
1734 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 5, OCTOBER 2006

A Computational Technique for Free Space
Localization in 3-D Multiresolution
Probabilistic Environment Models

Pierre Payeur, Member, IEEE

Abstract—Probabilistic modeling of two-dimensional or three-
dimensional (2-D or 3-D) objects and working environments as
quadtrees and octrees encoded with multiple resolutions repre-
sents a new trend with numerous applications in computer vision
and robotics. The development of neighbor-finding techniques
adapted to these tree structures appears as a critical issue for
such models to be used properly, especially for path planning and
collision avoidance where free space localization is essential. In this
paper, a generic neighbor-finding framework that is based on a re-
cursive addressing scheme directly operating on a hierarchical tree
structure without the need for preprocessing of raw occupancy
measurements generated by range-sensing devices is presented.
Neighboring cell addresses are processed in a way similar to basic
arithmetic operations with carry given a displacement direction
and the address of a starting cell. Neighboring rule sets are derived
for a quadtree and extended to an octree. Special cases resulting
from multiresolution maps are handled, while the algorithm com-
plexity is kept low to ensure good performances. The approach is
developed and validated in the context of collision avoidance for
autonomous robotics.

Index Terms—Multiresolution maps, neighbor finding, path
planning, probabilistic modeling, virtual navigation.

I. INTRODUCTION

MODELING the environment in which an autonomous
system operates is a critical issue in robotic applications.

The availability and fast access to information about the clut-
tering of space are primordial for solving many problems in
this field. The selection of a model structure must thus be made
carefully while considering the faithfulness of the model to the
real world and the efficiency of data retrieval from the model.
Quadtrees and octrees demonstrate important advantages to
satisfy these requirements mainly because of their compactness
and their capability to represent multiresolution models that
provide higher performance in three-dimensional (3-D) space
representations.

Quadtrees or octrees are often confounded with Cartesian
grids. Indeed, both representations contain the same informa-

Manuscript received October 30, 2004; revised June 16, 2006. This work was
supported by the Canadian Foundation for Innovation, the Ontario Innovation
Trust, and the Natural Sciences and Engineering Research Council of Canada.

The author is with the Vision, Imaging, Video, and Autonomous Systems
Research Laboratory, School of Information Technology and Engineering,
University of Ottawa, Ottawa, ON K1N 6N5, Canada (e-mail: ppayeur@site.
uottawa.ca).

Digital Object Identifier 10.1109/TIM.2006.881028

tion. The difference resides in the encoding approach. The
Cartesian grid is a bounded region of two-dimensional (2-D)
or 3-D space that is recursively subdivided in two along each of
its axes. As the subdivision level increases, the grid resolution
also increases. If each cell is tagged with the occupancy state
of the corresponding space, this results in a representation of
increasing precision. Models can also be built with multiple
levels of resolution depending on the uniformity of space state.

The concept of quadtrees has been introduced by Klinger [1]
in the early 1970s and thereafter extended to 3-D space.
Quadtrees and octrees are directly associated to Cartesian grids
as they provide more compact encoding structures [2]. The
principle consists of associating one branch of the tree to
each cell of the Cartesian grid. This branch can be recursively
subdivided into multiple subbranches (four for a quadtree and
eight for an octree). The mother branch that corresponds to the
entire modeled volume is seen as the root of the tree. When a
branch does not need to be further subdivided, it is considered
as a terminal leaf to which the occupancy state of a given region
of space, or any other type of information, can be attached.

From the standpoint of geometry, the analogy between
Cartesian grids and quadtrees or octrees is shown in Fig. 1.
However, an important difference between these encoding
schemes is that tree structures do not contain any direct infor-
mation about the Cartesian position of a given cell. All cells are
defined in relationship with the origin and the size of the mother
cell that represents the entire volume that is modeled. The
traversal path from the mother cell to a cell of interest in the tree
structure is then the only way to locate a given area or volume.

Several applications of quadtrees and octrees require means
of computing spatial displacements based on the geometric cell
connectivity in the model as if it were encoded in a Cartesian
grid. Split-and-merge segmentation in computer vision, ob-
jects’ properties estimation in biomedical imaging [3], and
collision-free path planning for robots [4] are all important
examples of such applications. In the later case, a neighbor-
finding technique is needed to identify free paths among a set of
objects. In the case of a manipulator where the entire structure
of a robot needs to be moved without colliding with the environ-
ment, the number of cells to validate is significantly increased
in 3-D space in comparison with the problem of mobile robot
path planning that is often limited to the displacement of a
single point on a planar surface. An efficient neighbor-finding
technique is therefore essential to quickly locate connected free
space areas in 3-D volumes.

0018-9456/$20.00 © 2006 IEEE

PAYEUR: FREE SPACE LOCALIZATION IN 3-D MULTIRESOLUTION PROBABILISTIC ENVIRONMENT MODELS 1735

Fig. 1. Two-dimensional and 3-D Cartesian grids and corresponding quadtree and octree.

Neighbors are easy to identify in a Cartesian grid (even 3-D)
since the origin and the size of each cell are known. It is then
easy to jump from a given cell to one of its neighbors with the
help of standard Cartesian coordinates. On the other hand, in
a tree structure model of the workspace, neighboring leaves no
longer coincide with geometrically adjacent cells in space, and
steps from a leaf to its neighbors must then be defined without
referring to Cartesian coordinates.

Several research works can be found on building and using
tree-based structures [5]–[7]. The majority of these publications
are concerned with 2-D space. The classical neighbor-finding
approach proposed by Samet is based on the search of a
common ancestor cell [8], [9]. This technique has been revisited
by Besançon [10], who designed a neighbor-finding algorithm
that relies on the encoding structure introduced by Ballard
and Brown [11]. The idea consists of backtracking in the tree,
starting from the initial cell, until a common ancestor of this
cell and its neighbor of interest is reached. From this point, the
algorithm goes down the tree and reaches the desired neighbor
cell. This approach takes advantage of the recursive structure
of the tree. Logical functions are introduced to verify the
neighboring status between two given cells, and the algorithm
is designed to minimize backtracking. For this reason, it stops
as soon as the first common ancestor is found. Nevertheless,
it tends to generate long traversals of the tree before a valid
ancestor can be found, especially in 3-D models. In addition,
neighbor finding between corner neighbors appears to be more
difficult to process than between face neighbors.

Some straightforward approaches exploit the size of the
model rather than the tree structure. Geometric data are encoded
in the cells, such as the coordinates of the origin and the size
of each cell. With this information available, the identity of
a neighbor cell in a given direction is easily computed. In
retrospect, such a technique is equivalent to encoding the model
as a Cartesian grid rather than a quadtree or an octree. The
advantages of tree structures, such as their compactness, are
then lost. Variations of such strategies include the work of
Klinger and Rhodes [12], who propose to identify a sister cell in
a given direction in a quadtree by means of a sequence of prim-
itive displacements. For this purpose, some complex primitives
that lead to an important computational load are used. Other
researchers propose to add some data inside of each branch or

leaf of the tree in order to keep the identity of every neighbor
cell. Hunter and Steiglitz [13] call this supplementary informa-
tion ropes that are inserted in the model during its building.
These ropes allow us to directly access the neighbor cell in a
given direction without the need for a neighbor search while
the model is in use. On the other hand, extra memory space
is required to store the ropes, and the neighbor-finding process
complexity is not reduced since all neighbors must be computed
for every cell while the model is built. Because only a small
percentage of ropes are actually used in a given application, the
computing time is wasted in preprocessing many ropes that will
never be used.

Address-based computational search strategies have also
been proposed as extensions to the original encoding schemes
primarily aiming at reducing storage space. Gargantini
[14], [15] introduces the concept of linear quadtrees that encode
discrete data (black or white pixels) and associates generic
addresses to a 2-D binary array of cells of equal size. An algo-
rithmic procedure is proposed for adjacency determination that
manipulates the intermediate address representation, achieving
a computational time proportional to the number of resolution
levels. The addressing framework is robust to variations in the
number of resolution levels, but the constraints imposed on
the discrete nature of the data being encoded in an array of
cells of equal size preempt the direct use of linear quadtrees
with multiresolution probabilistic maps. Schrack [16] proposes
the use of dilated integers to simplify the classical addition
operation on the coordinates of a cell to determine its location
code or address, achieving constant-time operation. Although
this framework is extended from quadtrees to octrees, it is also
designed for equal-sized neighbors.

Binary trees (bintrees) that recursively subdivide space until
uniform regions are achieved have also been proposed to pro-
vide more compact models than classical quadtrees and octrees
[17], [18]. From this representation, neighbors can be identified
through a combination of algebraic and logical operations with
a complexity proportional to the size of the model encoded as
a bintree. This approach allows us to handle multiresolution
models and finds neighbors of different sizes as long as the
neighbor cell is equal or larger than the starting cell, but
the recursive subdivision operation implies that discrete data
are encoded to create uniform regions, and the preprocessing

1736 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 5, OCTOBER 2006

Fig. 2. Various classical addressing schemes for 2-D Cartesian grids. (a) Shu and Kankanhalli. (b) Samet. (c) Major et al.

phase required to convert an occupancy grid into a bintree
representation is inappropriate for the dynamic environment
mapping often found in robotic applications.

This paper, which is an extended version of [19], proposes
a neighbor-finding approach operating directly on a multires-
olution tree structure encoding nondiscrete data (probabilistic)
and implies neither any backtracking in the quadtree or octree
nor the encoding of any supplementary data in the model. This
method is validated for 2-D and 3-D models (quadtrees and
octrees). The algorithm is based on an addressing scheme that
identifies each cell with a specific logical tag. Starting from a
given address, the addresses of neighbor cells are computed
using simple algebra, which is defined in lookup tables, that
depends on the displacement direction and on the address of
the starting cell. Special cases resulting from different cell sizes
are also handled efficiently by the framework.

Section II provides details about the selected addressing
scheme of cells in quadtree and octree structures. Section III
describes the proposed address-based neighbor-finding algo-
rithm for a 2-D model (quadtree). In Section IV, the approach
is generalized to 3-D models (octrees). Section V presents
considerations about model encoding and neighbor finding
in multiresolution models and examines the effect of model
borders on the neighbor search algorithm. Section VI discusses
the complexity of the approach. Finally, Section VII examines
applications to free space localization in multiresolution prob-
abilistic occupancy maps for robot path planning and presents
some experimental results.

II. CELL ADDRESSING

The basis of the proposed free space localization algorithm
in quadtrees and octrees consists of an addressing scheme
that associates a numerical identity with each branch and each
leaf of the tree structure. Various classical addressing schemes
have been considered. For instance, Shu and Kankanhalli’s
addressing method [3] relies on the subdivision level L and on
the relative coordinates (x, y) of a given cell with respect to the
origin, as shown in Fig. 2(a). Here, the concept is presented on
a 2-D multiresolution grid for clarity. The address associated
with each cell is of the form (L, x, y), where the mother cell
receives the address (0, 0, 0). This type of addressing creates

a tree for which it is not required to use pointers that connect
leaves and branches to each other. It results in a simple structure
but at the expense of a complex set of logical rules to process the
addresses. Especially, a complete update of all addresses is re-
quired if the subdivision level of a part of the model is changed,
making this encoding inadequate for dynamic modeling.

Samet [6] proposes a continuous addressing scheme, as
shown in Fig. 2(b). The address grows with the number of
independent cells in the grid. In spite of the relative simplicity
of this addressing approach, it appears to be difficult to define a
standard numbering strategy since the subdivision level of each
region of space is not known a priori in a model in evolution
like that found in autonomous robotics. Major et al. [20]
propose a structured addressing method, as shown in Fig. 2(c).
Cells are incrementally numbered from 0 to 3 following a fixed
scanning pattern of the four children (for a quadtree) resulting
from the subdivision of a mother cell. The number of digits
varies with the resolution level as one digit is associated with
each level starting from the lowest one (the entire model). As
in the example of Fig. 2(c) for a 2-D map, the mother cell is
tagged 0 while its four children are, respectively, tagged 00, 01,
02, and 03 in a predefined order. In accordance with this pattern,
the four children of the second child (01) are, respectively,
tagged 010, 011, 012 and 013.

This addressing follows a logical numbering scheme that
depends on the resolution level of each cell. For this reason,
it remains perfectly independent from the subdivision state of a
given region and allows dynamic addressing of multiresolution
grids. Local addresses can easily be updated following the need
to increase or decrease the resolution of some areas of the model
or to merge groups of cells exhibiting similar characteristics.
This scheme then provides the required flexibility and adapt-
ability for complex environment representations. Moreover, this
addressing scheme can directly be extended to 3-D space,
where the subdivision of a cell results in eight children instead
of four. For instance, the eight children of the first 3-D mother
cell would receive, respectively, the addresses 00, 01, 02, 03,
04, 05, 06, and 07, as shown in Fig. 3(b).

It must be noted that the definition of the scanning pattern and
the location of the origin are not critical issues. The ordering of
addresses can vary, provided that the same scanning pattern is
consistently applied at every resolution level and that the same

PAYEUR: FREE SPACE LOCALIZATION IN 3-D MULTIRESOLUTION PROBABILISTIC ENVIRONMENT MODELS 1737

Fig. 3. Incremental addressing scheme in (a) 2-D space and (b) 3-D space.

numbering structure is preserved. The repetitiveness character-
istic that results is essential to take advantage of the addressing
scheme for neighbor cell identification in 2-D or 3-D space. In
a previous work on probabilistic quadtree modeling of mobile
robot environments, Tremblay [21] used an addressing pattern
similar to that of Major et al., except that the origin is located
at the bottom-left corner of the first mother cell, as shown in
Fig. 3(a). In this paper, the Major et al. addressing scheme is
combined with Tremblay’s scanning pattern and extended to
3-D space modeling, as shown in Fig. 3(b). The numbering
order is defined in accordance with the standard x-, y-, and
z-axes. Although this is not critical for the validity of the
proposed neighbor-finding approach as demonstrated in the fol-
lowing sections, this choice leads to a simpler implementation.

III. NEIGHBOR IDENTIFICATION IN

QUADTREE STRUCTURES

The proposed neighbor-finding technique results from the
logical behavior of the selected addressing scheme. Close ob-
servation of the addressing structure leads to a generic set of
rules that determine the address changes when one moves from
a given cell to its neighbor for each possible direction. The
advantage is that these rules are similar to elementary arithmetic
operations with carry on the next left digit that composes
the address. Therefore, they can be efficiently processed on
any computer. Moreover, no particular encoding needs to be
defined as in Gargantini’s and Schrack’s approaches [15], [16].
Selection of an incremental and coherent addressing scheme is
the only constraint to meet since the rules are defined in ac-
cordance with this scheme. However, any coherent pattern can
be used as the rules only slightly differ between two different
addressing schemes but can be obtained similarly, making the
proposed approach general. In this section, a neighboring rule
set is developed for the addressing scheme defined in Fig. 3(a)
for quadtree models. The extension of these rules to octrees

Fig. 4. Two-dimensional Cartesian grid with various levels of resolution.

for the corresponding 3-D addressing scheme is presented
in Section IV.

To illustrate the rule definition process, let us consider the
2-D Cartesian grid shown in Fig. 4. Possible directions of
displacement are identified by means of cardinal directions.
In the 2-D problem, these are north (N), south (S), east (E),
west (W), northeast (NE), northwest (NW), southeast (SE),
and southwest (SW). Therefore, neighbors can be grouped into
two categories, namely 1) “edge neighbors,” located in the N,
S, E, and W directions and 2) “vertex neighbors,” located in
the NE, NW, SE, and SW directions. In order to define the
neighboring rules, we examine how addresses are modified
when a displacement occurs along each of these directions. The
relative position of the starting cell among the four children also
affects the definition of the rules.

“Sister cells” are defined as the four cells (in 2-D space) that
result from the subdivision of the same mother cell. “Cousin
cells” are defined as cells whose mother cells are sister cells.
From there, neighboring rules are built by successively compar-
ing only the digits of the cells’ addresses that correspond to the
same level of resolution, that is, the digits that occupy the same
position in the address expression. The computation is thus per-
formed one level at a time starting at the highest resolution level
(the right-most digit) until the lowest resolution level is reached
(the left-most digit). Based on these remarks and observing
Fig. 4, the following observations may be established.

A. Edge Neighboring Between Sister Cells

Moving from the cell tagged 0112 in the S direction implies
that only the right-most digit is affected. The address changes
from 0112 to 0110. Hence, moving down to the S direction
from child number 2 within a group of four sister cells always
conducts to child number 0 at the same level of resolution. This
behavior occurs for all levels of resolution and for any area of
the grid. In a similar manner, starting from child number 2 and
moving in the E direction always conducts to child number 3 at
the same level of resolution. Considering cell 0112 as the start-
ing one, the neighboring cell address in the E direction is 0113.

According to these observations, for any group of sister cells,
a subset of the neighboring rules can be established: the digit of

1738 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 5, OCTOBER 2006

interest changes from 0 to 1 or from 2 to 3 when moving in
the E direction, from 0 to 2 or from 1 to 3 in the N direction,
from 1 to 0 or from 3 to 2 in the W direction, and, finally,
from 2 to 0 or from 3 to 1 in the S direction. These facts
are a direct consequence of the selected addressing scheme.
Therefore, neighboring rules need to be slightly modified if
another addressing scheme is used. However, the definition
process remains identical and needs to be performed only once,
i.e., when the scheme is selected.

B. Edge Neighboring Between Cousin Cells

Moving from the cell tagged 0112 in the W direction implies
that the right-most digit changes to 3, as seen in Fig. 4, but
the next digit starting from the right-most one must also be
modified. This illustrates the second important phenomenon
defining the neighboring rule set. When a displacement from a
given cell to its neighbor implies a change in the parents of these
cells, the digit associated with the parent resolution level is also
affected. Neighboring rules must then be applied successively
to each digit starting from the right-most one, until the affected
parent resolution level is reached. For example, starting from
0112 and moving in the W direction first implies that the right-
most digit 2 is changed for a 3. Next, the second digit starting
from the right (i.e., 1) is changed to a 0 since the movement
is toward the W direction (parents are sister cells). The two
left-most digits 01 are not affected since the grandparents of
the starting cell and of the neighbor cell are the same. The
complete address of the neighbor cell is then computed in two
steps and results in 0103. In terms of computation, moving from
a parent to another is similar to the application of a carry on
the immediate left digit in elementary arithmetic. Processing a
carry, to which a direction is associated here, follows the same
neighboring rules as those applied to the previous digit.

C. Vertex Neighboring Between Sister Cells

For vertex neighbors, the rule definition follows the same
logic. For example, if one moves from the cell tagged 0112 in
the SE direction, the cell tagged 0111 is reached. Only the right-
most digit is affected since this corresponds to a displacement
between sister cells. In accordance with the selected addressing
scheme, digits are changed from 2 to 1 in the SE direction, from
1 to 2 in the NW direction, from 0 to 3 in the NE direction, and
from 3 to 0 in the SW direction. These displacements do not
imply carries since they occur between children of the same
parent cell.

D. Vertex Neighboring Between Cousin Cells

Since reaching a neighbor cousin cell implies a change in
the parent cell, the principle of carries of the left digits is
applied as with edge neighboring between cousin cells. For
example, starting from the cell tagged 0112 and moving in the
SW direction, the right-most digit changes from 2 to 1, and a
carry is applied on the second right-most digit that is initially 1.
A W-directed displacement is associated with this carry since
the neighbor parent 010 is located in the W direction with

respect to the starting cell parent 011. The rule defining this
movement between sister cells from a child tagged 1 toward the
W direction is then applied, and the second right-most digit is
changed from 1 to 0. Once again, the grandparents are the same;
therefore, the two left-most digits 01 are not affected. Finally,
the complete address of the neighbor cell is 0101.

E. Distant Relationship Neighboring

It can occur that carries are transmitted to more than one
left digit. This corresponds to displacements that imply geo-
metrically neighboring cells whose parents are not sister cells
or cousin cells. The relationship between these cells is located
at a lower resolution level, for instance, at the grandparent
level or beyond. Such a situation occurs if one moves in the
SW direction from the cell tagged 0102 in Fig. 4 to reach cell
0011. Modification to the right-most digit from 2 to 1 brings a
W-directed carry of the second right-most digit since parents
are changed from 010 to 001. The carry calls the neighboring
rule from a 0-tagged cell in the W direction. This results in a
1-tagged cell and in the occurrence of a new W-directed carry
on the third right-most digit since a grandparent change is also
implied. This new carry calls again the neighboring rule set for
a move from a 1-tagged cell in the W direction. In accordance
with the selected addressing scheme, this brings a 0-tagged cell.
Therefore, the grandparent address is changed from 01 to 00.
This last call to the neighboring rule set does not imply any
other carry and address processing is stopped, resulting in the
final address being 0011.

This example demonstrates the generality of the proposed
approach. An elementary rule set defined from the observation
of address modification between edge neighbors and vertex
neighbors for sister and cousin cells is applied successively to
each resolution level until a common parent cell is reached.
Because of the recursive structure of the quadtree, this situation
must occur. In the worst case, neighboring rule set processing
continues until the second left-most digit is reached, but this
occurs only when the boundaries between each of the four
children of the global mother cell are traversed. In the large
majority of situations, the carries on the left digits are limited
to higher levels of resolution (few right-most digits).

Although a given number of carries might be required to
find the address of a neighbor cell, no backtracking in the
tree structure is performed. Only arithmetic manipulations on
the address digits are necessary once the rule set is defined
for a given addressing scheme. This significantly speeds up
processing as the model stored in memory does not need to
be accessed before the final address is computed given that no
validation of the actual neighboring status between cells needs
to be performed. Computation of the destination cell’s address
with the proposed computational technique ensures that only
valid neighbors are reached in the desired direction, provided
that such neighbors exist in the model. Otherwise, the closest
available ancestor is automatically identified.

The application of the neighboring rule set is driven by
two simple principles. First, processing an address always
begins with the right-most digit (the highest resolution level)
and successively proceeds to the left as carries are generated.

PAYEUR: FREE SPACE LOCALIZATION IN 3-D MULTIRESOLUTION PROBABILISTIC ENVIRONMENT MODELS 1739

Fig. 5. Generic neighboring rule set for a quadtree structure.

Second, processing is based on the initial value of the digit in
the starting cell’s address and on the displacement direction.
These two parameters (initial value and direction) alone deter-
mine the unique rule to apply to identify the appropriate new
value for the considered digit. Given its simplicity, the set of
rules is advantageously encoded in a lookup table to speed up
processing.

Fig. 5 graphically summarizes the entire set of rules for
quadtrees associated with the selected addressing scheme
described in Section II. This diagram defines the algebra to be
used for a 2-D map. The numbers in square boxes correspond
to each possible value of the digit in a given position of the
initial address, while arrows represent displacement directions
in accordance with the compass card. Alphanumeric codes at
the extremity of the arrows define the required operation to be
performed to compute the new address. When only a number
(0, 1, 2, or 3) is indicated, this means that the initial value of the
digit must be replaced by this number, and no carry is generated
(sister cells neighboring). The addition of a carry mark (+x)
indicates that a carry in the x-direction must successively be
applied on the digit located immediately to the left of the
considered digit in the cell address. For example, starting from
cell tagged 031 in Fig. 4 and moving in the S direction first calls
the rule defined by the square tagged with a 1 (the right-most
digit). Looking in the S direction indicates that the processing
rule is 3 + S. This means that the digit value 1 is replaced by 3
and that a carry in the S direction must be applied to the second
right-most digit, i.e., the 3 in the initial address (031). The carry
then calls the rule defined by the square tagged with a 3 in the
S direction, and the processing rule indicates that only this digit
3 must be replaced by a 1. No more carry is generated. The
neighbor cell address of cell 031 in the S direction and for
the same level of resolution is then 013. For implementation
purposes, this rule set is encoded as a lookup table presented
in Table I.

IV. NEIGHBOR IDENTIFICATION IN OCTREE STRUCTURES

As shown in Fig. 3(b), the addressing scheme and the def-
inition of the neighboring rule set in 3-D structures (octrees)

follow the same idea as for the 2-D case. However, the number
of rules increases as a consequence of the additional number of
neighbors. The number of potential displacement directions is
limited to eight in 2-D space but reaches 26 directions for the
3-D case, as shown in Fig. 6.

For 3-D space, neighboring relationships can be grouped
into three categories, depending on the type of intersection
that exists between cells in a given direction. “Face neighbors”
occur in the N, S, E, W, front (F), and rear (R) directions. “Edge
neighbors” occur in the NE, NW, SE, SW, front E (FE), front
W (FW), read E (RE), rear W (RW), front N (FN), front S
(FS), rear N (RN), and rear S (RS) directions. Finally, “vertex
neighbors” occur in the front NE (FNE), front NW (FNW),
front SE (FSE), front SW (FSW), rear NE (RNE), rear NW
(RNW), rear SE (RSE), and rear SW (RSW) directions.

Neighboring rules are defined based on a close inspection
of the address behavior when a displacement in each possible
direction occurs and for each of the eight possible children
that result from the subdivision of a mother cell in an octree.
The principle of a carry applied to the immediate left digit is
preserved. The resulting set of rules that defines the algebra for
an octree is presented under the form of three lookup tables in
Tables II–IV, respectively, for each of the three categories of
neighbors found in 3-D space. The method to define these rules
is identical as for quadtrees, except that extra directions need to
be considered.

Using this augmented set of rules for processing addresses
of neighboring cells in an octree follows the same steps as in
a quadtree. For example, if one moves in the FNW direction
starting from the octree cell tagged 0742 that can be located
by pursuing recursive subdivisions in Fig. 3(b), this consists of
a vertex-type neighboring relation that makes use of Table IV.
This table reveals that for a right-most digit value equal to 2
and a displacement in the FNW direction, the initial digit value
must be replaced by a 5 and that a carry in the NW direction is
applied on the following left digit, e.g., 4 in the initial address.
This carry implies an edge-type neighboring relation. As a
result, the line labeled 4 in Table III is consulted for the NW
direction and indicates that the digit value of 4 must be replaced
by a value of 7 and that a new carry is generated in the W
direction and applied to the following left digit, e.g., 7 in the
initial address. This carry corresponds to a face neighbor and
calls, as a final step, for Table II to be consulted to determine
that, for an original digit value of 7 with a displacement in the
W direction, the value must be replaced by a 6, and no more
carry is generated, thus completing the processing of the ad-
dress. Therefore, the neighbor cell address from 0742 in the
FNW direction is 0675. This can be verified geometrically by
close inspection of Fig. 3(b).

V. MULTIRESOLUTION MODELS AND BORDER EFFECTS

Some special cases must be considered to ensure the gener-
ality of the proposed neighbor-finding algorithm. These cases
are concerned with multiresolution models and border effects.
This section demonstrates that the previously defined set of
neighboring rules for quadtrees and octrees is applicable in all
circumstances.

1740 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 5, OCTOBER 2006

TABLE I
LOOKUP TABLE IMPLEMENTING THE NEIGHBORING RULE SET FOR A QUADTREE STRUCTURE

Fig. 6. Twenty six possible directions of displacement in 3-D space.

TABLE II
LOOKUP TABLE FOR FACE NEIGHBORING RULE SUBSET

IN AN OCTREE STRUCTURE

A. Multiresolution Models

The neighboring rules for 2-D and 3-D spaces that have been
introduced in the previous sections automatically provide the
address of a neighbor cell at the same level of resolution in a
given direction. This is appropriate for classical Cartesian grids
that contain a uniform level of subdivision and do not aim at
reducing memory space requirements by combining identical
cells. However, such models are not optimal, and Cartesian
grids with several levels of resolution are best suited in most
applications where model size is significant, and efficient tra-
versal of the model is required.

The rule sets previously defined remain entirely valid for
such multiresolution grids encoded as quadtrees or octrees.
In the implementation used to develop and test the proposed
framework, octree data structures are encoded as pointer-based
recursive chained lists containing only the data about the
modeled environment, that is, the occupancy probability of a
given volume of 3-D space. Compression of the tree structure
is not achieved through sequence encoding, as proposed in
Gargantini’s linear trees [14], [15], or in a similar work, given
that the probabilistic models are not suitable for such compres-

sion operation because of the nondiscrete nature of the data
they contain. Instead, the use of a tree structure with multiple
resolutions, which varies locally in accordance with the content
of the environment, provides an efficient way to keep storage
space requirements within practical limits while minimizing
the effort required to access the data, but the existence of
leaves corresponding to physical cells of various sizes calls for
an adapted neighbor search technique due to complex border
effects that occur between nonsister cells that might be of
different sizes.

Beyond the ability to handle tree structures containing mul-
tiple resolution levels, the proposed approach is independent of
the number of resolution levels as the set of rules is generic
and remains exactly the same for all resolutions. In fact,
resolution level management does not have an impact on the
defined neighboring rules but rather influences functions that
provide access to the data contained in the tree structure. As
a consequence, these access functions can use the addresses
provided by neighboring rules in such a way that cells at the
proper level of resolution are reached. If the addressing scheme
is defined as having one digit per resolution level, it can be used
advantageously in the management of access to data encoded
into a quadtree or an octree without impeding the proposed
neighbor identification procedure. Moreover, the addressing
scheme works as a computational artifact that does not need
to be explicitly encoded into the model as numerical values
associated with each digit of a given address directly map to
the corresponding pointer in the data structure. The existence
or nonexistence of a cell corresponding to an address at a given
level of resolution is determined by accessing the tree structure
up to the last available digit, as pointed out by the address.

Given this operational framework, two special cases must,
however, be considered to ensure the generality of the proposed
approach. The first one is that of a cell whose neighbors are
defined at a lower resolution level in a given direction. The
neighboring rules then provide an address that corresponds to a
cell that is not defined. In other words, the neighbor cell address
computed by the proposed approach has too many digits. The
access function to data contained in the model is designed
such that it stops the descent into the tree when a terminal
leaf is reached although the target address corresponds to a
branch that is supposed to be further subdivided. An example
is shown in Fig. 7, where the E direction neighbor of cell
0013 is only defined with a resolution that is one level lower.
The neighbor cell with the highest resolution available in the
selected direction is 010, while the target address provided
by the neighboring rules is 0102. The access function then
automatically reports the data contained in the cell tagged 010

PAYEUR: FREE SPACE LOCALIZATION IN 3-D MULTIRESOLUTION PROBABILISTIC ENVIRONMENT MODELS 1741

TABLE III
LOOKUP TABLE FOR EDGE NEIGHBORING RULE SUBSET IN AN OCTREE STRUCTURE

TABLE IV
LOOKUP TABLE FOR VERTEX NEIGHBORING RULE SUBSET IN AN OCTREE STRUCTURE

Fig. 7. Searching for a cell whose address corresponds to a higher resolution
level than that of the defined neighbor cell.

since it represents the closest available parent of cell 0102,
which is the address of the former being encoded by default
in the address of the target cell.

The problem is more complex if, in the region of interest,
the Cartesian grid is subdivided into a higher resolution level
than that of the starting cell. This situation occurs when a given
cell has several edge neighbors in a given direction, as shown in
Fig. 8. In such a case, the address provided by the neighboring
rules does not have enough digits to drive the access function
up to the terminal leaves. However, determining a neighboring
relationship just by a starting point and a direction of displace-
ment does not provide any means to identify which neighbor
cell should be selected as the “best” neighbor in a particular
application such as, for instance, free path localization. As this
task heavily depends on the requirements of the application,

Fig. 8. Example of a cell with several face neighbors in the E direction.

it is better defined in the application’s algorithm, which also
provides the access function to the model with a neighbor selec-
tion criterion that is suitable for the application. For instance, in
a collision-free path planning application based on occupancy
grids, the selection would be made based on the lowest risk
of finding an obstacle among the four neighbor candidates
identified in the example of Fig. 8.

However, a restricted number of addresses are valid candi-
dates as neighbors of a given starting cell. Fig. 9 illustrates
this phenomenon for a 2-D Cartesian grid. In this example, we
observe that only cells 0300 and 0301 can be the neighbors of
cell 012 in the N direction. In other words, only the children
0 and 1 of the following resolution levels are valid neighbors
when one moves toward the N direction. Similarly, the NE
neighbor of cell 012 can only be the cell 03100, that is, the

1742 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 5, OCTOBER 2006

Fig. 9. Particularity of neighboring with multiple neighbors in the N and NE
directions.

Fig. 10. Validating rules for multiple neighbors in 2-D space determining
valid candidate children at a higher resolution level for each direction.

successive children 0 and 0 of the following resolution levels
when one moves in the NE direction.

These observations depend on the selected addressing
scheme, but only the numerical values are affected, while
the general principle remains the same. Validating rules are,
therefore, added to the elementary set of neighboring rules
to help in dealing with such situations. Fig. 10 presents this
limited set of extra rules for multiple neighbors in 2-D space
(quadtree) for the addressing scheme defined in Section II. For
each direction of displacement, the valid addresses of neighbor
cells are indicated. The numbers correspond to the children of
the next resolution level that can be considered as neighbors
in a given direction. These rules only depend on the direction
of displacement and are related neither to the initial resolution
level nor to the initial digit values as for the neighboring rules
defined previously. Fig. 11 presents similar validating rules for
multiple neighbors in 3-D space (octree).

In relation with the example in Fig. 9, where the N direction
neighbors from cell 012 are to be identified, the three left-
most digits (030) of the neighbor’s address are computed by
the standard arithmetic procedure, while the set of extra rules
provides the values for the fourth digits that are valid along
that direction, that is, 0 and 1. Therefore, the resulting neighbor
candidates addresses are, respectively, 0300 and 0301. Starting

Fig. 11. Validating rules for multiple neighbors in 3-D space determining
valid candidate children at a higher resolution level for each direction.

from the root node, a descent in the tree structure allows us to
verify their existence and whether they are further subdivided,
in which case, the extra rules apply recursively to add an extra
digit to both addresses in order to determine their valid children
cells 03000, 03001, 03010, and 03011 as immediate neighbors
to 012 in the N direction. This recursive procedure continues
until the highest level of resolution is reached in the related
branch of the tree structure.

Similarly, the immediate NE direction neighbor address from
cell 012 is computed to be 031 through the arithmetic proce-
dure. This seed address is then padded twice to the right by the
extra validation rules with 0 and 0, respectively, as the descent
in the tree structure indicates that subsequent divisions exist and
requests the address for the valid children cells that are encoded
as pointers. The descent finishes when leaf 03100 is reached,
which is the highest resolution level leaf encountered in that
branch of the tree structure.

B. Neighbors Along Model Boundaries

Special care must also be taken when neighboring rules are
applied along the model boundaries. Cells outside these bound-
aries do not exist because they are not contained in the bounded
space that is modeled. To illustrate such a situation, we might
consider the cell tagged 002 in the grid of Fig. 4. Searching for
a neighbor in the W direction leads outside of the grid. In a
similar way, for 3-D grids, no neighbor cells exist in the R and
E directions from the cell tagged 01, as shown in Fig. 3.

Such problems are easy to detect in a geometric model.
However, as mentioned previously, a quadtree or an octree does
not contain explicit information about the geometric location of
a given cell in Cartesian space. These data are rather encoded
into the tree structure. Nevertheless, attempting to reach a cell
that is located outside of the model corresponds in all cases to
try to access a cell that is a neighbor of the global mother cell
that delimits the entire model. Such an operation would consist
of replacing the value 0 (main mother cell) of the left-most digit

PAYEUR: FREE SPACE LOCALIZATION IN 3-D MULTIRESOLUTION PROBABILISTIC ENVIRONMENT MODELS 1743

in an address. The current implementation preempts such an op-
eration on the left-most digit and rather generates an error flag,
indicating that there is no neighbor in the specified direction.

Another alternative would consist of adding supplementary
rules to connect opposite sides of the model to each other, which
is similar to the wraparound model resulting from the normal-
ization operation required by the definition of dilated integers
proposed by Schrack [16]. With such rules, searching for a cell
that is located outside of the model would lead to the address of
a neighbor cell located on the opposite face of the global grid.
This could be an interesting strategy and would be easily im-
plemented following the proposed logic. However, for the kind
of applications that are of interest here, such a mapping would
make the representation incoherent with the geometric reality
of the world that is not defined in a circularly symmetrical
map but, rather, in a bounded Cartesian world. Therefore, it has
not been included in the current implementation. Nevertheless,
such an approach could be very useful in applications where
the geometric coordinates are angular variables, for instance,
path planning in the joint world reference frame for a revolute
manipulator robot. This possibility expands the flexibility of the
proposed neighbor identification strategy.

VI. ALGORITHM COMPLEXITY

The complexity of the proposed approach only depends on
the number of digits to be processed for finding a neighbor
cell address in a given direction. In other words, it depends
on the number of accesses that are made to the lookup tables
containing the rule set. The geometric location of neighboring
cells in the grid thus influences the complexity. As shown
above, sister neighbors are rapidly identified since no carry is
generated. Only one access to lookup tables is sufficient to
compute the neighbor cell address completely. In the case of
cousin cells, two digits must be changed, and for more distant
neighboring relationships, the number of accesses to the lookup
tables grows proportionally with the number of levels between
terminal leaves and their common ancestor in the tree structure.

Therefore, the maximum complexity of the proposed
neighbor-finding algorithm is O(p − 1), where p represents the
number of resolution levels in the octree that is equal to the
number of digits in the addresses for the highest resolution.
The left-most digit of the address is never processed as the
model is bounded. The maximum number of digits to estimate
is therefore limited to p − 1. As a result, this algorithm is sim-
pler in comparison with classical backtracking approaches that
search for a common parent cell before validating the neigh-
borhood relationship for all candidates by repetitively accessing
the model [8], [9]. Such classical strategies reach a maximum
complexity of O((22)p−1) for a 2-D model and O((23)p−1) for
a 3-D model. On the other hand, the proposed approach com-
pares well with techniques using compact encoding schemes,
such as linear quadtrees or dilated integers, and various alge-
braic rules, as introduced by Gargantini [15] or Schrack [16],
to achieve proportional O(p) or even constant-time opera-
tion, respectively. However, the latter methods mainly ad-
dress neighbor search over grids of a single and uniform
resolution representing only discrete-space parameters, such

as black and white pixels. This imposes limitations on the
content and distribution of the model that are not immediately
compatible with probabilistic mapping. The propose scheme
addresses these issues and provides a robust framework for
multiresolution continuous-space representations that are more
adequate for mapping environments with various levels of
complexity while offering similar computational performance
to state-of-the-art approaches.

The complexity of the proposed framework remains inde-
pendent of the dimensionality of the model (2-D, 3-D, or
more) since neighbor search is entirely computed on virtual
addresses that do not have extra digit positions for additional
spatial dimensions. One advantage of the arithmetic solution
comes from the fact that adding one level of resolution to the
model only adds one digit to all addresses, while extending the
dimensionality of the model only changes the range of possible
digit values but not their number. Taking advantage of this fact
and manipulating addresses by only accessing lookup tables
drastically limit the computational explosion typically associ-
ated with the manipulation of 3-D representation. Although
the complexity of the lookup tables grows with the number
of dimensions, the implementation of the proposed arithmetics
is straightforward, being limited to the encoding of one static
lookup table (Table I) for quadtrees or three static lookup tables
(Tables II–IV) for octrees.

VII. APPLICATIONS

Such an algorithm finds numerous applications in computer
vision and robotics. The context in which it has been designed
is concerned with collision avoidance for an autonomous ro-
bot. Quadtrees and octrees are used to model the occupancy
probability of regions of space [22], [23]. Using the proposed
set of rules for computing the addresses of neighboring cells
offers an efficient way to directly identify paths of empty space
connected with a given starting point (a given cell), no matter
the complexity of the scene encoded in the 2-D or 3-D virtual
representation. Starting from the actual configuration, the path
planning algorithm successively selects, among the candidates
identified by neighbor search, cells containing the lowest oc-
cupancy probability and progressively builds a collision-free
trajectory for the robot [24]. Such a process must be repeated
a very large number of times in a path planning operation
with collision avoidance to successfully connect volumes of
space through which all components of the structure of a
robot can safely circulate. Fig. 12 presents two examples of
the path planning operation based on free space identification
in 2-D space for a mobile robot and for a planar 4 degrees-
of-freedom manipulator. Two-dimensional space is considered
here for the sake of clarity; similar results were obtained in 3-D
space. We observe that an efficient neighbor technique directly
influences the performance of the path planning phase through
the determination of a proper sequence of movements.

The application context of path planning was used to validate
the correctness of the approach and of the implementation.
The critical point here is to ensure that the definition of rules
and their implementation in lookup tables are accurate and in
accordance with the selected addressing scheme, but since the

1744 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 5, OCTOBER 2006

Fig. 12. Path planning with collision avoidance for (a) a mobile robot and (b) a 4-degree-of-freedom planar manipulator.

TABLE V
COMPUTATION TIME COMPARISON BETWEEN THREE NEIGHBOR-FINDING SCHEMES

principle is somewhat repetitive, with only variations in the
labels following the direction of the search and the level of
neighboring between adjacent cells, this procedure is simpli-
fied. Our implementation was validated by simulating several
progressions in 2-D and 3-D space and visually inspecting the
correctness and connectivity between cells in the sequences that
were generated.

Moreover, in order to properly monitor the performance of
the proposed scheme, experimental evaluation was conducted
on several 2-D and 3-D environment configurations over which
a collision-free path was computed using 1) an implementa-
tion of the classical backtracking neighbor search proposed
by Samet [8], [9], 2) an implementation of a sequence-based
occupancy model performing bits manipulation inspired from
the linear quadtrees scheme [15], and 3) the proposed address-
based arithmetic approach in combination with a pointer-based
tree structure. While sequence-based encoding allowed to op-
erate on more compact models than the others, the focus of the
present evaluation was put on computational efficiency. Table V
summarizes the measured computation time needed to generate
a complete neighbor sequence of empty space cells as obtained
with each of the neighbor search techniques for a subset of 2-D
environment configurations that are presented in Fig. 13. Black
areas represent obstacles to avoid, while white areas are safe

regions to navigate. Apparent blurred regions around obstacles
correspond to zones with uncertainty on the occupancy state.

From these results, similar variations in computation time are
observed for all neighbor search approaches according to the
length of the path and complexity of the configuration in the
environment. However, general trends clearly show that the pro-
posed framework offers comparable computation performance
with the sequence-based encoding technique that also uses
heuristic schemes for adjacency determination. The proposed
arithmetic performs considerably faster than the traditional
backtracking strategy. On average, over our entire set of tests,
a reduction of 85% in computation time was observed when
the proposed scheme was compared to backtracking operation,
while a variation of only 2.5% was noticed when compared with
the sequence-based neighbor search [23]. These experimental
observations validate our theoretical complexity analysis and
follow our expectations.

Beyond immediate neighbor cell identification as considered
in our experiments, the computation of distance maps, which
are widely used in robotics and pattern recognition, can also
be processed with the neighboring rules presented here. As the
distance is usually computed as a propagation wave succes-
sively transmitted from one cell to its neighbors [25] to lead
to a diagram of safe free space [26], direct identification of

PAYEUR: FREE SPACE LOCALIZATION IN 3-D MULTIRESOLUTION PROBABILISTIC ENVIRONMENT MODELS 1745

Fig. 13. Environment configurations for neighbor search performance evaluation.

neighbor cells is extensively required. The approach can also
find important applications in medical imaging as octrees are
becoming more popular for 3-D representations of complex
organs [27]. In this case, neighboring rules can help in speeding
up the estimation of various parameters that characterize the
organs under examination and eventually lead to more accurate
diagnoses.

VIII. CONCLUSION

In this paper, a framework that provides fast neighbor cell
identification in multiresolution quadtree or octree models has
been presented. Encoding a spatial model as a compact quadtree
or octree results in the loss of the explicit geometric relationship
between the cells. This leads to difficulties in spatial displace-
ment management that can be overcome using the proposed
approach. Relying on a hierarchical addressing scheme of
cells and a set of algebraic rules encoded as lookup tables to
optimize performance, the technique provides a reliable and
efficient displacement strategy within multiresolution quadtrees
or octrees for a straightforward identification of free space in
robotic guidance tasks.

The algorithm is independent of the dimensionality of the
model, while its average performance evolves with the number
of resolution levels present in the model, which depends on the

desired accuracy of the representation and on the geometrical
distribution of objects in 2-D or 3-D space. However, as the
proposed framework is able to take full advantage of mul-
tiresolution encoding by dealing with multiple neighbors and
boundary effects, it provides a valuable solution to preserve
model compactness and low processing overhead without re-
quiring any coding conversion steps from occupancy grids that
are readily available from typical range-sensing systems.

Accurate neighbor identification is also achieved without
geometrical validation of the actual neighboring status of iden-
tified candidate cells. The information contained in the model
can be directly accessed by relying only on the addresses
computed, provided that a corresponding pointer-based tree
structure is used. Finally, the approach does not require any
supplementary information to be explicitly added in the model
and is not limited to encoding discrete data; thus it is compatible
with probabilistic maps.

The complexity is similar to other adjacency determination
approaches that also rely on variations of an addressing scheme
but often operate through an intermediate compact encoding of
the model, which is not directly suitable in a robotic context
given the dynamic component. Testing with 2-D and 3-D mul-
tiresolution probabilistic representations for the manipulator’s
path planning with collision avoidance demonstrated that the
computational explosion usually related with the addition of the

1746 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 5, OCTOBER 2006

third dimension in the model of the environment can be avoided
while providing reliable sequences of physically connected
cells for the robot to traverse. Although the algorithm has
been developed in the context of collision-free path planning
for autonomous robots, numerous other applications can be
envisioned, especially in the fields of computer vision, visual-
ization, and modeling.

ACKNOWLEDGMENT

The author would like to thank M. Soucy for his collabo-
ration in testing the proposed framework and the anonymous
reviewers for providing insightful comments.

REFERENCES

[1] A. Klinger, “Patterns and search statistics,” in Optimizing Methods in
Statistics. New York: Academic, 1971, pp. 303–307.

[2] H. H. Chen and T. S. Huang, “A survey of construction and manipu-
lation of octrees,” Comput. Vis., Graph. Image Process., vol. 43, no. 3,
pp. 409–431, Sep. 1988.

[3] R. Shu and M. S. Kankanhalli, “Efficient linear octree generation from
voxels,” Image Vis. Comput., vol. 12, no. 5, pp. 297–303, Jun. 1994.

[4] M. C. Martin and H. P. Moravec, “Robot Evidence Grids,” Robotics Inst.,
Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-RI-TR-96-06,
1996.

[5] H. Samet, “Region representation: Quadtrees from boundary codes,”
Commun. ACM, vol. 23, no. 3, pp. 163–170, Mar. 1980.

[6] ——, The Design and Analysis of Spatial Data Structures. Reading,
MA: Addison-Wesley, 1990.

[7] ——, Applications of Spatial Data Structures. Reading, MA: Addison-
Wesley, 1990.

[8] ——, “Neighbor finding techniques for images represented by quadtrees,”
Comput. Vis. Graph. Image Process., vol. 18, no. 1, pp. 37–57, 1982.

[9] ——, “Neighbor finding in images represented by octrees,” Comput. Vis.
Graph. Image Process., vol. 46, no. 3, pp. 367–386, Jun. 1989.

[10] J. E. Besançon, Vision par Ordinateur en Deux et Trois Dimensions.
Paris, France: Eyrolles, 1988, pp. 341–353.

[11] D. H. Ballard and C. M. Brown, Computer Vision. Englewood Cliffs,
NJ: Prentice-Hall, 1982.

[12] A. Klinger and M. L. Rhodes, “Organization and access of image data
by areas,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 1,
pp. 50–60, Jan. 1979.

[13] G. M. Hunter and K. Steiglitz, “Operations on images using quad trees,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, pp. 145–163,
Apr. 1979.

[14] I. Gargantini, “Linear octrees for fast processing of three-dimensional
objects,” Comput. Graph. Image Process., vol. 20, no. 4, pp. 365–374,
Dec. 1982.

[15] ——, “An effective way to represent quadtrees,” ACM Commun., vol. 25,
no. 12, pp. 905–910, Dec. 1982.

[16] G. Schrack, “Finding neighbors of equal size in linear quadtrees
and octrees in constant time,” CVGIP, Image Underst., vol. 55, no. 3,
pp. 231–239, May 1992.

[17] C. Y. Huang and K. L. Chung, “Fast operations on binary images
using interpolation-based bintrees,” Pattern Recognit., vol. 28, no. 3,
pp. 409–420, Mar. 1995.

[18] ——, “Faster neighbor finding on images represented by bincodes,”
Pattern Recognit., vol. 29, no. 9, pp. 1507–1518, Sep. 1996.

[19] P. Payeur, “An optimized computational technique for free space local-
ization in 3-D virtual representations of complex environments,” in Proc.
IEEE Int. Conf. Virtual Environments, Human-Comput. Interfaces, and
Meas. Syst., Boston, MA, Jul. 2004, pp. 13–18.

[20] F. Major, J. Malenfant, and N. F. Stewart, “Distance between objects
represented by octrees defined in different coordinate systems,” Comput.
Graph., vol. 13, no. 4, pp. 497–503, 1989.

[21] J. Tremblay, “Modélisation de l’Environnement d’un Robot Mobile et
Application à une Architecture de Robot Mobile,” M.S. thesis, Laval
Univ., Quebec City, QC, Canada, 1996.

[22] P. Payeur, D. Laurendeau, and C. M. Gosselin, “Range data merging
for probabilistic octree modeling of 3-D perturbed workspaces,” in Proc.
IEEE Int. Conf. Robot. and Autom., Leuven, Belgium, May 1998, vol. 4,
pp. 3071–3078.

[23] M. Soucy, “Manipulator path planning with multi-resolution potential
fields and fuzzy logic control,” M.S. thesis, Univ. Ottawa, Ottawa, ON,
Canada, 2005.

[24] A. Elfes, “Using occupancy grids for mobile robot perception and naviga-
tion,” IEEE Computer, vol. 22, no. 6, pp. 46–57, Jun. 1989.

[25] D. Jung and K. K. Gupta, “Octree-based hierarchical distance maps for
collision detection,” in Proc. IEEE Int. Conf. Robot. and Autom., Nagoya,
Japan, Apr. 1995, pp. 454–481.

[26] O. Takahashi and R. J. Schilling, “Motion planning in a plane using
generalized Voronoi diagrams,” IEEE Trans. Robot. Autom., vol. 5, no. 2,
pp. 143–150, Apr. 1989.

[27] P. Kochunov, J. Lancaster, P. Thompson, A. Boyer, J. Hardies, and P. Fox,
“Evaluation of octree regional spatial normalization method for regional
anatomical matching,” Hum. Brain Mapp., vol. 11, no. 3, pp. 193–206,
Nov. 2000.

Pierre Payeur (S’90–M’98) received the Ph.D. de-
gree in electrical engineering from the Université
Laval, Quebec City, Canada, in 1999.

In 1998, he joined the University of Ottawa,
Ottawa, ON, Canada, as an Assistant Professor in the
School of Information Technology and Engineering
(SITE) and co-founded the Vision, Imaging, Video
and Autonomous Systems Research Laboratory.
His current research interests are volumetric 3-D
modeling, range data processing, robot guidance,
teleoperation, and integration of computer vision in

autonomous systems control.
Dr. Payeur is a member of the IEEE Robotics and Automation Society,

the IEEE Instrumentation and Measurement Society, and of the Ordre des
Ingénieurs du Québec.

