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A Frequency Domain Approach to Registration
Estimation in Three-Dimensional Space
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Abstract—Autonomous robotic systems require automatic regis-
tration of data that are collected by on-board sensors. Techniques
requiring user intervention are unsuitable for autonomous robotic
applications, whereas iterative-based techniques do not scale well
as the data set size increases and, additionally, tend toward lo-
cally minimal solutions. To avoid the latter problem, an accurate
initial estimation of the transformation is required for iterative
algorithms to properly perform. However, in some situations, an
initial estimate of the transformation may not be readily available;
hence, a method that does not require such an initial estimate nor
descends into local minima is desirable. The method presented in
this paper takes advantage of the multidimensional Fourier trans-
form, which inherently decouples the estimation of the rotational
parameters from the estimation of the translational parameters, to
compute 3-D registration between range images without requiring
an initial estimation of the transformation and avoiding problems
of the classical iterative techniques. Using the magnitude of the
Fourier transform, an axis of rotation is estimated by determining
the line that contains the minimal energy differential between two
rotated 3-D images. A coarse-to-fine approach is used to determine
the angle of rotation from the minimal sum of the squared differ-
ence between the two rotated images. Due to the Hermitian sym-
metry introduced by the Fourier transform, two possible solutions
for the angle of rotation exist. The proper solution is identified
through the use of a phase-correlation technique, and the estimate
of translation is simultaneously obtained. Experimental results
and an extended performance evaluation illustrate the accuracy
that can be achieved by the proposed registration technique on
simulated and on real range images. Last, a comparison of com-
putational stability with that of the classical iterative closest point
method is presented.

Index Terms—Autonomous robotics, data fusion, frequency
domain, pose estimation, range imaging, registration, 3-D
modeling.

I. INTRODUCTION

THE proliferation of low-cost high-quality range sensing
systems has led to their use for many different purposes

such as creating virtual objects for virtual museums, space
exploration, and games. Registration estimation involves deter-
mining the rotations and translations that are required to align
one image with another. The prevalent methods for registering
range images involve relying on the positional sensors of the
data acquisition apparatus, relying on complex feature detec-
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tion, and matching algorithms or iterative algorithms that may
converge to an incorrect solution. These methods offer limited
scalability, and their execution time dramatically increases with
an increase in the number of points in the data sets to be
registered.

This paper, which is an extended version of [1], presents a
registration estimation algorithm for 3-D measurements that
is automatic, does not need any initial estimate of the trans-
formation parameters, and requires no a priori knowledge of
the object that is being registered, with the only assumption
being that there is sufficient overlap between data sets for
the algorithm to produce an accurate estimate. The proposed
algorithm takes advantage of the fact that the Fourier transform
decouples the estimation of the rotational parameters from the
estimation of the translational parameters. This is accomplished
by separating the frequency information into a magnitude and a
phase component. The axis of rotation is determined, followed
by the angle of rotation. Due to the Hermitian property of
the Fourier transform, there are two possible solutions for the
rotational parameters, separated by 180◦. To determine the cor-
rect rotational parameters, as well as estimate the translational
parameters, a phase correlation utilizing the frequency domain
is applied to each possible solution. The solution that produces
the most impulsive phase correlation is selected as the correct
solution, with the location of the impulse corresponding to the
translational parameters.

The proposed algorithm has been tested on 3-D data sets
and also provides the framework for a multiple dimension
extension. The theoretical description in the following section
is generalized to the multiple dimensional case. Experimental
results are presented for the 3-D case using pure range data,
and an analysis of the quality of the registration estimates
is presented, illustrating the differences between data clouds
that are obtained through a real-life data acquisition setup and
data clouds that are obtained through a simulated environment.
Furthermore, the results are evaluated according to precision in
the registration as well as execution time.

II. REVIEW OF TECHNIQUES

Traditionally, registration estimation has been performed in
the space domain. The most widely explored approach to solve
the registration estimation problem is the iterative approach,
and the most widely adopted approach is the iterative closest
point (ICP) algorithm and its various reincarnations and mod-
ifications. The ICP algorithm, initially proposed by Besl and
McKay [2], describes a method for registering a set of 3-D
data (P ) with a reference or model data set (X). The method
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operates by calculating the closest points in set P with those
in set X . From this matching of closest points, an estimate
for the registration parameters is made. P is transformed by
this estimate, and the mean squared error (MSE) between the
transformed P and X is computed. If the MSE is not beneath
a predefined threshold, the estimation process is repeated using
the newly transformed data set P ; otherwise, the current esti-
mate of the registration is the solution.

The ICP algorithm, as with most iterative convergence al-
gorithms, tends toward the closest local minima when using
discrete data sets. The solution obtained may or may not cor-
respond to the global minimizing solution, and hence, the ICP
algorithm requires an initial estimate that is close to the actual
registration parameters or a particularly transformed data set
to obtain a precise solution. The estimation of the registration
parameters is performed in two stages—by first calculating the
rotational parameters, and then using the rotational parameters
to calculate the translational parameters; hence, if the rotation
is incorrect, the translation will be incorrect. The advantages
of the ICP algorithm are its precision, flexibility, and ease of
use, and its main disadvantage is its tendency to converge to
local minima solutions instead of the proper global minimum
solution without a close initial estimate.

There are several papers available in the literature [3]–[5] that
discuss modifications to the ICP algorithm to provide better
convergence toward the global minimum. This is achieved
either by transforming the data, altering the matching criterion,
and providing a close initial estimate of the registration param-
eters, or by acceleration of the algorithm at various steps.

Another alternative to using the ICP class of algorithms for
registration estimation are those that rely on matched features or
points. A closed-form solution for the estimation of registration
parameters exists for any set of three matched noncollinear
points [6]. The process involves finding first an estimate of
the translation based on the difference in position of the
centroids, and then estimating the rotation about the centroid
using standard linear-system-solving techniques. The solution
resulting from such a situation tends to contain errors due to
the inexactness of features and matches between features, and,
as a result, typically many more points are used utilizing a least
squares approach. Other techniques using this approach involve
refining the extraction and matching of these features [7], [8]
to account for, and reduce, sources of error. For this class of
algorithms, the majority of processing occurs in the feature
extraction and feature matching phases. Numerous applications
of feature-based registration estimation are found in artifact
modeling [9] and mobile robot localization [10].

Alternatives to registration in the space domain have been
proposed to avoid the need to match features, and to deal
with unorganized data clouds, by taking advantage of some
characteristics of the Fourier transform. By avoiding the feature
detection, extraction, and matching steps that occur in classical
registration techniques, frequency domain algorithms avoid
possible imprecision and poor matches that are inherent to this
sort of process.

Lucchese et al. [11] extended their previous work with
frequency domain registration estimation in the 2-D case [12]
to the 3-D case. As previously stated, the Fourier transform de-

couples the rotational parameter estimation from the translation
estimation. To prevent the impulsive nature of the effect of sin-
gularities on the frequency spectrum, the data set is convolved
with a spherical Gaussian kernel with standard deviation of
0.05 and diameter of seven voxels. This creates a spherical solid
region about each point, with density decaying with distance
from the point.

Lucchese et al. estimated the axis of rotation by determin-
ing the radial projections of the difference image through the
(0, 0, 0) frequency point (DC). By performing this step, the
determination of the axis of rotation is reduced to determining
the minimum of a 2-D function. The estimate is further refined
by resampling the function in a thin cylinder around the es-
timated axis of rotation, followed by determining the angular
histograms of the projection of the cylinder onto the three
orthogonal elementary planes, and then, finally, determining the
angles corresponding to the maxima for each histogram. These
maxima are used to determine the optimal axis of rotation.
With the axis of rotation now determined, the coordinate system
is transformed such that the problem becomes a 2-D rotation
problem about the w-axis, as illustrated in Fig. 1.

After the problem is reduced to a 2-D problem of estimating
the rotation about w, a 2-D image is created from the 3-D image
by integrating along the w-axis. The complexity of finding
the angle of rotation is further reduced to the 1-D case by
changing to polar coordinates and integrating along the distance
parameter. Last, the angle of rotation is determined by the peak
of the correlation between the corresponding 1-D functions of
each range image.

Due to the Hermitian symmetry of the Fourier transform,
there are two complementary solutions, which are separated
by 180◦. The ambiguity between solutions is resolved in the
estimation of translation. To estimate the translation, the orig-
inal data are rotated by each solution and transformed into
the frequency domain. A phase correlation between images is
performed. The phase correlation function corresponding to the
correct solution will be impulsive in nature, and the location of
the impulse corresponds to the translation. The phase correla-
tion function corresponding to the incorrect solution will not be
impulsive in nature.

To avoid the computational penalty of performing a 3-D
phase correlation, the authors perform three 1-D phase corre-
lation functions based on the projections onto the primary axes.
Additionally, to minimize the numerical errors that are involved
in the computation of differences between small numbers, a
logarithmic difference function is used for the estimation of
the rotation axis. Last, to reduce the effects of discrimination
in estimating the angle of rotation, a minimal search-based
windowing function is used along each plane, and these minima
are added together to form the 2-D image.

The method is used to produce an initial estimate to be
refined by the ICP algorithm. The disadvantages of this algo-
rithm are the computational cost of applying the fast Fourier
transform (FFT) several times (one time for each image for the
estimation of the axis of rotation, one more time for one image
in the estimation of the angle of rotation, and, finally, two more
times on one image for the estimation of translation), as well as
the need for computing several histograms. On the other hand,
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Fig. 1. Axis transformation.

this frequency domain algorithm eliminates the need to extract
and match features, and avoids local minima solutions that may
occur with traditional iterative algorithms.

III. REGISTRATION IN THE FREQUENCY DOMAIN

This section describes the theory that is required for fre-
quency domain registration techniques, expanding on the math-
ematical arguments put forth by Lucchese et al. [11].

Let N be the number of dimensions of the signal and M be
the diagonal matrix containing the reciprocal of the size of each
dimension. Let Im1[�n] be the space domain samples from one
viewpoint, and let Im2[�n] be the same space domain samples
from a different viewpoint, with the vector �n indicating the
sample location in discrete Cartesian coordinates, with respect
to the origin of the image. Let the rigid transformation between
Im1 and Im2 be represented by

Im1[�n] = Im2[R�n + T ] (1)

where R is the N × N rotation matrix, and T is the N × 1
translation vector.

The discrete Fourier transform (DFT) representations of Im1

and Im2 are

FIm1 [�k] =
MN−1∑
nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im1[�n]e−j2π�kT M�n (2)

FIm2 [�k] =
MN−1∑
nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im2[�n]e−j2π�kT M�n (3)

with

�n=




n1

n2
...

nN


 , �k=




k1

k2
...

kN


 , M =




1
M1

0 . . . 0
0 1

M2
. . . 0

...
... . . .

...
0 0 . . . 1

MN



(4)

where �k is the vector representing the N -dimensional discrete
frequency index; n1, n2, . . . , nN are the components of the
N -dimensional vector �n; and M1,M2, . . . ,MN are the discrete
size of each of the respective N dimensions.

If the rigid transformation depicted in (1) is applied to (3),
the relationship between FIm1 and FIm2 can be found. Note

that the FIm2 notation is slightly modified here to introduce the
rigid linear transformation, i.e.,

FIm2 [�k] =
MN−1∑
nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im2[R�n + T ]

× e−j2π�kT M(R�n+T )

FIm2 [�k] =
MN−1∑
nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im1[�n]

× e−j2π�kT M(R�n)e−j2π�kT MT

FIm2 [�k] =


MN−1∑

nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im1[�n]e−j2π�kT MR�n




× e−j2π�kT MT . (5)

The transpose of a rotation matrix being its inverse, one can
write:

FIm2 [�k]=


MN−1∑

nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im1[�n]e−j2πM�kT (R−1)T �n




× e−j2π�kT MT

FIm2 [�k]=


MN−1∑

nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im1[�n]e−j2πM(R−1�k)T �n




× e−j2π�kT MT . (6)

If a change in variables to the above equation is made
(�k → R�k), it then becomes

FIm2 [R�k]=


MN−1∑

nN=0

MN−1−1∑
nN−1=0

· · ·
M1−1∑
n1=0

Im1[�n]e−j2π�kT M�n




× e−j2π(R�k)T MT . (7)

It is observed that in (7), the translation component is in-
dependent of �n, and that the part of the equation in brackets
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Fig. 2. Example of Hermitian symmetry of the magnitude of the Fourier transform.

is equal to FIm1 [see (2)]. This leads to the deduction of the
relationship between FIm1 and FIm2 , i.e.,

FIm2 [R�k] = FIm1 [�k]e−j2π(R�k)T MT . (8)

From (8), two separate equations can be developed—one for
solving for the rotation matrix R, and one for solving for the
translation vector T when the rotation matrix is given. This
is accomplished by separating the equation into amplitude and
phase components, i.e.,

∣∣∣FIm2 [R�k]
∣∣∣ =

∣∣∣FIm1 [�k]
∣∣∣ (9)

∠FIm2 [R�k] =∠FIm1 [�k] − 2π(R�k)T MT. (10)

From (9), it is possible to deduce the rotation matrix R using
the amplitude spectra of Im1 and Im2. Once the rotation matrix
is known, the translation vector T can be solved for through the
use of a phase correlation method using the phase spectra of
Im1 and a derotated Im2 [see (10)].

A. Determining the Rotation Matrix

It is well known that all rotations in the 3-D space can
be represented as a rotation about an axis of rotation, a fact
that the frequency domain technique takes advantage of. By
rotating an object in space about an axis, the positions of all
points change—except those belonging to the axis of rotation.
This, when mathematically described, corresponds to multiply-
ing a scaled version of an eigenvector of a matrix with the
matrix itself (note that the axis of rotation corresponds to the
eigenvector with an eigenvalue equal to one for the rotation
matrix).

This holds true in the frequency domain since the rotation
is not affected by a Fourier transform; hence, by determining
the zero line in the difference function of the magnitude of the
Fourier transforms of the images to be registered, the axis of
rotation can be determined as the locations where∣∣∣FIm2 [R�k]

∣∣∣ =
∣∣∣FIm2 [�k]

∣∣∣ =
∣∣∣FIm1 [�k]

∣∣∣ . (11)

To determine the angle of rotation, one can then rotate FIm1

about the axis of rotation until the rotated FIm1 is equal to FIm2 .
This can be accomplished by minimizing the MSE between

transformed magnitude images, i.e., |FIm1 | and |FIm2 |, for each
value of the angle of rotation.

To determine the rotation matrix, there are a few issues that
must be addressed. First and foremost, the Fourier transform of
real data is Hermitian symmetric. In other words, the frequency
domain spectrum for the frequency values between zero and
π is also represented by the complex conjugate of the values
contained between 2π and π, i.e.,

F (w) → F ∗(2π − w). (12)

In the discrete mapping of the DFT, where �K is the column
vector containing the discrete size along each dimension, and �k
is a discrete frequency location, the Hermitian symmetry effect
is represented by

F [�k] = F ∗[ �K − �k], �K =




M1

M2
...

MN


 . (13)

This mapping is beneficial and detrimental to determining the
rotation matrix. The benefit is that only half of the frequency
data are unique; therefore, only half of the DFT needs to be
computed. The drawback to the Hermitian symmetric mapping
is that two solutions for rotation are obtained with a separation
of 180◦. This is exemplified in Fig. 2.

B. Determining the Translation Vector

Once the rotational parameters have been estimated, the
translation vector can be determined. Due to the presence of two
complementary solutions for the angle of rotation, a method
of determining the proper solution is needed. Fortunately, (10)
provides solutions to the problem of solution selection as well
as estimation of the translational parameters. The application
of (10) is equivalent to a phase correlation of Im1 with Im2.
The secondary solution for R (which is denoted by R′) will
provide a reflection, in addition to the rotation, about the axis
of rotation.

The solution corresponding to the proper solution will pro-
vide an impulse-like response, whereas the complementary
solution will provide a nonimpulsive response. The solution
in each case will be rarely strictly impulsive; however, one
solution will be more impulse-like than the other solution. This



114 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 1, JANUARY 2008

enables us to select the solution based on whether the cross
correlation between Im1 and the derotated versions of Im2 pro-
duces an impulse-like function, with the location of the impulse
signifying the estimation of the translational parameters.

IV. PROPOSED ALGORITHM

A. Determining the Axis of Rotation

To determine the axis of rotation, the difference between the
two magnitudes of the FFT must be calculated. The straight
difference is not reliable in practice since the magnitudes of the
FFT may be small, as well as the effects caused by noise in
the images may introduce incorrect minima in the difference
function. In [11], a normalized logarithmic difference is used
to rectify this problem. Although this does effectively work,
calculating logarithmic differences is quite processor intensive
compared to calculating straight differences. The difference
function that is developed for the proposed algorithm is the
normalized percentage difference, which ensures that the values
with a large relative difference, even when the magnitudes are
small, produce a large difference, and that the values with a
small relative difference, even when the magnitudes are large,
produce a small difference, while having a lower processing
cost compared to the normalized logarithmic difference. The
normalized percentage difference is defined as

SE[�k] =




∣∣∣∣FIm1 [�k]

FIm1 [�0]

∣∣∣∣ −
∣∣∣∣FIm2 [�k]

FIm2 [�0]

∣∣∣∣
max

{∣∣∣∣FIm1 [�k]

FIm1 [�0]

∣∣∣∣ ,

∣∣∣∣FIm2 [�k]

FIm2 [�0]

∣∣∣∣
}




2

. (14)

In this difference, the frequency domain images are nor-
malized with respect to the zero location, as the zero location
provides a good indication of the energy present in the images.
The divisor is then chosen to be the maximum of the two points
in the difference to ensure that the values fall between zero
and one.

The minimal weight zero crossing line, which corresponds
to the axis of rotation, is determined through the use of a
moving-window search algorithm. This algorithm determines
the minimal weight path crossing the frequency domain origin
within a small window. The window is successively moved
away from the origin along the minimal weight path, resulting
in the axis of rotation being determined with higher precision
as the window moves further away.

B. Determining the Angle of Rotation

The angle of rotation is determined by first subsampling the
frequency domain. The frequency domain is further reduced
such that the only remaining frequency locations lie between
−π/2 and π/2 along each dimension. This step is performed to
minimize the number of computations to be performed.

The angle of rotation is then coarsely iterated between −π
and π. Due to possible numerical errors made at various stages
of the calculation, the full range of −π to π is used to determine
the optimal angle, as opposed to the minimal required range of
0 to π. The frequency locations selected in FIm2 are rotated,

followed by calculating the squared error normalized magni-
tude percentage difference, which is defined as

SE ′[Angle]

=
∑
∀�k




∣∣∣∣FIm1 [�k]

FIm1 [�0]

∣∣∣∣ −
∣∣∣∣FIm2 [R(�RAxis,Angle)�k]

FIm2 [�0]

∣∣∣∣
max

{∣∣∣∣FIm1 [�k]

FIm1 [�0]

∣∣∣∣ ,

∣∣∣∣FIm2 [R(�RAxis,Angle)�k]
FIm2 [�0]

∣∣∣∣
}




2

.

(15)

The angle corresponding to the minimal error is selected
for the new midpoint in the coarse-to-fine search. The se-
lected points in FIm2 are now rotated more finely between
(angle − π/2) and (angle + π/2), and again, the error is calcu-
lated, and the minimal error angle is selected. This task contin-
ues until the desired angular precision is reached. The angular
search range is cut in half and centered on the minimal error an-
gle from the previous coarser iteration, and the range is divided
up according to how many frequency divisions are desired.

Once the angle has been determined, it should be noted
that due to the Hermitian symmetrical nature of the Fourier
transform, there exists a second solution to the angle of rotation
that differs by 180◦ (π radians) from the determined angle, i.e.,

Angle′ = Angle ± π. (16)

The selection of the correct solution is performed in the subse-
quent section.

In the study of Lucchese et al. [11], the angle of rota-
tion is determined involving a 1-D correlation technique after
integrating the images along the axis of rotation and along
the radius. These steps are complex and require an additional
forward and inverse Fourier transform, as well as determining a
maximum of a noisy 1-D function. The coarse-to-fine approach
eliminates the need for the complex correlation technique and
zooms in on the least squared error solution for the frequency
locations selected. This ensures that accuracy is maintained
while keeping the algorithm simple and easy to understand.
As the number of frequency points increases, so does the
accuracy of the algorithm. Also, as the number of frequency
divisions increases, the precision of the algorithm increases.
The computation time of the angle of rotation increases as the
previously mentioned parameters increase.

C. Solution Selection

Due to the previously mentioned Hermitian symmetry of
the frequency domain, there exist two possible solutions for
the rotation. To properly disambiguate the solutions, a phase
correlation of each solution must be performed, as suggested by
Lucchese et al. [11]. For this to occur, Im2 must be derotated
by each of the complementary rotational solutions, producing
Ima

2 [�n] and Imb
2[�n], i.e.,

Ima
2 [�n] = Im2

[
R−1(�RAxis, Angle) · �n

]
(17)

Imb
2[�n] = Im2

[
R−1(�RAxis, Angle − π) · �n

]
. (18)
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Fig. 3. Robotic laser range data acquisition system scanning the mock house frame.

Fig. 4. Illustrating scanning positions that are used for experimentation and evaluation of the registration approach.

This step requires going back to the space domain due to the
phase discontinuities that are present in the frequency domain
from the sparse data sets.

In the proposed approach, the phase correlation between Im1

and Ima
2 , and Im1 and Imb

2 is to be performed in the frequency
domain, appropriately zero padded to ensure that the correlation
performed is not a cyclic correlation. The phase of the Fourier
transform, as previously stated, contains the translation
component. Taking advantage of this fact, the phases between
image 1 and the candidates for the correct solution of image 2
are subtracted, leaving only the phase difference and, after
performing the inverse Fourier transform, the translational shift
between the two images. This is formally described as follows:

P 2a
1 [d, n]

= IFFT {∠FFT {Im1[d, n]} − ∠FFT {Ima
2 [d, n]}}

(19)

P 2b
1 [d, n]

= IFFT
{
∠FFT {Im1[d, n]} − ∠FFT

{
Imb

2[d, n]
}}

.

(20)

With phase correlation functions now computed, the solution
selection process may be started. The solution corresponding to
the correct rotation will be more impulsive in nature compared
to the other solution due to the nature of the correlation. This is
performed by determining the summation over each dimension
of the ratios of the gain corresponding to the highest peak
encountered in the collapsed phase correlation function versus
the variance of the phase correlation function, i.e.,

SPGRa =
∑
∀d

max
Over n

{(
P 2a

1 [d, n]
)2

}

var
Over n

{
(P 2a

1 [d, n])2
} (21)
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Fig. 5. Point cloud representation of (a) the first image to be registered, (b) the second image to be registered, (c) the front view of the registration results, and
(d) the top view of the registration results for a simulated house frame.

SPGRb =
∑
∀d

max
Over n

{(
P 2b

1 [d, n]
)2

}

var
Over n

{(
P 2b

1 [d, n]
)2

} . (22)

The above function was chosen as a good measure of the
impulsiveness of a data set since it provides a direct measure
of the peak energy compared to the averaged energy of the
data. The proper rotational solution corresponds to which of
SPGRa or SPGRb is higher. If SPGRa is higher, the rotational
solution is R(�RAxis, Angle); otherwise, R(�RAxis, Angle − π)
is the solution.

D. Determining the Translation

The translational parameters correspond to the location of
the peaks in each dimension used in the previous section to
choose the correct solution. If SPGRa was the correct solution,
then the translational parameters correspond to the location in
normal space of the peaks found in P 2a

1 [d, n], and, conversely, if
SPGRb was the correct solution, then the translational parame-
ters correspond to the location in normal space of the peaks
found in P 2b

1 [d, n].

V. EXPERIMENTAL RESULTS

Data acquisition was accomplished through the use of a
Jupiter laser range finder [13] mounted on a seven-degree-

of-freedom robotic arm. This ensures that the registration of
the range images is known for the purpose of evaluation,
and also guarantees precision and reliability. A more detailed
description of the range acquisition system that is used for this
experimentation can be found in [14].

The calculation of error is separately performed for rotation
and translation, as these are estimated in the algorithm in
different steps, and, as a result, errors in the estimation of
rotation affect the estimation in translation. The rotation error
εRotation is calculated as the Euclidean distance to the unitary
matrix from the actual rotation matrix RActual derotated by the
calculated rotation matrix RCalculated, i.e.,

εRotation =
∥∥I − RActualR

T
Calculated

∥∥ . (23)

The translation error εTranslation is the Euclidean distance to the
actual translation vector TActual from the calculated translation
vector TCalculated, i.e.,

εTranslation = ‖TActual − TCalculated‖. (24)

To evaluate the performance of the frequency domain al-
gorithm, the comparison of the registration estimates is made
upon ten different views of a mock house frame, as shown
in Fig. 3, acquired with the laser range scanning system, as
well as through a simulation of a similar environment. The
simulated views and the real-world acquired views were chosen
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Fig. 6. Point cloud representation of (a) the first image to be registered, (b) the second image to be registered, (c) the front view of the registration results, and
(d) the top view of the registration results for a real model of a house frame.

Fig. 7. Registration error on the rotation estimation for 100 pairwise registration attempts on simulated range images of the house frame.

to be approximately the same. The rotations were equivalent
and spaced 6◦ apart, whereas the translations varied due to
various constraints, as shown in Fig. 4. The acquired range
images were then registered pairwise, ending up with 100 reg-
istration attempts to be analyzed. Fig. 5(c) and (d) illustrates an
experimental result that is obtained by applying the described
frequency domain registration algorithm upon 3-D data point

clouds shown in Fig. 5(a) and (b) that represent a model of
a house frame that is generated using a laser range finder
simulator operating on a virtual representation of the object.
As can be observed with this superposition of the point clouds
(respectively in dark and light shades) after registration, under
low noise conditions, the accuracy of registration estimates is
high, with very little visible error in the merge.



118 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 1, JANUARY 2008

Fig. 8. Translation error versus rotation error for 100 pairwise registration attempts on simulated range images of the house frame.

Fig. 9. Registration error on the rotation estimation for 100 pairwise registration attempts on real range images of the actual house frame.

To evaluate the robustness of the approach to noise and
incomplete data sets, the experimentation was reproduced using
a real range image acquisition system on an actual mock house
frame. Fig. 6(c) and (d) illustrates a similar superposition of
two point clouds, shown in Fig. 6(a) and (b), collected on this
real setup. The viewing angles were chosen to coincide with
those shown in Fig. 5. This evaluation demonstrates that the
registration estimation is also of high quality when applied on
data that are collected under realistic operational conditions.
The main perceptible errors reside in a small rotation error that
is visible in the top and front views, and a small translation error
that is visible in the front view. These are mainly due to the
background plane that appears in the real scene but was absent

in the simulated case, introducing some extra symmetry in the
real data set. Also, the real range sensor tends to produce out-
liers in the data sets that influence the estimation of registration
parameters. As expected, the results from the registration of the
simulated data set are better than those of the real-world data
set due to the reasons mentioned above. However, the proposed
framework demonstrates enough stability to operate in typical
3-D sensing environments.

Fig. 7 shows the division of results according to the rotation
error for the simulated range data set. The results originating
from 100 pairwise registration attempts have been classified
into six bins associated with different error levels, computed
with (23). There are three primary sources of error when
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Fig. 10. Translation error versus rotation error for 100 pairwise registration attempts on real range images of the actual house frame.

TABLE I
PERFORMANCE COMPARISON WITH THE ICP APPROACH

estimating the rotation using the described frequency domain
algorithm. The first source is an error on the estimation of the
axis of rotation, the second source is an error on the estimation
of the angle of rotation, and the third error occurs if the wrong
solution is chosen. When there is a little error in the estimation
of the rotation axis and angle, and when the correct solution
is chosen, the registration error falls into the first error bin,
identified 0.0–0.5. When there is a large error in the rotation
axis and angle, the registration error falls into the second
through fifth error bins, with values from 0.5 to 2.5. When there
is a small error in the rotation axis and angle, but the wrong
solution is selected, the registration error falls into the sixth
bin, marked 2.5–3.0, as a solution on the opposite side of the
unit sphere yields the maximum error. The errors on rotation
estimation are unitless [see (23)]. These results demonstrate
that the estimation of the axis and angle of rotation is correct
in most of the circumstances for the simulated data sets (98%),
with errors mainly occurring during the solution selection phase
of the algorithm. The translation error, as would be expected,
increases with an increase in the rotation error, as shown in
Fig. 8, over the same set of 100 pairwise registration attempts
on the simulated house frame.

Fig. 9 shows the division of results according to the rotation
error for the real range data set. The results have been classified
into six bins, as previously described. Due to the presence

of a background, outliers, and other sources of noise in the
actual laser range acquisition, there are more results in the
middle four bins compared to the simulated results; however,
the majority of the results (82%) lie in the first and sixth
bins, demonstrating the robustness of the proposed registration
scheme under realistic operational conditions. The translation
error also increases with respect to the rotation error, as shown
in Fig. 10, although the sixth bin is smaller when compared to
the fourth and fifth bins, which is apparently due to the high
level of symmetry present in the scans leading to a lower than
expected translation estimate.

During experimentation, the proposed frequency domain
registration algorithm was also compared against the ICP al-
gorithm. Due to the relatively poor performance of the basic
“vanilla” ICP algorithm on these data sets (as most cases
converged to local minima due to the symmetries), the detailed
registration results are omitted. As there exist improvements to
the ICP algorithm to deal with these local minima issues, this
analysis rather focuses on execution time, as this is a common
factor of comparison among the ICP-based algorithms. A dual-
processor Pentium III 600-MHz Windows 2000 PC was used
to provide the results. As reported in Table I, it is observed that
when the number of points in the range image is doubled, the
average completion time for ICP more than doubles, where-
as the completion time for the proposed algorithm remains
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relatively constant for a particular parameter set. The proposed
approach also appears as being less sensitive to the data set
size while performing much faster than the classical ICP.

VI. CONCLUSION

This paper demonstrates that the frequency domain registra-
tion is practical and reliable, even when applied on large data
sets due to its scalability. The proposed registration technique
extends previous work and provides strategies to achieve effi-
ciency gains, in particular, those pertaining to the determination
of the axis and angle of rotation, without deteriorating the
registration parameters’ accuracy. In addition, the described
algorithm is able to start the registration estimation process
from a raw cloud of 3-D points without requiring any initial
estimate and does not tend to converge toward local minima
solutions as is observed when using the ICP class of techniques.
A set of experimental results demonstrates the robustness, the
scalability, and the computational stability of the new frequency
domain registration algorithm when applied to simulated and
real data sets.
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