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Abstract—To fully reach its potential, virtualized reality needs
to go beyond the modeling of rigid bodies and introduce accurate
representations of deformable objects. This paper explores neural
networks and vision-based and tactile measurement strategies to
investigate the intricate processes of acquisition and mapping of
properties characterizing deformable objects. An original com-
posite neural network framework is applied to guide the tactile
probing by clustering measurements representing uniform elastic-
ity regions and, therefore, direct sensors toward areas of elasticity
transitions where higher sampling density is required. The net-
work characterizes the relationship between surface deformation
and forces that are exemplified in nonrigid bodies. Beyond serving
as a planner for the acquisition of measurements, the proposed
composite neural architecture allows the encoding of the complex
force/deformation relationship without the need for sophisticated
mathematical modeling tools. Experimental results prove the va-
lidity and the feasibility of the proposed approach.

Index Terms—Deformable objects, elasticity modeling, neural
networks, probing guidance, range imaging, tactile sensing.

I. INTRODUCTION

URRENT research in the area of deformable objects for

virtualized reality is mainly focusing on the modeling of
inherently elastic objects. Most research concerns itself with
simulations and studies methods to respond to the computa-
tional cost of increasingly complex models and the require-
ments for a realistic interaction with deformable models. Such a
realistic interaction places demanding constraints on processing
times, particularly if haptic displays are involved. In response to
the difficulties that are encountered in conducting strain—stress
relationship measurements for objects that are made of materi-
als that exhibit nonlinear behavior, the majority of applications
leave the choice for the selection of elastic parameters to the
user or choose some values for these parameters according
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to some a priori knowledge regarding the deformable object
model. This represents an important limitation when an accu-
rate material model is unavailable or when material properties
are not known or are known with a low certainty. At best,
an expert is asked to interact with an object and to provide
feedback on the nature of deformation that the object exhibits.
This is a subjective measure that can be satisfactory for certain
types of applications but cannot be employed where accuracy
is expected.

In those cases where measurements of elasticity are per-
formed, often, a single probing of the object is used to elicit its
elastic behavior. Although this can produce satisfactory results
for objects that have homogeneous elasticity, it is unsuitable for
objects that are nonhomogeneous and have varying elasticity in
different parts of their body. Also, one single probing might
result in incorrect results if the data collected for the single
point are corrupted by noise. On the other hand, the procedure
to collect elastic data from a large number of points is time
consuming. These two aspects explain the considerable interest
in finding fast sampling procedures for the measurement of the
elastic properties of 3-D object surfaces. Appropriate sampling
control algorithms should be able to minimize the number of
sampling points by selecting only those points that are relevant
to fully map the elastic characteristics.

There are four main categories of solutions that are en-
countered in the literature that gather the elastic behavior
of objects—indentation [1]-[6], vibration-based measurements
[7], sound-based measurements [8], [9], and vision-based mea-
surements [10]-[13]. The most popular for daily engineer-
ing problems are indentation and vision-based measurements,
whereas in medical applications, vibration and sound mea-
surements are preferred due to the inaccessibility of measured
organs.

This paper mainly addresses vision-based solutions to mea-
sure elasticity. The principle that is employed is the collection
of a series of images before and after deformation is produced,
individually analyzing the images, and extracting profiles to
compute the deformation that gives a hint about the elastic
properties of the objects. A pointwise correspondence is needed
between the deformed and undeformed profiles to compute
the deformation. Several methods have been proposed for this
purpose. Markers can be directly mounted on the objects [11],
[12], [14], or the correspondence can be established using
speckle patterns [15], [16]. In the latter case, a thin-film coating
is applied on the surface of the object to generate the necessary
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speckle and the change of patterns when the deformation of the
object is observed.

Wang et al. [14] used a grid of markers that also serve as
nodes in a finite-element method model. Using digital image
processing (corner extraction), the coordinates of various fea-
ture points in the grid and their displacement are obtained.
From this information, a strain field and the corresponding
work-conjugate stress field are constructed, and the forces are
computed by balancing the internal stresses at each node. A
similar idea was exploited by Kamiyama et al. [11], [12].
A tactile sensor, which uses a transparent elastic body with
markers, and a color charge-coupled device camera are em-
ployed to measure the elastic behavior of the objects. By taking
images of a certain marker in the interior of an elastic body,
the variation information of the interior is measured when a
force is applied to the surface of an object that is considered
homogeneous and with linear elasticity. The variation informa-
tion of the interior is then used to reconstruct a force vector
distribution. Vuskovic et al. [13] used a specially designed
instrument to measure hyperelastic isotropic materials, such as
living tissues. The measurement method, which is based on
pipette tissue aspiration, consists of leaning a tube against the
tissue and gradually reducing the pressure in the tube. As the
organ remains fixed to the tube, there are well-defined boundary
conditions, and a complete description of the deformation is
given by the profile of the aspirated tissue. The measurements
are done with a vision setup. An optical fiber illuminates the
scene, and the deformation is captured by a camera via a
small mirror that is placed beside the aspiration hole. From
the pictures, the material parameters are determined using the
inverse finite-element method. A Levenberg—Marquart param-
eter identification algorithm performs a minimization of the
difference between the measured load-deformation data and the
data obtained using the finite-element method [13].

Ferrier and Brockett [15] and Hristu ef al. [16] described a
deformable image-based tactile sensor consisting of a roughly
elliptical membrane, which is filled with fluid-like gel and
inscribed with a grid of dots at precisely computed locations
of the inner surface of the membrane. A fiber-optic cable
illuminates the interior surface, and images of the grid are taken
as the membrane deforms. A solution for the 3-D coordinates of
the grid is obtained based on the assumptions that the volume
enclosed by the membrane remains constant, the boundary of
the membrane is fixed, and the portion of the membrane that
is not in contact will assume a shape that minimizes its elastic
energy.

A neural-based solution without an explicit computation of
elasticity is presented by Greminger and Nelson [10], who took
images after and before deformation to train a back-propagation
neural network that defines the deformation of an elastic object
that is submitted to an external force. The inputs to the network
are the coordinates of a point in an undeformed body and the
applied load on the body, and the outputs are the coordinates of
the same point in the deformed body. The training data pairs are
directly obtained from images of the object under known loads,
and therefore, the neural network model is created without an
explicit computation of the elastic parameters. A computer vi-
sion deformable body tracking algorithm based on a boundary-
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element method is applied to measure the displacement of a
point in the undeformed body.

The majority of these methods make the assumption that the
material exhibits linear elastic behavior and that the objects are
homogeneous from the elasticity point of view or make use of
another method (e.g., a finite-element method and a boundary-
element method) to recoup the elasticity information and/or
model the object. In this paper, an approach is investigated to
develop a model that is not specific for a certain application but
provides a representation for different objects to be introduced
in virtualized reality environments.

The proposed modeling scheme that is presented in this paper
is an extension of our previous work in this research area
[17], [18] and leads to a model that is stand-alone and does
not imply the use of heavy mathematical deformable object
representation techniques. Also, the neural architecture that is
considered provides guidance toward the sampling points that
are the most relevant for the elastic behavior of an object.
This provides a critical advantage by allowing to model at the
same time objects that have nonlinear elasticity and that can
also be nonhomogeneous from the elasticity point of view.
The modeling of the elastic behavior is based on a separate
neural network that stores the elasticity information without
the need to explicitly recoup elastic parameters. As a major
addition to our previous modeling scheme [18], the process of
elastic behavior characterization is improved by the addition
of supplementary inputs to the neural network that represent
different angles of interacting forces.

II. PROPOSED MODELING SCHEME

The proposed modeling framework advantageously com-
bines various neural network architectures to achieve diver-
sified tasks as required for data collection and modeling of
elastic characteristics. During the first phase, a nonuniform
adaptive sampling algorithm based on a self-organizing neural
architecture is implemented to selectively collect data only on
those points that are relevant for mapping the elastic behavior
of an object. Starting from a 3-D cloud of points collected on
an object or a scene of objects via an active range sensor, a
neural gas network obtains a compressed model for the data set
in which the weight vector consists of the 3-D coordinates of
the objects’ points. During the learning procedure, the model
asymptotically contracts toward the points in the input space,
with reference to their density and, thus, taking the shape of
the objects that are encoded in the point cloud. These modeling
properties ensure that the density of the tactile probing points
is higher in the regions with more pronounced variations in
the geometric shape. The advantage of such a model is not
only to identify relevant sampling points but also to allow for
the determination of clusters of sampling points with similar
geometric properties due to its ability to find an optimal finite
set that quantizes the given input space. This provides a robust
mechanism that can be extended to model nonhomogeneous
objects as well. The neural gas architecture, implementation,
and use for adaptive sampling are detailed in [17]. Neural gas is
selected instead of other self-organizing architectures after sev-
eral experimental tests due to its accuracy, which is proved by



1920

/" 3D pointcloud
of data

Neural gas
network

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 9, SEPTEMBER 2008

Sample \

Range Force/Torque
finder sensor
F
a
profile(fo) i i fo
profile(f) —~—_—  Deformation °\ Force R
profile(f,) “.__ bprofiles  ~ ‘.. Measurements ./ f,
profile(f;) Y ) fy

Fig. 1.

small distortion errors and its ability to capture fine details, as
opposed to other architectures that obtain larger distortions and
tend to smooth fine details, such as the Kohonen self-organizing
map (SOM). An extended comparison between neural gas and
the SOM in the context of adaptive sampling can be found in
[17]. Even if the training procedure is longer in comparison
with the SOM, we chose neural gas because the main goal in
the context of this paper is the accuracy of models, as opposed
to the real-time behavior of simplified computer-generated and
simulated models, which has already been extensively studied
in the literature.

Another neural architecture, i.e., a feedforward neural net-
work, is employed to model the force/deformation behavior
of selected sample points that are simultaneously probed by a
force/torque sensor and a linescan active range sensor. Such an
approach not only allows the recovery of the elastic parameters
in the sampled points but also provides an estimate of the elastic
behavior of surrounding points that are not part of the selected
sampling point set but are covered in the linescan profile that
is collected by the laser range sensor. Fig. 1 illustrates the
structure of the proposed approach.

Using this selective data collection scheme, an advantage
is taken of the quantization properties of neural gas networks
to split objects into clusters, therefore ensuring that different
regions of possibly nonhomogeneous objects are distinctly
treated. Each cluster is sampled more than once under the
control of the selective sampling algorithm to ensure enough
data for an accurate representation of elasticity. This approach
also copes with possible noise and errors that are induced by
the measurement equipment.

III. FORCE/DEFORMATION ACQUISITION SETUP

Given the fact that elastic constants are material-related
parameters and do not accurately describe real-world objects
in general, we do not attempt to explicitly recover elastic con-
stants, nor stress or strain tensors, for an object under loading.
Instead, quantities of interest are those that can be observed on
the surface of an object, namely the deformation of the surface
as the object is loaded by a measured external force at a given
point [19].

Structure of the proposed neural-based sensing and mapping framework.

Feedforward
Neural Network
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Fig. 2. (a) Range sensor and force/torque setup producing (b) laser trace to
capture the object deformation resulting from the applied force.

The experimental setup that is used to collect force/
deformation data is composed of a multiaxis A7/ force/torque
sensor [20], which is attached to a console computer, and an
active triangulation line-scanning Jupiter laser range sensor
[21], which is controlled via a second PC system, as depicted
in Fig. 2(a). The force/torque sensor is used to record the force
components that are applied on the object, whereas the range
finder captures the deformation of the surface of an object under
a given load. Fig. 2(b) illustrates the force/deformation data
collection procedure on a deformable object representing one
uniform cluster. The range finder is positioned such that the
scanline intersects with the point where the external force is
applied, as highlighted by the trace of the laser on the object.

The raw deformation profiles are encoded under the form of
a 2-D distribution of points in the Y—Z space, as shown in
Fig. 3, where Y is the lateral displacement along the scanline,
and Z is the depth along the optical axis with respect to a back-
reference plane. The laser range finder provides a fast scan of
256 samples that are distributed along the straight scanline on
the surface; 30-50 scans of the same area are collected within
a few seconds, whereas the applied force and angle are kept
constant. This provides efficient means to cope with the noise
in the range data. Moreover, with the success of the range
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data collection being highly sensitive to the texture and the
orientation of surfaces, missing measurements usually appear
along the scanline. The use of an iterative sampling procedure
over a short period of time partially alleviates the impact of this
constraint.

To filter out the average noise and include as many valid
measurements as possible in areas where points can be missing
in some of the scans, the mean value is computed on the depth
(z-axis) over all the deformation profiles obtained under a given
force from the sampling points belonging to each cluster. The
resulting profiles are then saved for each magnitude and angle
of force that are applied on the object and for each cluster of
similar elasticity.

The use of range profiles rather than full intensity images
eases up the training procedure of the neural network, as only
significant deformation features are retained. The dimensional-
ity of the vision data set is reduced to a vector indexing depth
(Z) measurements along the scanline, which can be directly fed
into the neural network.

IV. NEURAL NETWORK MODELING
OF THE ELASTIC BEHAVIOR

Given the nature of the modeling framework, there is no
need to recoup the explicit deformation information from the
range profiles. Instead, a neural network is used to learn
the elastic behavior as a complex function of the force and
the corresponding deformation profile. One network is used
to model the elastic behavior of each material (cluster). The
proposed neural architecture models the raw range data that
are mapped in the Y—Z space as a function of the applied
force F'. For each cluster of similar elasticity, a feedforward
neural network with two input neurons that are associated
with the magnitude and the angle of the applied force (F) a),
45 hidden neurons (H;—Hys), and an output vector with the
same size as the length of the deformation profile Z, as shown
in Fig. 4, is employed to learn the relation between forces and
angles and the corresponding deformation profiles provided by
the range finder. From the several tests performed, 45 hidden
neurons gave a good compromise between the accuracy of
modeling and the length of training. The pointwise correspon-

1921

Fig. 4. Feedforward neural network to learn the elastic behavior from defor-
mation profiles under various force magnitudes and angles.

dence that is required between the deformed and undeformed
range profiles is ensured by the fixed position of the range
sensor and of the objects during the data collection. Therefore,
the parameter Y covers the same range for all measurements
on an object (and material) during the acquisition and is not
considered to be an input in the network, with the Z values
being uniformly indexed to the data vector.

Forces of different magnitudes that are applied at different
angles from the tangent to the surface, which are not con-
sidered in our previous work due to experimental constraints
[18], are now added as supplementary inputs in the network.
This improves the modeled behavior, particularly for objects
that are exhibiting highly nonlinear characteristics. Different
magnitudes of forces at different angles are successively ap-
plied on the selected sampling points using the probe that
is attached on the ATI force/torque sensor, and a series of
overlapping profiles are collected with the laser range finder for
each force magnitude before being averaged to reduce noise.
The force magnitude F' is computed as the norm of the three
orthogonal force components along the z-, y-, and z-axes of
the force/torque sensor’s reference frame, as recorded by the

device, i.e.,
F = ,/Fg—l—FyQ—l—Fz?.

The angle measurements are collected with the probe that
is positioned in the plane parallel to the scanline that contains
the probe tip, with the angle 0° starting on the far left and
continuing up to the angle 180° on the far right, as depicted
in Fig. 5. The normal force on the object’s surface is considered
at 90° with the tangent to the surface at the contact point.

Although the data are noisy and contain important gaps for
large forces, the networks are directly trained with the averaged
range profiles, as described in Section III, to avoid losing
essential information. The only data preprocessing applied is
a normalization of the depth data that are contained in the
deformation profiles to the [0, 1] interval prior to training, as
required by the neural network implementation.

For the training, several back-propagation algorithm varia-
tions were tested, namely the Levenberg—Marquart method, the
quasi-Newton Broyden—Fletcher—Goldfarb—Shanno (BFGS)
method [22], [23], and the resilient propagation (Rprop) [24].
The Levenberg—Marquart and quasi-Newton BFGS methods
are classical gradient descent (steepest descent) methods, which
are both variations of Newton’s method. They use the gradient
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of the error function to compute the search direction (the neg-
ative gradient direction points to the locally steepest direction).
The error function is considered to be quadratic, and, therefore,
the direction toward the minimum error is determined by the
inverse of the Hessian multiplied by the gradient, which is
a product that is known as the Newton step. When the error
function is indeed quadratic, Newton’s method will find the
minimum in one step, and if it is not quadratic, in most
cases, it will quickly converge since many analytic functions
can be accurately approximated in a small neighborhood of a
strong minimum by a quadratic function. However, the exact
computation of the inverse of the Hessian is computationally
demanding. Furthermore, when the Hessian is not positively
definite, the Newton step will move toward a maximum and
not a minimum. The Levenberg—Marquart modification adds a
term to the Hessian to ensure that it is always positive definite.
To save the computation of the inverse of the Hessian, the BEFGS
method uses an approximation of it. Still, it is computationally
demanding, and in those cases when the magnitude of the input
is large, the derivative of the error function becomes very small,
and all the steepest descent methods produce very small steps,
sometimes never converging. In the present application, neither
the Levenberg—Marquart method nor the quasi-Newton BFGS
method succeeded in correctly capturing the characteristics of
the deformation profiles. Due to the heavy memory loading
implied, they were not able to model the entire deformation
profile. Although it was possible to model a compressed version
of the deformation profile, which is obtained by the replacement
of each three sampling points by their average value, this
solution was revealed to be insufficient to capture the fine
details in the profiles. The resilient propagation method gives
better results in significantly less time. In this method, the step
size is not a function of the magnitude of the gradient, but rather
depends on the sign of the derivative. If the sign of the derivative
for a given weight remains the same over several iterations,
then the magnitude of the step size is increased, and if the sign
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oscillates, the magnitude of the step size is decreased. The fact
that only the sign of the derivative is used leads to an efficient
computation with respect to time and storage consumption
[24], even over long sets of deformation profiles with relatively
smooth features.

Once trained, the network takes as inputs the force
magnitude F' and its corresponding angle of application a with
respect to the tangent to the surface and takes as outputs the
corresponding deformation profile as an indexed vector of depth
values Z along the scanline.

V. EXPERIMENTAL RESULTS

To validate the proposed modeling framework, experimenta-
tion was conducted on numerous deformable objects, of which
arepresentative subset is reproduced here, i.e., a rubber ball and
a simple composite object that is made of a square cardboard
box mounted on the top of a covered foam pillow, as depicted
in Fig. 6. This set of relevant examples is chosen, as it represents
a significant combination of elastic materials, geometry, and
texture properties that are all critical factors that influence the
performance of the proposed approach. From the geometry
perspective, we have rounded surfaces (a ball), edgy surfaces
(a cardboard box), and combinations of both (a pillow with
rounded edges), whereas from the elasticity perspective, we
have a stiff material (cardboard), a semisoft material (rubber),
and a highly nonlinear soft material (foam). Furthermore, some
objects have a light color (the rubber is yellow, whereas the
cardboard is light blue), whereas others have a dark color
(the pillow is gray with a highly scattered texture). All those
parameters influence the accuracy of measurements that are
collected with the laser scanner, as explained further. The soft
dark pillow is the most complex to be measured and modeled
due to its nonlinear elastic behavior and nonuniform texture,
which make the measurement using the laser range scanner
difficult. Therefore, this example is shown to demonstrate the
capability of the proposed method to cope with challenging
modeling situations.

From the 3-D point cloud corresponding to the objects of
interest, which is initially obtained with a complete scan of their
entire surface with the laser range sensor, the adaptive sampling
neural gas network returns a set of significant sampling points,
as shown in Fig. 7(a) and (b) for the two objects under study.
Points that are located along the contours of each element of the
composite object are automatically highlighted, thus providing
immediate target areas for tactile probing with the force/torque
Sensor.

In this experimentation, the fact that we consider a composite
object with different elastic characteristics helps to study the
case of objects with nonhomogeneous/piecewise homogeneous
elastic behavior. The selected sampling points are clustered
in two groups for the composite object, corresponding to the
two deformable materials. In Fig. 7(b), the small points be-
long to the box, whereas the large ones belong to the pillow.
Force/deformation data are then collected for each of them,
using the setup described in Section III. A set of five measure-
ments is collected with increasing force magnitudes at each of
the 10°, 25°, 45°, 75°, 90°, 105°, 135°, 155°, and 170° angles.
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(@)

Fig. 6. Deformable objects used for experimentation. (a) Rubber ball. (b) Composite object.

(b)

Fig. 7. Sampling points selected with the neural gas network for (a) a rubber
ball and (b) a composite object.

Figs. 8-10 show three examples of averaged deformation pro-
files resulting from the application of increasing forces along
the normal direction to the surface of the object for the different
materials under study. Figs. 11 and 12 show examples of
averaged deformation profiles for the rubber and foam materials
subject to different forces that are applied at different angles.
The deformation profiles that are collected for angles under 90°
present a deeper cavity around the probe’s tip toward the right
side, whereas the ones for angles that are larger than 90° have
the cavity deeper toward the left side. As expected, angles that
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Fig. 9. Deformation profiles for the cardboard box under increasing normal
force.

are closer to the normal to the surface usually lead to deeper
deformation profiles, whereas tangential angles to the surface
result in flatter profiles.

The quality of the collected range data is directly related to
the material under study. As seen in Figs. 8—12, the range sensor
data are more compact and less noisy for the rubber, which
has a light color and a dense smooth texture. It is relatively
compact for the cardboard, whereas measurements get scattered
on a wider range of values and exhibit a larger number of
gaps in the case of the foam. This effect is mainly due to the
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rough dark texture of the fabric that covers the piece of foam.
As the laser range finder operates on the principle of active
triangulation, laser rays are expected to reflect on the object’s
surface before reaching back to the sensor. When projected on a
rough surface, laser rays are partially absorbed or diffused in all
directions, depriving the range sensor from the expected echo
or creating false reflections that introduce errors on the range

Fig. 14. Real and modeled deformation for a rubber ball under forces applied
at different angles. (a) F' =65 N, a = 10°, and F' =65 N, a = 170°.
(b) F=36N,a =25°and FF = 36N, a = 155°.

estimation. This phenomenon gets amplified as the external
force that is applied on a soft object increases, given that
the orientation of the local surface is significantly modi-
fied because it is no longer perpendicular to the laser beam
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Fig. 15. Real and modeled deformation profiles for the cardboard under normal forces of (a) FF =0.1 N, (b) F =09 N, (¢c) F =29 N, (d) F =8N,

(e) F = 44.6 N, and (f) F = 46.7 N.

propagation direction and, therefore, makes a gap appear
around the probe’s tip.

The deformation profiles are segmented to the regions of
interest. Irrelevant information, such as the table that is depicted
as straight lines around the value 8200 on the z-axis in Fig. 8,
is removed, and only the part that contains the relevant defor-
mation profile is provided in the training set.

The force magnitudes and the corresponding angles are
provided as inputs to the network, and the normalized seg-

mented deformation profiles are used as training samples. The
networks that are associated with all materials are trained in
five steps of 5000 epochs, each using the resilient propagation
algorithm [24] that is implemented in the Matlab code, with the
learning rate set to 0.1. The whole data set is used for train-
ing to provide enough samples. Training takes approximately
10 min on a Pentium IV 1.3-GHz machine with 512-MB
memory. For the rubber, the sum-squared error reached during
training is 3.7 X 1073, for the cardboard, it is 3.5 x 1072,



1926

8850
8800
8700+
E‘ 00 [P
E OO0 W s, B oa o ]
; 8550+ o ) 1
8500 & * % o 1
- real F=3.8N
L d. F=3.8N _
8450 . ?;2. F=19N &
o mod. F=19N
84001 | * realF=27.6N & )
o mod. F=27.6N
8350 . . . . ; et .
-150 -125 100 -75 50 25 O 25 50 75

Y [.1mm]

Fig. 16. Real and modeled deformation profiles and a detail of the deforma-
tion for the foam pillow under normal forces.

whereas for the foam, it is 2.2 x 1072. As expected, the error
is lower for the rubber, where the data are more compact and
less noisy, whereas it remains slightly higher for the cardboard
and even higher for the foam. However, in all cases, excellent
convergence is achieved.

The accuracy of the model is validated by the results obtained
while testing the networks for all three materials. First, the
networks are tested with samples from the training data set.
Fig. 13 shows the deformation characteristics for the rubber
ball under three different force magnitudes that are applied at
a normal angle on the surface of the object, whereas Fig. 14
shows a sample of the real and modeled segmented deformation
profiles obtained for different forces that are applied at different
angles on the same object. The real data are depicted by points,
and the modeled data, as estimated by the neural network for the
same inputs, are depicted by circles. The modeled data are very
close to the real data, and as expected, the modeled deformation
profiles for mirror angles (10° and 170°, and 25° and 155°) and
for about the same force magnitude are roughly mirror profiles
as well, as shown in Fig. 14.

Fig. 15 presents the real and modeled segmented deformation
profiles for the cardboard material that is submitted to the subset
of force magnitudes shown in Fig. 9. The data are noisier;
however, the network is still able to cope with them and model
the main shape of the deformation profile. Since there is no
significant change in the deformation profile while probing
the box at different angles, further results are not presented
here. Fig. 16 shows real and modeled segmented deformation
profiles that are obtained for the application of a normal force
on the foam pillow, for the subset of forces in Fig. 10, whereas
Fig. 17 shows the corresponding characteristics for the foam
submitted to different forces that are applied at different angles.
The network catches some of the noise in the curves but quite
accurately models the deformation profiles. Even if it is less
obvious in this case, the mirror angles still result in mirrored
profiles.

All these experiments demonstrate the high potential of
neural networks to extract the main features of highly nonlinear
data sets while being fault tolerant and insensitive to noise
that is inherently present in any real data. Sparse errors in
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Fig. 17. Real and modeled deformation profiles for a foam pillow under forces

applied at different angles. (a) /' =16 N, a = 10°; FF = 38 N, a = 170°.
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the deformation profiles are successfully eliminated by the
network. However, the neural model remains fully capable of
capturing the peak of the deformation profile, even in areas
where the profile does not contain numerous sampling points.
Moreover, our experimentation allowed the study of the
generalization ability of the neural network model scheme.
For this purpose, the network is tested for different forces and
angles that were not part of the training set. Some results for
the rubber material are depicted in Figs. 18 and 19. Fig. 18
shows the entire set as well as a detail of the real, modeled,
and estimated deformation profiles for increasing forces that are
applied at a constant angle (75°) on the rubber ball. The points
denote the training data and the circles denote the modeled data,
which consist of the estimation of the deformation when the
network is presented with the training data, whereas the stars
represent a deformation profile that is estimated by the network
for a magnitude of force that was not included in the training
set. The network correctly places the estimated profiles where
expected. For example, the estimated profile for a force of
68 N is placed in between the real measured profiles of 64.4
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Fig. 19. Estimated deformation profiles and detail of the estimated deforma-
tion profiles using the neural network for the rubber ball for the same force
F = 40 N applied at different angles.

and 70.34 N, whereas the cavity in the profile, corresponding to
the same angle used, is slightly moving to the right, as expected.

Another test reveals the ability of the network to estimate
deformation profiles for a constant force applied at different
angles that was not part of the initial training set. Fig. 19 depicts
the deformation profiles that are estimated for a constant force
of 40 N and increasing angles between 0° and 45°. The position
of the profiles in relation to each other and to the cavity of each
profile corresponds to what one would expect it to be. As the
force is the same, but the angle increases (valid for angles under
90°), the cavity becomes slightly deeper and shifted toward
the left. The network, therefore, generalizes well, being able
to provide good estimates for both angles and forces that are
not part of the training set.

VI. CONCLUSION AND FUTURE WORK

This investigation demonstrates that the benefit of using
neural networks to model deformable objects is threefold. First,
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neural networks provide continuous output behavior, being able
to provide the necessary nonlinear interpolation for estimates
of data that were not part of the training set. When compared
with most of the work found in the literature, where a priori
knowledge about the characteristics of the material is assumed
available, this paper proposes a robust approach for model-
ing force/deformation relationships from realistic experimental
data with noisy and incomplete measurements, the latter being
exemplified here by missing values for some of the points along
the scanline.

Second, the use of a neural network modeling scheme avoids
the problem, which is complicated and frequently impossible to
solve, of recuperating explicit elastic parameters, particularly
for highly nonlinear elastic materials. Last, neural networks
provide an accurate and fast response without requiring the
high computation times that are associated with the solution of
mathematical models of deformable objects.

Combined with the neural gas network that significantly
reduces the number of sample points that are needed to ac-
curately represent a 3-D deformable object, the proposed ap-
proach to model elasticity proves to be an efficient way to
measure, construct, and represent elastic deformable objects
since performing raster tactile probing on large surfaces would
be prohibitive.

As future work, we plan to enhance the proposed approach
by performing scans of the deformation profiles over different
directions. This will enable the application to obtain a 3-D
deformation profile model for each interaction point.
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