4. Measurement equipment. (a) Jupiter laser scanner. (b) Neptec’s full-
image LMS range sensor.

mock-up car door, as depicted in Fig. 3. The areas of the
head, the neck, and the horns correspond to the regions of
interest for the triceratops model. For the armchair, the regions
of interest are the edges. For the door model, the regions of
interest are found around the doorknob and the door-opening
gap. Moreover, the 3-D measurements on these three objects
come from different ranging sensing systems. This offers a
supplementary dimension in the evaluation of the capability of
the neural-gas solution to cope with features of different nature
and complexity and with data obtained with various sensing
mechanisms.
To create the point cloud for the toy triceratops in Fig. 3(a),

an initial coarse mesh is built on a cloud of points collected
using a stereo–vision system. As the data were made available
to us [10], no further details are provided here on the sensing
equipment and the data collection procedure. This coarse mesh
is then interpolated on a high-resolution mesh. The model of the
armchair depicted in Fig. 3(b) is obtained using an automated
Jupiter laser scanner mounted on a robot arm [15], as shown in
Fig. 4(a). The high-resolution point cloud shown in Fig. 3(c) is
collected with the Neptec Design Group Inc.’s Laser Metrology
System (LMS) range sensor, depicted in Fig. 4(b).
Starting from an initial fast sparse scan of each object or a

subsampled point cloud, a neural-gas network is employed to
model the data, in the form of (Xi, Yi, Zi) coordinates, for each
of the above point clouds. The data set is normalized prior to the
neural-gas mapping such that its variance is unity, as required
by the learning procedure.
Testing is performed for several sizes of the initial fast sparse

scan to identify how the resolution of this initial scan influences
the modeling results and what would be the smallest scan size
that allows for the modeling of fine features in the modeled
objects. The training is performed using Matlab code on a
machine based on a Pentium IV processor working at 1.3 GHz
and a RAM of 512 MB.

Authorized licensed use limited to: University of Ottawa. Downloaded on July 23, 2009 at 16:53 from IEEE Xplore.  Restrictions apply. 



2638 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

Fig. 5. Comparison of the neural-gas map with classical sampling tech-
niques. (a) Initial sparse point cloud (6113 points). (b) Neural-gas map
(1485 points). (c) Uniform sampling result (1528 points). (d) Random sampling
result (1528 points).

B. Comparison With Classical Sampling Solutions

To validate the proposed framework, a comparison is initially
performed between the neural-gas map and the results obtained
with the classical uniform and random sampling procedures,
respectively. To perform the comparison, the same sparse scan
of an object is used as a starting point, and a neural-gas adapta-
tion, a uniform sampling, and a random sampling algorithm are
concurrently applied on this scan. To ensure a common basis
for comparison, the same number of points is imposed at the
output of each algorithm.
Fig. 5 shows the results of the comparison for the toy

triceratops depicted in Fig. 3(a). For this example, the initial
sparse point cloud of the triceratops contains 6113 points and is
depicted in Fig. 5(a). The output is forced to be approximately
1500 points. Fig. 5(b) shows the neural-gas map of 1485 points
(equivalent to a map of 33 × 45) obtained after the adaptation
over the initial sparse scan. A set of 1528 uniformly sampled
points from the same initial scan is depicted in Fig. 5(c), while
an equal set of 1528 randomly sampled points is shown in
Fig. 5(d). It can be observed by comparing Fig. 5(b) with
Fig. 5(c) and (d) that due to its modeling properties, the neural-
gas map better characterizes the fine features of the object under
study when the same number of sample points is collected. The
neural-gas map provides a better contour of the object, and the
area around the neck and horns is much better defined than in
the case of both uniform and random sampling.
The same experiments are repeated, but in this case, the

number of points obtained at the output is not fixed. Tests
are performed with the same initial scan for neural gas, uni-
form sampling, and random sampling, until reasonably good
modeling results are obtained for all sampling techniques. The
comparison is made on the minimum number of nodes in the
neural-gas map or of samples that is required, respectively, for
each method to capture the features of the object under study. It
leads to the conclusion that about 1400 points in the neural-gas
map allow for the visual identification of all the features in the

Fig. 6. (a) Initial scan of the toy triceratops. (b) Neural-gas model for a map
size of 40 × 45. (c) Detected regions of interest for further sampling.

model. Approximately double the number of points, i.e., over
3000 points, is required for the uniform and random sampling
techniques to capture the same level of fine features in the
triceratops point cloud. This demonstrates that the neural gas
can provide more compact models while preserving fine details.
This represents a clear advantage in the context of selective
sampling.
Moreover, the neural-gas map constitutes a good basis to

identify the bounded regions of interest in the scan to guide
the sensors for additional scanning. The designed edge-removal
procedure described in Section III-B allows for an automated
selection of bounded areas that contain geometrical features.
Neither the uniform sampling procedure nor the random one
possesses such characteristics. All these aspects confirm that
the neural-gas solution is appropriate in the context of selective
sampling and that it performs better than classical sampling
algorithms.

C. Experimental Results for Test Objects

The point-cloud model of the toy triceratops is representative
of objects with a roughly uniform distribution of sampling
points and multiple small features. An initial sparse point cloud
of 3065 points of the triceratops, representing roughly 25% of
the full resolution scan of 12 226 points available, is shown
in Fig. 6(a). The trained neural-gas network having as input
this initial sparse point cloud and a map size of 40 × 45
(about 58% of the initial point cloud) represents a compressed
model of the data set, as depicted in Fig. 6(b). In spite of some
noise, the network is able to identify all the areas that require
additional scanning, e.g., the areas around the head, the neck,
and the horns of the triceratops. These areas, shown framed in
rectangles in Fig. 6(c), can be scanned at a higher resolution to
obtain the selectively densified model of the triceratops.
The armchair is representative of an object without many

features but with sharp depth transitions. It is composed of
rasterlike distributed sampling points. The results for the
neural-gas modeling and the steps performed for the selection
of regions of interest are presented in Fig. 7. Fig. 7(a) represents
3845 points in the initial scan that corresponds to roughly 25%
of the full resolution scan of 15 382 points available. The data
are used as provided by the Jupiter laser scanner, without any
filtering procedure. This point cloud is provided to a neural-gas
network with a map size of 45 × 40 (about 46% from the size
of the initial point cloud). The obtained output map represents a
compressed model for the data set in which the weight vectors
consist of the 3-D coordinates of the object’s points and is
shown in Fig. 7(b). The artifacts in the neural-gas map are due
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Fig. 7. (a) Initial scan of an armchair. (b) Neural-gas model for a map size of
45 × 40. (c) Detected regions of interest for further sampling.

Fig. 8. Modeling steps for the mock-up car door. (a) Initial point cloud.
(b) Rendered mesh model. (c) Neural-gas model. (d) Higher density areas in
the neural-gas model. (e) Identified regions of interest. (f) Selectively densified
model.

Fig. 9. Model of the car door showing selected areas that require additional
sampling from different viewpoints and the regions of interest identified in a
neural-gas map for each of them.

to the fact that the training is stopped early, as explained in
Section III-A. Since there are no other significant details in the
model apart from the edges and the back plane, these transition
areas, shown in Fig. 7(c), get selected as regions of interest for
additional sampling.
The more complex case of the car door is shown in Figs. 8

and 9. This object presents fine details as the regions repre-
senting the door opening and the doorknob are very small in
comparison with the whole model and so is the number of
points representing them. A subsampling is initially performed
to obtain a very low resolution point cloud of 4096 points,
as shown in Fig. 8(a). This represents 0.39% of the high-

resolution scan of 1 048 576 points available. The data provided
by the Neptec’s full-image LMS range sensor are less noisy,
due to its higher resolution when compared to the Jupiter laser
scanner. Fig. 8(b) shows the rendered mesh model embedded in
the initial point cloud. The normalized point cloud is provided
as an input to a neural-gas network with a map size of 40 × 45
(43% of the number of points in the initial very low resolution
sparse scan), and the resulting neural-gas map is depicted in
Fig. 8(c). The regions of high density in the neural-gas output
map, shown in Fig. 8(d), are identified by building the Delaunay
triangulation and removing large edges from its triangles, as
described in Section III-B. The regions of interest that require
additional sampling to ensure an accurate model, excluding the
contours of the door, are superimposed on the rendered model
and depicted in Fig. 8(e). The resulting selectively densified
multiresolution model including the extra samples over the
regions of interest is presented in Fig. 8(f). It contains 111 596
points, which represents a reduction of about 90% in the num-
ber of points when compared to the full high-resolution scan.
The same procedure can iteratively be repeated for each of

the regions of interest detected in the previous step. The extra
points collected over each selected region can be provided as
input to a neural-gas network to further detect fine details that
are worth to be scanned at higher resolutions. Fig. 9 presents
the detailed areas of interest detected in the previous step from
different viewpoints. For each of the regions, it also shows
areas of interest identified in the neural-gas map. Each higher
resolution scanned region contained about 5000 samples, and a
map size of about 30% of this number of points was selected.
In all the presented cases, the regions of interest for additional
scanning are correctly identified. The number of steps in which
the procedure is repeated depends not only on the accuracy
needed for the application but also on the type of scanner em-
ployed (e.g., its level of granularity and the maximum allowed
resolution).

D. Selection of the Neural-Gas-Map Dimension

To fully benefit from the proposed method, research has
been done to identify ways to select an appropriate neural-gas-
map size for the objects under study that ensures the identi-
fication of regions of interest. In particular, the investigation
looked into the correlation between the neural-gas-map size
and the size of the initial point cloud. For this purpose, tests
were run for all the objects under study for different sizes
of the initial sparse scan and different neural-gas-map sizes.
These tests revealed that a neural-gas network, regardless of
its neural-gas-map size cannot capture enough features in an
initial point cloud with a size that is smaller than 2000 points,
as illustrated in the first row of Fig. 10. The second, third,
fourth, and fifth rows of Fig. 10 show some good modeling
results obtained for 2500–3000 points, 4000–5000 points,
15 000–16 000 points, and over 16 000 points as the initial
point-cloud size, respectively. The “good” modeling results
are identified as those compressed models with the highest
compression rate that offer at the same time an optimal balance
between the quality of the model (low relative error) and the
time required for training. The relative error is computed as an
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Fig. 10. Examples of regions of interest detected for different sizes of the
initial point cloud and different neural-gas-map sizes.

average Euclidean distance between each data vector and its
winning neuron and therefore shows how close the modeled
data are to the initial point cloud.
It can be observed that starting from 2500 points in the

initial sparse scan, the network is able to capture the edges
of the armchair but only barely captures the triceratops and
door features. To correctly capture the area around the horns
of the triceratops and the fine details of the door model, at least
4000 points are required. The same observations were made for
other objects, leading to the conclusion that the initial point
cloud should contain a minimum of 4000 points for objects
exhibiting tiny features.
The same tests revealed that a larger neural-gas-map size

better models a lower resolution initial point cloud, while a
smaller map size is enough for a higher resolution initial point
cloud. As shown in Fig. 10, a neural-gas-map size of 40 × 50
is required to successfully capture some of the features of the
object under study for the initial scan with 1700–2000 points,
while a map size of 25 × 30 is sufficient for initial point clouds
of over 16 000 points.
Overall, the visual quality improves with the increase in

the size of the initial point cloud. This fact is also proven
by a decrease in the error when the map size increases, as

shown in Fig. 11. Figs. 11 and 12 depict the evolution of the
error and training time for different sizes of the initial point
cloud and of the neural-gas map in the cases of the triceratops
and the armchair. The error, even if it remains low overall,
tends to decrease with the increased size of the neural-gas map
and reaches lower values for a higher resolution initial point
cloud. Therefore, a higher resolution of the initial sparse scan
increases the accuracy of the sampling procedure for larger map
sizes. However, the training time increases with an increase in
the map size. Furthermore, the training time increases with an
increase in the resolution of the initial point cloud, as can be
seen in Fig. 12. A compromise must then be identified on the
sizes of the initial point cloud and the neural-gas map.
On the other hand, one would expect that even higher reso-

lution initial scans would give better results in terms of identi-
fication of regions of interest. However, this is not necessarily
true, as shown in the fifth row of Fig. 10. For initial point-cloud
sizes larger than 16 000 points, for the triceratops model, the
contour is better highlighted, but the model loses the fine details
around the legs and the belly. In the model of the door, the
additional points make the door gap almost invisible, since the
relative number of points representing it is significantly reduced
in comparison with the size of the point cloud.
Table I summarizes the correlation that exists between the

number of points in the initial point cloud and the neural-gas-
map size that provides reasonably good modeling results for
the corresponding initial scan. The table shows that according
to the number of points in the initial scan n, one can identify a
map size, as a percentage of this number of points, that ensures
good modeling results. The larger the initial scan is (within
the upper limit of about 16 000 points), the lower the relative
map size required to capture the details. An increase in the
percentage within the shown range brings better results but in
a longer time. In spite of the fact that the ranges proposed for
point-cloud sizes and the neural-gas-map sizes can slightly vary
with the characteristics of the objects under study (the size of
objects and the number and size of features), Table I can be
employed as a guideline to choose an adequate neural-gas-map
size according to the required quality of the model (accuracy)
and training time.

V. CONCLUSION

All the examples considered during this investigation demon-
strate the ability of a neural-gas map to capture fine details in a
point cloud sparsely collected on objects independently of the
sensing technology and the distribution of points. By finding
the high-density areas in the equivalent neural-gas map model
rather than in the original point cloud, the proposed selective
sampling procedure can be used to guide a vision sensor to col-
lect only measurements in those regions that are dense in 3-D
features. These regions are of interest for the improvement
of accuracy of the obtained models, as well as for saving a
large amount of less relevant data in the scans. The observed
correlation between the number of points in the initial point
cloud and the size of neural-gas map also provides the user
with specific guidelines for choosing an adequate neural-gas
map size according to the needs of the application. This greatly
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Fig. 11. Evolution of the error with the neural-gas-map size for different initial point-cloud sizes of the triceratops and the armchair.

Fig. 12. Evolution of training time with the neural-gas-map size for different initial point-cloud sizes of the triceratops and armchair.

TABLE I
APPROXIMATE NEURAL-GAS-MAP SIZES RECOMMENDED FOR

DIFFERENT SIZES OF INITIAL POINT CLOUDS

contributes to automate the scanning process. Further research
on the topic is directed toward means to eliminate the con-
straints of a fixed map size imposed by the neural-gas solution.
Under a wider perspective, the same procedure can be ex-

tended to sample elastic behavior by tactile probing under the
assumption that changes in geometry can be correlated with
changes in the elastic behavior of a given object. The fact

that similar neural-network architectures can be simultaneously
used for selective tactile and selective vision sensing opens the
door to the development of multiresolution composite geomet-
ric and elastic models based on the proposed approach.
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