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Bassel Abou Merhy, Pierre Payeur, Member, IEEE, and Emil M. Petriu, Fellow, IEEE

Abstract—The concept of probabilistic occupancy maps was
introduced by the end of the 1980s. Over the years, research has
focused on the definition of the representation, the data fusion, and
the generation of such occupancy models. However, few consider-
ations have been given to processing occupancy maps as textured
images to extract meaningful information that is required for ro-
bot navigation. This paper investigates the application of modern
segmentation techniques over 2-D probabilistic occupancy maps
that are encoded as textured images. Enhancements are proposed
to a uniformity estimation technique based on local binary pattern
and contrast (LBP/C) to achieve the robust segmentation of occu-
pancy maps that typically result from range sensors with limited
resolution. The enhanced LBP/C segmentation technique handles
occupancy uncertainty and subdivides the space in regions that
are characterized by three deterministic occupancy states, which
are defined as free, unknown, and occupied. The approach is also
extended to increase the number of classification levels, which pro-
vides the necessary flexibility to automatically select the regions
that are characterized by a given range of occupancy states. The
use of these extensions, along with the accuracy of the segmented
2-D occupancy maps, is first experimentally demonstrated on
ground-based probabilistic grids for application in mobile robot
navigation with collision avoidance. The potential of the proposed
approach is also evaluated on aerial and satellite images for which
it provides stable results and can find applications for unmanned
aerial vehicle navigation.

Index Terms—Local binary pattern, mobile robot navigation,
probabilistic maps, texture segmentation, unmanned aerial
vehicles (UAVs).

I. INTRODUCTION

O CCUPANCY maps have long been proposed as a
compact representation of space occupancy. Navigating

mobile robots from such maps permitted the development of ef-
ficient robotic platforms while keeping the amount of process-
ing at a relatively low level. However, most occupancy maps
discussed in the literature assume perfectly reliable knowledge
about the state of the robot workspace, which results in de-
terministic maps where regions are either empty, occupied,
or have not been explored. Applying these types of maps for
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safe robot navigation with autonomous perception capabilities
implies that the regions are scanned without any gap between
the viewpoints and that sensors are perfectly calibrated. Elfes
[1] evolved this representation with the inclusion of uncertainty
using a Bayesian merge technique to combine uncertain range
measurements that are collected from several viewpoints. The
resulting probabilistic occupancy maps represent a bidimen-
sional mosaic in which every cell is tagged with an estimate
OP of the probability that the cell is actually occupied, where
OP ∈ [0, 1]. Such occupancy maps can be readily encoded as
textured images, where low OP values represent areas that
are most certainly empty, and high OP values correspond to
regions where obstacles are most certainly present.

The use of probabilistic occupancy maps alleviates the con-
straints that are imposed by deterministic occupancy maps as
uncertainty is directly encoded into the maps. On the other
hand, the identification of secure areas for the mobile robot
to circulate is made more difficult as maps no longer show
uniformity and sharp transitions. Instead, intermediate regions
between free passages and obstacle boundaries exhibit pro-
gressive variations of the OP values. As a result, probabilistic
occupancy maps are characterized by the fuzziness of the
texture distribution, which makes the segmentation and the
identification of free paths a challenging task. In spite of a
wide interest in this type of mapping, complications still arise
from the fact that existing segmentation methods are extremely
specialized and generally address only one preset type of image.

Typically, segmentation algorithms try to classify the pixels
of an image based on their intensity or color properties and
on their spatial relationship with their entourage. Thereafter,
the goal of the segmentation is to divide an image into ar-
eas that are characterized by homogeneous properties. Several
segmentation approaches have been proposed in the literature
that can be classified either as region based, boundary based,
or a combination of the two. In addition, segmentation is
either supervised or unsupervised. Unsupervised segmentation
is applied in cases where no a priori information about the
contents or the textures of the image is available, as found in the
context of robot navigation and exploration. Approaches based
on classical methods, such as split and merge [2], pyramid
node linking [3], [4], as well as quadtrees [5] for the combi-
nation of statistical and spatial data, were the first to provide
unsupervised region-based segmentation. Recent unsupervised
segmentation methods explore, on one hand, multiresolution
filtering using Gabor filters [6]–[8] or wavelets [9], [10] and, on
the other hand, statistics with hidden Markov fields [11], [12].
This paper, which is an extended version of [13], refines, adapts,
and tests an innovative segmentation approach to operate on

0018-9456/$25.00 © 2008 IEEE

Authorized licensed use limited to: University of Ottawa. Downloaded on December 17, 2008 at 10:47 from IEEE Xplore.  Restrictions apply.



2828 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 12, DECEMBER 2008

occupancy maps that contain uncertainty, as obtained from a
mobile range finder with a limited field of view and resolution.
Beyond the work described in [13], the framework is expanded
to multilevel segmentation that is capable of creating uniform
clusters of occupancy probability over variable ranges. It also
evaluates the technique on different types of occupancy maps,
as obtained from aerial and satellite images.

In the specific context of autonomous mobile robotic explo-
ration, the value OP , which is associated with each cell of the
occupancy map, corresponds to the probability of this cell being
occupied. This information is mapped as a clustered distribution
of textures, where the gray scale is made proportional to the
local OP value in a given region. As a result, probabilistic occu-
pancy maps are advantageously encoded as grayscale images to
facilitate their manipulation. Therefore, region-based segmen-
tation appears to be well suited to ensure obstacle location and
identification of safe areas for the robot to navigate. In addition,
object identification can eventually be achieved by shape recog-
nition of those clusters to provide controlled interaction with
the environment. Considering that the workspace configuration
is initially unknown and gets scanned by a laser range finder
only along specific directions, the resulting map of the explored
space is characterized by a series of edges corresponding to the
rays that are emitted by the active range sensor. Under such
conditions, a segmentation approach that combines contrast
and texture properties to identify regions of uniform density
is revealed to be an appropriate strategy for differentiating
between segments that are present in the probabilistic map.

These considerations motivated the exploration of
Ojala et al.’s segmentation technique [14]–[16] that is
based on “local binary pattern” and “contrast” (LBP/C) metrics
to subdivide images with sharp patterns. However, unlike the
images that they considered, in probabilistic maps, transitions
between free and occupied spaces do not define such clear
boundaries. The latter are rather spread out according to the
uncertainty level that is introduced by the sensor model. In
this paper, the original LBP/C segmentation mechanism is
revisited to handle smooth transitions in complex images
while achieving accurate contour definition. An evaluation is
conducted on the application of such segmented probabilistic
occupancy maps for path planning and collision avoidance
with a mobile robot and for unmanned aerial vehicle (UAV)
navigation from aerial or satellite images. For the navigation to
be successful, the probabilistic space must first be segmented
into areas of a relatively large size with a uniform occupancy
state for the vehicle to choose whether a given region can
be safely navigated. As a consequence, the success of the
path-planning operation extensively depends on the success
of the probabilistic occupancy map segmentation. This aspect
has not been widely investigated in the literature while taking
into account realistic sensing mechanisms that do not provide
absolute knowledge about the state of the space and, therefore,
lead to maps with uncertainty.

The following sections summarize the revisited probabilistic
map-segmentation technique based on the double distribution
of LBP/C, which is used to describe textures, as inspired by
Ojala et al. Next, some extensions of the proposed segmentation
technique are investigated to demonstrate the potential of the

approach for the application with various types of mobile
robots, including unmanned aerial robot navigation.

II. ENHANCED SEGMENTATION ALGORITHM

In a similar way to the approach introduced by Ojala and
Pietikäinen [14], the proposed segmentation algorithm is di-
vided into three phases, i.e., the hierarchical division, the seg-
ment creation, and the refinement step. The first phase of the
proposed method is similar to that of the original algorithm.
However, the proposed approach introduces major changes into
the second and third stages to adapt and optimize the original
algorithm to handle probabilistic images while significantly
reducing the computation time.

The first phase divides the image into areas that are charac-
terized by roughly uniform textures. Thereafter, the segment-
creation step combines similar adjacent regions into segments
that only approximate the various regions that are present in
the image. Last, a refinement stage is applied to increase the
accuracy on contour localization.

A. Hierarchical Division

This phase hierarchically subdivides the original image into
square blocks of variable sizes but of relatively uniform tex-
tures. A new uniformity test is introduced to determine if a
given region of size [α × α] contains heterogeneous textures
associated with different occupancy states that therefore, must
be subsequently subdivided into four subregions of equal size.
Initially, the four subregions of size [(α/2) × (α/2)] are iden-
tified, and a logarithmic likelihood ratio is computed between
each of the six possible pairs.

The logarithmic likelihood ratio developed by Sokal and
Rohlf [17] can verify the validity of the correspondence be-
tween two probabilistic distributions. This statistical test advan-
tageously compares to other statistical methods, such as the chi-
square and the Kolmogorov–Smirnov distribution tests [18].
Beyond its relatively fast execution, one main advantage is
its additive nature, which is beneficial for segmentation and
merge techniques, where the values of different clusters can be
easily combined. Sokal and Rohlf [17] define the logarithmic
likelihood ratio, or G-statistics, as follows:
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where fi corresponds to the number of pixels that are charac-
terized by a pair of LBP/C values in bin i. s and m represent
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the two distributions to compare, and n is the number of bins
in each of them. Among the six possible pairs of subregions
resulting from the subdivision described earlier, the ones with
the largest and smallest G-statistic values, respectively denoted
by G

α/2
max and G

α/2
min, are identified.

The uniformity between blocks is evaluated with a unifor-
mity test, which is defined as follows:

Rα =
G

α/2
max

G
α/2
min

> X, α ∈ {64, 32, 16}. (2)

The parent block is considered nonuniform and, thus, sub-
divided if the ratio between G

α/2
max and G

α/2
min is larger than a

certain threshold, which is designated by X . The values of α
in (2) correspond to the possible sizes, in pixels, of the regions
that successively undergo the uniformity test, if needed. Details
about the manipulation of blocks of different sizes over the
probabilistic map during the hierarchical division phase are
discussed in [13]. On the other hand, the setting of the threshold
value X is guided by the fact that supplementary subdivisions
between regions without strong distinctive features can easily
be corrected in the second phase. On the contrary, segments
that are missed in the first phase cannot be reintroduced after-
ward. An oversegmentation is, therefore, privileged in this early
phase, which implies a relatively low value for the uniformity
ratio threshold. In the case of 2-D probabilistic maps, a value
of X = 1.2 was experimentally obtained and considered to
perform well since 20% of variation between the largest and
smallest G-statistic values corresponds to a perceptible devia-
tion between the region textures.

B. Segment Creation

This phase merges similar neighboring regions until a con-
vergence criterion is met. Fusion between adjacent blocks is
performed when an average occupancy probability OPi for
each block is in the same range. This parameter represents the
average pixel intensity level I in a region Ri of size [N × M ]
and is determined as follows:

OPi =
1

M · N

M−1∑
k=0

N−1∑
l=0

I(rk,l)
∣∣∣rk,l ∈ Ri. (3)

The choice of the OP parameter to evaluate the texture
similarity between adjacent regions is related to the structure
of the probabilistic occupancy map in which pixel intensity
values correspond to the probability of the space occupancy.
After normalizing the pixels’ values over the range [0, 1], if
a region is totally unknown, it is characterized by an OP of
0.5; if the region is scanned by a range sensor, two possibilities
exist—either it generates an OP value below 0.5, and this
corresponds to the case where the region of the space is mostly
free, or it produces an OP value that is higher than 0.5, which
involves a mostly occupied region of the space.

For the purpose of safe robot navigation, the probabilis-
tic map usually needs to be segmented into regions that
are characterized by deterministic states S, i.e., S(Ri) ∈
{free, unknown, occupied}, upon which navigation decisions

Fig. 1. Construction of disconnected occupied segments during the segment
creation phase using a search for downward and right-hand side neighbors.

can be performed. These states, respectively, fall into the
following ranges of OP values—[0, 0.498], [0.498, 0.502],
and [0.502, 1]. We chose to have a small tolerance over the
interval relative to the unknown state, i.e., 0.5, to ensure that
the regions that are mainly unknown but have very few free or
occupied cells are classified in accordance with the state of the
predominant cells. This consideration reduces the number of
pixels to be reclassified during the refinement phase. Following
this evaluation, the segment creation process starts by merging
the subdivisions whose OP s are limited within the intervals
[0, 0.498] and [0.498, 0.502] to build the free and unknown
segments, respectively. At the end of this process, only the
subdivisions that are considered occupied are not classified.
The construction of the occupied segments requires a traversal
of the unclassified subdivisions as many times as there are
nonadjacent objects in the environment. For every iteration, the
first unclassified subdivision that is met is regarded as being
a distinct occupied segment. Thereafter, the algorithm carries
out the identification of its occupied neighbors on the right and
down sides. Each time such a subdivision is met, it is merged
with the segment in the course of construction. The process
iteratively continues until no addition to the current occupied
segment is possible. The fact of considering nonadjacent occu-
pied areas as separate entities avoids any possible confusion in
the recognition of objects and the interaction of an autonomous
robot system with its environment. Fig. 1 illustrates the con-
struction of the occupied segments from adjacent subdivisions
that are characterized by an OP in the interval [0.502;1]. This
shows how the algorithm automatically constructs segments of
uniform occupancy by searching for each subdivision among
its occupied neighbors on the right-hand and downward sides,
allowing for separate objects to be recognized as different
entities, in spite of the fact that they share occupancy state
values in the same interval.

One of the major problems encountered with the original
algorithm proposed in [14] when applied on probabilistic maps
comes from the fact that it does not succeed in correctly merg-
ing segments that correspond to a known space that is either free
or occupied. Thereafter, Ojala et al.’s algorithm cannot identify
the occupied and free spaces as unique segments. In addition,
this algorithm is not meant to provide any information about the
occupancy state of the segmented regions. For these reasons,
applications such as path planning for autonomous mobile
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Fig. 2. Comparison between the segments obtained from (a) initial hierarchically subdivided probabilistic map using (b) original LBP/C algorithm and
(c) proposed enhanced approach.

robots cannot rely on the original LBP/C algorithm [14] as is.
Fig. 2 provides a comparison between the segmentation results
that are obtained on the same probabilistic map with the al-
gorithm proposed in [14] and with the enhanced approach pre-
sented here after the merging phase. This shows that the original
LBP/C algorithm fails at properly merging adjacent uniform
regions into single segments over regions that are partially
empty and partially occupied, whereas the improved segmen-
tation approach successfully groups free and occupied regions
of the space in distinct but unified regions that are optimal for
robot navigation. In Fig. 2, dark cells represent an empty space,
light cells map an occupied space, and medium grayscale cells
correspond to unknown or unexplored areas. White lines define
the contours of detected uniform segments. This example also
illustrates the major segmentation improvement that is achieved
by means of the enhanced segment creation phase [Fig. 2(c)]
over the initial hierarchical subdivision [Fig. 2(a)], as distinct
regions of the workspace are already individually clustered.

C. Refinement

Last, segmentation results are refined by reclassifying the
pixels that are located on the edges between two adjacent
regions. The refinement step is based on the fact that the range
of OP values leading to an unknown segment classification is
narrow, being limited to the interval [0.498, 0.502]. Even if a
segment overlaps between an unknown space and a known one
(free or occupied) by a limited number of pixels, it will still

be considered to be known by the segment creation phase. As
a consequence, the space whose occupancy is known always
juts out into the unknown one, which represents potentially
hazardous situations for safe robot navigation.

A process of compaction must be applied to the free and
occupied segments to better delimit them and to expand un-
known segments where necessary. At the implementation level,
this process consists of scanning the probabilistic image along
each of the four possible horizontal and vertical directions:
right–left, left–right, down–up, and up–down. For each of the
scans, when a boundary between an unknown and a known
space is found, pixels of the known space that have a value of
0.5 are reclassified as belonging to the unknown region until a
pixel with a different value is met. The four-direction scanning
procedure ensures the coverage of all possible boundary shapes.

The refinement step implements this compaction process
between the free/occupied segments and the unknown segments
that are adjacent to them. Since free and occupied spaces do not
define clear boundaries in probabilistic maps given that the sen-
sor’s uncertainty is taken into account, the compaction process
is revisited. Boundaries between free/occupied (occupied/free)
spaces are scanned as for the compaction process previously
described, from the four possible sides; however, in this case,
if a pixel on the boundary has an occupancy probability that
is equal to or lower than (equal to or higher than) 0.5, three
successive pixels are considered along the scanning direction.
Three cases are then possible. First, if the three pixels have a
value of 0.5, no reclassification is done; this case ensures that
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Fig. 3. Probabilistic map segmentation on a concave object. (a) Initial probabilistic map. (b) Hierarchical subdivision. (c) Segment creation. (d) Refinement
phase.

no holes are created in the segments due to the fact that the
rays emitted by the range sensor do not cover the entire space
and are often separated by unknown cells due to the angular
resolution of the sensor. Second, if at least one of the pixels
has an occupancy probability that is strictly lower (higher) than
0.5, the pixels, up to the one under observation, are reclassified
as being free (occupied). The third case corresponds to the
situation in which no classification occurs due to the fact that
an occupied (free) cell is encountered.

The enhanced LBP/C segmentation has been applied on
various probabilistic maps representing cluttered bidimensional
workspaces. In the cases reported here, the evaluation of per-
formance was conducted on objects featuring curved surfaces
to ensure that the proposed technique, which relies on the
manipulation of a map of square cells, would properly handle
situations where obstacles exhibit free shapes. The first map
[Fig. 3(a)] contains an object resembling a divergent lens,
whereas the object used in the second map [Fig. 4(a)] is made
of two collateral circles. Both probabilistic maps are of size
[320 × 320] pixels. They have been generated using a mobile
laser range finder simulator for 2-D surface mapping that was
developed in previous work [19]. The number and positions
of the range sensor’s points of view differ between maps. In
Figs. 3(a) and 4(a), white pixels represent the surface of the
objects, dark pixels correspond to the free space, and inter-
mediate grayscale pixels map unexplored areas. In the case of
Fig. 3(a), five range sensor scans are taken with a Gaussian

standard deviation (σ = 5 cm) on the range measurements that
cover up to a 2-m distance. These scans are merged to build
the probabilistic map. In Fig. 4(a), eight scans with a Gaussian
standard deviation (σ = 3 cm) are used. The step angle between
two adjacent sensor’s rays, which defines the angular resolu-
tion, is fixed to 0.5◦ in all maps to create nonuniform textures
in explored spaces.

The parameters used for the implementation of the segmen-
tation technique are the same as the ones described in the
preceding sections. In the hierarchical division phase, the size
of the first level of subdivided blocks is [64 × 64] cells, and
three subdivision levels are conducted, leading to a minimum
subdivision level of [8 × 8] cells. Figs. 3(b) and 4(b) present
the results of the hierarchical division phase of the algorithm,
whereas Figs. 3(c) and 4(c) show the segmented maps after the
segment creation phase. The segments obtained at the end of the
second phase already approximate well the shape of the regions
that are present in the probabilistic images; nevertheless, the
rough localization of contours between the free and unknown
spaces is obvious in Figs. 3(c) and 4(c).

Segmentation results obtained after the refinement phase
are shown in Figs. 3(d) and 4(d) for the two probabilistic
maps, respectively. Important improvement on contour defini-
tion around the objects and the boundaries of the explored space
is achieved. The boundary between occupied and unknown cells
that are located inside the objects is not refined in the third
phase because this area is dominated by uncertainty as it is
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Fig. 4. Probabilistic map segmentation with extra viewpoints. (a) Initial probabilistic map. (b) Hierarchical subdivision. (c) Segment creation. (d) Refinement
phase.

occluded from any scan by the object surface. However, these
regions cannot be navigated by a robot as they represent the
interior part of objects.

III. SEGMENTATION ALGORITHM EXTENSIONS

AND APPLICATIONS

Building upon the stability of the proposed technique, this
section investigates various extensions and applications of the
enhanced LBP/C segmentation algorithm. The first one divides
the global OP range [0, 1] into intervals of the same width that
is specified by the user and merges in segments all adjacent
subdivisions that have an OP within a given range of values.
The second extension allows the extraction, from a probabilistic
image, of the segments whose OP value falls within a specific
interval that is defined by the user, which leads to an immediate
application in mobile robot path planning. Last, the proposed
segmentation scheme is validated on slightly different models
of the environment, i.e., aerial and satellite images, as found in
UAV navigation.

A. Segmentation by Levels of OP Values

In the original context of robotic systems navigating without
collisions reported in [13], the proposed algorithm identifies
as specific segments only those regions in which the occu-
pancy probability OP belongs to three distinct intervals, asso-
ciated with free, unknown, and occupied spaces, respectively.

To evaluate the generality of the segmentation approach, we
reformulated the segment creation phase, so that it merges
adjacent subdivisions whose OP values fall in a larger set
of intervals, such that more features that are characterized by
distinct intensities can be identified. This opens a wide range
of applications in pattern recognition from maps within which
several objects or regions can appear while being characterized
by different texture characteristics.

Considering that the chosen interval’s width is P , the
first segment merges adjacent regions whose OP values are
bounded within [0, P ]. The second segment is composed of
regions with OP values within [P, 2P ], the third segment is
bounded within [2P, 3P ], and so on, until the highest boundary
of the nth interval nP ≥ max(OP ). In practice, the probabilis-
tic maps considered are normalized over the interval [0, 1];
therefore, the entire occupancy map is segmented into up to n
regions according to the probabilistic distribution of occupancy.

Figs. 5 and 6 show the results of such segmentation by
levels of OP values on two probabilistic images with interval
width P of 0.1 and 0.15, respectively. The first part of these
figures [Figs. 5(a) and 6(a)] corresponds to the probabilistic
map encoded as a grayscale image, whereas the second part
[Figs. 5(b) and 6(b)] represents the segmentation results after
the segment creation phase. The intensity of the segments in the
third part [Figs. 5(c) and 6(c)] is uniformly colored according
to the interval of OP values, which characterizes each of them.
The higher the range of OP values of a specific segment, the
clearer the grayscale level in the final representation. We notice
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Fig. 5. Segmentation by levels of occupancy probability values with an interval width of 0.1 [each gray level in (c) represents a specific interval].

Fig. 6. Segmentation by levels of occupancy probability values with an interval width of 0.15 [each gray level in (c) represents a specific interval].
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Fig. 7. Extraction of the region whose occupancy probability is bounded within the interval [0, 0.35]. (a) Original probabilistic map. (b) Segmented region in
black belonging to the interval of interest (empty space).

Fig. 8. Extraction of the region whose occupancy probability is bounded within the interval [0.52, 0.7]. (a) Original probabilistic map. (b) Segmented region in
white belonging to the interval of interest (occupied space).

that in the free space [dark in the original occupancy maps of
Figs. 5(a) and 6(a)], the OP value becomes increasingly high
(pixels are becoming clearer) when one moves away from the
sensor, i.e., from the vertex of the triangular area in the map.
This is due to the fact that with the distance from the sensor, the
confidence in the occupancy state decreases as the laser scans
become sparser because of the limited angular resolution of the
range sensor.

By comparing Figs. 5(c) and 6(c), we notice that the wider
the segmentation intervals P , fewer the uniform segments will
be generated, as expected, due to the reduction of the number of
intervals of OP values considered and, consequently, the num-
ber of possible segments. However, the segmentation remains
robust to the sparse distribution of scans over the surface and to
the progressive variation of occupancy state values.

B. Extraction of Regions Within a Specific Occupancy Range

The second extension builds upon the previous one and
introduces the capability to combine in connected segments
some adjacent regions whose OP value falls within a specific
interval that is chosen by the user. In this case, only segments
that are characterized by the selected range of occupancy
probability are highlighted by the segmentation procedure and
connected together as much as a physical interconnection is

possible, given their respective spatial distribution. In addition
to being relevant for the segmentation of grayscale images,
this extension is particularly useful in applications of path
planning and interaction with the environment in which the
movements of a robot can only be limited to certain areas
that are characterized by a specific occupancy state, e.g., an
obstacle-free space.

Under this scheme, if two nonadjacent regions are charac-
terized by an OP in the chosen interval but are not physically
connected, each one of them will be automatically classified as
a distinct segment. This functionality provides a direct input for
path planning that can easily recognize if a path exists between
a departure and a destination point, regardless of whether both
are located in adjacent free areas or not.

Figs. 7 and 8 show two probabilistic images created from
five and four sensor viewpoints, respectively, and the resulting
segments for two different occupancy probability intervals,
[0, 0.35] and [0.52, 0.7], respectively. These results demonstrate
the use of the extension that allows the direct extraction of the
regions that are characterized by a specific occupancy state in
spite of strong texture variations around the objects’ boundaries
originating from a sparse scan of the environment and from the
level of uncertainty on range measurements. The environment
space that is not included in the chosen interval is shown in
the intermediate gray level, whereas the identified segments are
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Fig. 9. Trajectory obtained with the A∗ path planning restricted to the safe
travel space (black cells) identified from a segmented map over the interval of
the occupancy probability [0, 0.45].

Fig. 10. Trajectory obtained with the A∗ path planning restricted to the safe
travel space (black cells) identified from a segmented map over the interval of
the occupancy probability [0, 0.45].

characterized by black pixels for the empty space [Fig. 7(b)] or
white pixels for the occupied space [Fig. 8(b)].

C. Mobile Robot Path Planning

The enhanced LBP/C segmentation technique has been tested
as a preliminary processing stage for path planning from prob-
abilistic occupancy maps with a standard A∗ path-planning
algorithm [20]. The A∗ algorithm guides a mobile robot by
successive minimization of the remaining Euclidean distance
to the destination position while avoiding prohibited areas. For
testing purposes, safe travel areas have been extracted using
the extension that we proposed in Section III-B; however, safe
navigation regions are now characterized by an average occu-
pancy probability in the interval [0, 0.45] to ensure a sufficient
safety margin around obstacles without significantly reducing
the workspace for navigation. Supplementary considerations
about the selection of this interval can be found in [13].

Samples of path planning results using the classical A∗

algorithm are presented in Figs. 9 and 10 for the two proba-
bilistic maps that are, respectively, shown in Figs. 3(a) and 4(a).
The safe travel space that is characterized by a low occu-
pancy probability is shown in black in Figs. 9 and 10. For
this application, no distinction is made between objects and
the unknown space because the robot trajectory can only be

planned over areas where no objects are encountered. Occupied
and unknown spaces that are considered unsafe for navigation
are both represented with an intermediate grayscale intensity.
The path to be followed by the robot is computed with the
classical A∗ approach and is shown in white.

Given the distance minimization criterion that is imple-
mented by the A∗ algorithm, when the robot meets an invalid
travel area along its trajectory, it might follow its borders while
converging toward the goal position. Although the trajectories
are not optimal in nature due to the simplicity of the path-
planning algorithm that is used, these experimental results
demonstrate that the enhanced LBP/C segmentation algorithm
can provide a fast evaluation of the traversability of the space
that ensures the safety of the robot when probabilistic occu-
pancy maps of static environments are used. With the safe
navigation areas being readily unified during the segmentation
phase, the search effort for a collision-free path is reduced.

D. UAV Navigation

Another immediate extension to safe space localization for
robot path planning is concerned with the navigation of UAVs,
which requires target areas or potentially dangerous regions
to be recognized from aerial images. Although such images
considerably differ from probabilistic maps, they are also char-
acterized by complex textures that vary according to the nature
of specific regions on the ground, as perceived from a vertical
and distant observation.

The proposed segmentation approach has been evaluated
on aerial images extracted from Navteq [21] to estimate the
potential of the proposed algorithm in a broader context.
Figs. 11 and 12 present the results of segmentation, which are
respectively applied on an aerial image of a quarry near the
city of Vancouver and for a satellite image of the shore of
Lake Ontario, both located in Canada. No modification to the
segmentation parameters was required in these cases for the
enhanced LBP/C segmentation method to provide convincing
results as for the identification of the various areas of interest
that can be used to guide an aerial vehicle at a coarse resolution.

The enhanced segmentation framework is able to identify,
with precision, the key contrasting regions of a roughly uniform
texture, such as the quarry in Fig. 11(b), as well as the ground
and the island in Fig. 12(b). For these examples, the segmenta-
tion was set to recognize areas that are characterized by inten-
sities within the interval [0.55, 1.0] as regions of interest for a
UAV to explore. Moreover, in Figs. 11 and 12, because of the
fact that the sections of the quarry, the land, and the island are
not adjacent in the space, the proposed algorithm automatically
identifies them as separate entities that are depicted by different
colors. These experiments demonstrate the suitability of the
proposed segmentation scheme for the diversity of maps and
applications.

This paper, and the numerous experiments conducted in
various contexts, demonstrate that the proposed enhanced seg-
mentation technique can be directly used for applications such
as path planning, collision avoidance, and interaction control
for mobile or aerial robots that are navigating in unknown
environments mapped by sensors with a high uncertainty level
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Fig. 11. Segmentation of (a) aerial image [21] of a quarry near the City of
Vancouver, BC, Canada, to locate (b) disconnected segments of interest that are
useful for unmanned aerial vehicle guidance.

and a limited resolution. The proposed algorithm is also com-
putationally efficient. For example, the complete segmentation
and path-planning processes for the environments that are
shown in Figs. 9 and 10 take between 2 and 4 s when running
on a 1.8-GHz Pentium M processor, which is realistic given the
fuzzy nature of the occupancy maps with which the system is
dealing.

IV. CONCLUSION

A revisited version of the LBP/C segmentation algorithm has
been proposed and adapted to efficiently process bidimensional
probabilistic occupancy maps that are encoded as textured
images. Experimental results on environment maps of different
nature and various complexity levels demonstrated the accuracy
and the computational efficiency of the proposed approach over
the original technique.

Extensions of the enhanced LBP/C algorithm have also been
developed and validated. These provide greater flexibility in
increasing the number of levels that are used in segment classi-
fication and in selecting the regions that are characterized by
a specific range of occupancy levels. An application to safe
mobile robot navigation in cluttered environments, which is
strictly guided by segmented 2-D occupancy maps acquired
with realistic range sensors that are submitted to a limited
spatial resolution, demonstrated the relevance of the approach
for collision-free robot path planning and interaction control

Fig. 12. Segmentation of (a) satellite image [21] showing the land and some
islands on Lake Ontario, ON, Canada, to locate (b) shoreline and disconnected
segments corresponding to pieces of land.

with the environment. The applicability of the proposed algo-
rithm also extends beyond the processing of probabilistic maps.
Indeed, it provides, without any adaptation, very satisfactory
segmentation results on aerial and satellite images that can be
used for UAV navigation.

Ongoing research aims at extending the proposed technique
for the automatic selection of the position and the orientation of
sensors during the construction of an environment map using
the segmentation of a preliminary map. This will create the
opportunity to evolve the framework to address the segmen-
tation of dynamic occupancy maps. Also, a higher level of
interpretation of multilevel segmented maps is under investi-
gation to support the recognition of objects that are present in
the environment from both their texture and shape, in spite of
the fact that the measurements that are acquired by the sensors
remain incomplete and uncertain.
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