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Abstract—Controlling robotic interventions on small devices
creates important challenges on the sensing stage as resolution
limitations of noncontact sensors are rapidly reached. The inte-
gration of haptic sensors to refine information provided by vision
sensors appears as a very promising approach in the development
of autonomous robotic systems because it reproduces the multi-
plicity of sensing sources used by humans. This paper discusses
an intelligent multimodal sensor system developed to enhance
the haptic control of robotic manipulations of small three-dimen-
sional (3-D) objects. The proposed system combines a 16 16
array of force sensing resistor (FSR) elements to refine 3-D shape
measurements in selected areas previously monitored with a laser
range finder. Using the integrated technologies, the sensor system
is able to recognize small-size objects that cannot be accurately
differentiated through range measurements and provides an
estimate of the objects orientation. Characteristics of the system
are demonstrated in the context of a robotic intervention that
requires fine objects to be localized and identified for their shape
and orientation.

Index Terms—Haptics, laser measurement applications, micro-
processors applications, neural networks, object recognition, robot
tactile systems.

I. INTRODUCTION

COMPUTER vision and pattern recognition technologies
have significantly evolved over the last decade and now

appear as standard approaches in numerous robotic applications
where objects have to be recognized. Unfortunately, the accu-
racy that can be reached with these systems remains limited as
vision sensors’ performance is highly dependent on sophisti-
cated calibration procedures and very sensitive to working en-
vironment conditions [1]–[3]. Laser range technologies are now
able to provide relatively high resolution under perfect oper-
ating conditions [4], [5]. However, their use in industrial envi-
ronments often results in a significant amount of noise on the
data that makes small objects extremely difficult to monitor.

As modern robotic systems tend to reproduce human behav-
iors in the way they operate, intelligent sensing devices can also
take advantage of the duality of sources of information pro-
vided by eyesight and touch. It is indeed natural for humans to
touch objects in order to get a more precise idea of their shape
and texture when visual perception does not provide enough
details, like in dark environments or when objects of interest
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are occluded and cannot be directly seen. However, the merge
of haptic information with three–dimensional (3-D) models ob-
tained from optical data for robotic manipulation of complex ob-
jects has not yet been widely explored in spite of the numerous
new possibilities that it opens. As vision-based modeling re-
mains highly sensitive to object’s surface reflection character-
istics, haptic sensors can be advantageously integrated to com-
plement 3-D models. Following this direction, the addition of a
haptic component to visual robotic sensing devices appears as a
straightforward improvement that can help in identifying small
objects and estimating their characteristics that are critical to
achieve haptic control of fine robot manipulations. In this direc-
tion, Canepa et al. [6] propose to extend computer vision ap-
proaches to tactile data in order to extract cutaneous primitives.
Taking advantage of the fact that tactile sensors are directly in
contact with the object surface allows to precisely identify fine
shape primitives that remain invisible to vision systems.

Recent trends in haptic/tactile sensing focus on the applica-
tion of this technology in robotics and automation for industrial
assembly, assisted surgery where palpation is important [7], or
for safe human-robot cooperation [8], [9]. More specifically, a
strong interest has been observed in the development of articu-
lated hands made of a few tactile sensitive fingers for dexterous
manipulation [10]–[12]. Germagnoli et al. [13] present an ap-
proach to drive a robot gripper during the exploration of un-
known objects based on the recognition of a limited set of tactile
primitives and the interpretation of stress maps with neural net-
works to locate and follow edges on the object. Pedreno-Molina
et al. [14] propose a neural network-based approach that uses
artificial skins in guiding grasping operations to ensure stable
grasp of object with a two-finger robot hand. Even though rel-
atively good performance can now be achieved with this tech-
nology [15], the area and the complexity of the space that can
be explored is limited due to the small size of the tactile sen-
sors (mostly a single point) and the fact that they are usually
mounted inside the gripper fingertips [16]. Integration of tactile
sensors with vision-based approaches allows to circumvent this
problem by providing means to select a limited number of areas
that need to be touched to refine the resolution of an existing
3-D surface representation.

Through the significant development that occurred on
haptic/tactile sensing technologies, the most promising trans-
duction methods and configurations have now been identified
[17]. This brings interesting insight in haptic perception for vir-
tual environments representation [18] and 3-D space monitoring
necessary for robot movement planning. As haptic perception
essentially emulates biological haptic perception mechanisms
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[19], it has been demonstrated that it must integrate two dis-
tinct sensing modalities: 1) cutaneous tactile sensing provides
information about contact force, contact geometric profile, and
eventually the temperature of the touched object [20] and 2)
kinesthetic sensing provides information about the position and
velocity of the structure carrying the tactile sensor [21].

This paper describes a haptic sensor system that has been de-
veloped to be mounted on the end-effector of a serial manipu-
lator arm to refine laser range 3-D maps of workspaces in se-
lected regions where interaction with fine objects is required.
In order to provide the two required sensing modalities, a com-
pliant haptic sensing system is proposed that is able to generate
an estimate of the object’s surface orientation along with a fine
description of features located within the sensing area. A multi-
layer feedforward neural network operating directly on the raw
data provided by the haptic sensor allows to achieve an orien-
tation-independent recognition of fine features detected on the
surface.

The initial prototype has been developed to operate on a set
of features that take the form of geometric symbols defining a
pseudorandom encoding scheme that is meant to facilitate the
recognition and the localization of each object in a complex
scene. Being able not only to model the objects in the scene,
but also to precisely segment them in the representation, brings
a strategic advantage in guiding the robot during the manipula-
tion phase.

In order to monitor its performance in a realistic industrial
context, the proposed sensing system has been mounted on a
six degree-of-freedom manipulator and tested for the detection
and identification of screw heads having different shapes and
orientations. Sections II–V detail all components of the haptic
sensor system, the object recognition and orientation estimation
procedures using neural networks. Experimental results are also
presented on the original pseudorandom set of geometric sym-
bols and with an industrial testbed where a robot is guided by a
laser range finder to determine regions that must be touched to
determine the type and orientation of screw heads that need to
be removed.

II. KINESTHETIC SENSING SYSTEM

The proposed robotic haptic sensing system consists of a
custom-designed instrumented passive-compliant wrist and a
tactile array sensor [21] mounted on a commercial manipulator
as shown in Fig. 1. The tactile sensor being a sensitive device
with a very limited range of displacement (within a millimeter),
mounting it directly on the robot end-effector would make the
cutaneous measurements highly dependent on the position and
orientation of the robot arm. Forces applied by the robot arm on
the object, and the tactile sensor, would influence the cutaneous
measurements as the deformation of the tactile array varies
according to the position of the end-effector along the normal
to the surface. A complex compensation scheme would then
be required to ensure consistency of the measurements. More-
over, measuring directly with the tactile probe would imply
that the orientation of the robot end-effector is maintained
perfectly perpendicular to the object surface while cutaneous
information are measured. As such a specific orientation is

Fig. 1. Haptic perception system mounted at the end of the serial robot
manipulator.

Fig. 2. Instrumented passive-compliant wrist with the tactile sensor probe.

virtually impossible to achieve in environments where the
structure of the scene is not known a priori, a special device
must be added between the robot end-effector and the tactile
sensor to compensate for misalignments. This device can also
be designed to ensure uniform forces distribution on the tactile
probe, reducing the sensitivity to robot arm position.

The compliant wrist included in the proposed haptic sensor
system allows the tactile sensor to accommodate the constraints
of the local geometry of the explored object surface and, thus, to
increase the amount of information acquired. The instrumented
passive-compliant wrist shown in Fig. 2 consists of two rigid
planar plates, one being passively mounted on springs. This pro-
vides the wrist with three relative degrees of freedom: two ro-
tations about the and axes of the tactile probe’s plane and
one displacement along the axis (normal to the tactile sensor’s
plane). Four linear displacement transducers allow one to mea-
sure the distances between the two plates of the wrist in four
positions, enabling the calculation of the relative orientation
and distance between the wrist’s plates. Referring to the base
of the robot, position sensors placed in the robot’s joints along
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with the coordinates provided by the instrumented passive-com-
pliant wrist determine the kinesthetic information about the tac-
tile sensor position and orientation.

In order to collect tactile data in phase with position and ori-
entation measurements provided by the passive-compliant wrist,
an onboard electronic circuit based on PIC microcontroller tech-
nology has been designed to gather the data from the four linear
displacement transducers of the compliant wrist and to calculate
the 4 4 homogeneous transformation matrix representing the
kinesthetic sensor data that define the tactile sensor position and
orientation with respect to the robot arm. The microcontroller
also provides a serial data communication interface to transfer
these parameters to the user interface.

III. TACTILE SENSOR

The tactile sensor performs the cutaneous component of
sensing that provides the contact geometric profile of the
touched object. This information being combined with that of
the passive-compliant wrist allows a complete reconstruction
of the 3-D shape of the surface located within the area of the
tactile sensor probe.

A. Tactile Sensor Transducer

The most popular tactile sensor technologies use conductive
elastomer, piezoelectric effects, or piezoresistive properties to
measure a contact force profile rather than a contact displace-
ment profile. Under the pressure from an external bias force, the
local object geometric profile indents an elastic pad [17]. The in-
duced contact forces are transmitted through an elastic overlay
to a force sensitive array of transducers. The measurements pro-
vide a local 3-D geometric profile (shape) of the touched object
surface. The elastic pad acts as a low-pass filter and displace-
ment-to-force converter, while the force sensor array accom-
plishes a two–dimensional (2-D) sampling and a one-dimen-
sional force sensing. The principle of operation is illustrated in
Fig. 3(a). This results in a nonlinear relationship between the
displacement and the measured strain in the elastic pad [22],
[23] which depends on the properties of the elastic overlay. Such
a force sensitive tactile sensor provides a very robust construc-
tion which is suitable for industrial applications.

In the current research work, a piezoresistive tactile sensor
has been built from a commercially available matrix of force
sensing resistor (FSR) elements on which an elastic overlay was
added to allow contact with nonuniform surfaces over the en-
tire tactile probe surface. The array of FSR elements consist of
a 16 16 matrix of pressure-sensing points respectively spaced
by 1.5875 mm (1/ 16 in) and uniformly spread on a 645.16 mm
(1 square inch) area as shown in Fig. 4(a).1 The FSR elements
exhibit exponentially decreasing electrical resistance with ap-
plied normal force. The relationship between the applied force

and the resistance of the FSR is of the form

(1)

where is sensor dependent and is estimated by calibration.
This relationship holds over the operational range of the sensor

1Force Sensing Resistors (FSR). Interlink Electronics Inc. Camarillo, CA,
2002; http://www.interlinkelec.com.

Fig. 3. Force/displacement/resistance characteristics of the force-sensitive
transducer with (a) its elastic overlay and (b) the relationship with the
displacement produced by the shape of the probed object.

Fig. 4. (a) Force-sensing resistor array covered by (b) the 16� 16 tab-shaped
elastic overlay mounted in its protective aluminum case.

beyond which saturation is observed making the resistance re-
main constant in spite of further increase in the force applied as
shown in Fig. 3(b). For the sensor used in this experimentation,
the pressure range varies within 1 to 100 N/cm while the resis-
tance value changes from 200 up to a stand-off value in the
Megohm range.

The FSR elements sense compression forces and, thus, must
be placed on a rigid backing provided by an aluminum protec-
tive case, shown in Fig. 4(b), which is mounted on the second
planar plate of the passive compliant wrist. The elasticity of
the overlay resets the tactile measuring system when the sensor
ceases to touch the object. Moreover, it limits the force applied
on the FSR array through a damping effect, thus, ensuring phys-
ical protection of the FSR elements against impulsive contact
forces and preventing electrical saturation of the device [24],
[25].

The elastic overlay installed on the top of the FSR array is
made of a proprietary elastic pad with protruding round tabs sit-
ting on top of each node of the FSR matrix providing a de facto
uniform spatial sampling as shown in Fig. 4(b). This configu-
ration avoids the inherent blurring effect that occurs when one-
piece elastic pads are used. Based on recommendations made in
[26], [27], circular tabs have been designed to occupy 50% of
each 2-D sampling area. This allows each tab to expand laterally
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Fig. 5. Block diagram of the tactile sensor interface.

without any stress allowing for a proportional relationship be-
tween the displacement in the normal direction and the resulting
stress component in each tab. As a result, the tactile probe output
is a 16 16 array of data that represents normal displacement
components of the 3-D geometric profile of the investigated ob-
ject surface , where and

are the row and column coordinates of the tactile sensor ma-
trix. Fig. 3(b) presents the experimental strain/stress response of
a single tab of this elastic overlay.

The typical accuracy that can be achieved with the tactile
sensor prototype ranges from 5% to 25% deviation from the ac-
tual force value. While this is not sufficient for high-precision
measurements, it is far enough for surface shape mapping and
recognition of small objects as proposed in this paper.

B. Tactile Sensor Controller and Interface

The operation of the FSR array and the conversion from resis-
tance values to geometric displacements for the 16 16 pixels
of the tactile image is achieved by integrating the tactile sensor
in a dedicated electronic circuitry using the PIC microcontroller
technology. This provides full control of the sensor through
a graphical user interface running on a host PC workstation.
Fig. 5 illustrates the block diagram of the tactile sensor con-
troller. Two analog multiplexer circuits, respectively, for the se-
lection of row and column addresses, allow random access to
any individual force sensitive resistor within the 16 16 FSR
array. The resistance of each selected FSR element is measured
by a 10-b analog/digital converter onboard the 16-b PIC micro-
controller. The microcontroller also ensures transmission of data

Fig. 6. Tactile sensor electronic controller.

to the graphical user interface via a standard serial communica-
tion link operating at 19 200 b/s. Fig. 6 presents the hardware
implementation of the first prototype of the dedicated controller
interfaced with the FSR array. A more compact version is under
development that will allow onboard installation on the robot
arm and facilitate displacements of the sensor.

Data acquisition, download of measurements to the host PC
as well as image filtering functionalities are conveniently acces-
sible from the graphical user interface that is shown in Fig. 7.
This interface has been built on Matlab 6.5 running on MS Win-
dows 2000. Displacement measurements are scaled on a range
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Fig. 7. Graphical user interface developed to operate the tactile sensor.

comprised between 0 and 256 and can be saved in different pro-
prietary formats to be eventually reloaded in the interface in
order to perform supplementary processing. Standard filtering
operations such as averaging, mean, median, and Gaussian, all
with selectable sizes of neighborhood, can also be directly per-
formed on the raw data. These functions are extremely helpful
in preprocessing data when the level of noise on measurements
is significant.

IV. OBJECT RECOGNITION WITH TACTILE DATA

The intelligent haptic sensor system has initially been tested
for model-based blind tactile recognition of 3-D objects. For
this purpose, four conveniently shaped geometric symbols rep-
resenting quaternary terms of a pseudorandom array (PRA) de-
fined over the Galois field GF [28] were
embossed on wooden object surfaces as shown in Fig. 8. Sym-
bols recovered by tactile probing are recognized using a neural
network and then clustered in a 2 2 PRA window that contains
enough information to fully identify the absolute coordinates of
the recovered window within the encoded PRA. By knowing
how different object models were mapped to the PRA, it is pos-
sible to unambiguously identify the object face and the exact
position of the recovered symbols on the face [29].

A two-layer feedforward architecture, with eight neurons in
the hidden layer and four in the second one as shown in Fig. 9, is
employed to classify tactile data representing the four encoding
symbols. The choice for a multilayer feedforward architecture

Fig. 8. Four geometric symbols tested during the design of the tactile object
recognition system.

based on supervised learning is justified first by the need for
supervised learning, which is known to be the proper tool for
pattern recognition, and second by the fact that multilayer net-
works are trained using backpropagation, which is more pow-
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Fig. 9. Two-layer feedforward neural network architecture for four symbols
classification.

erful and more flexible than all the training algorithms used by
single-layer networks. Here, a very simple multilayer architec-
ture is used, with only one hidden layer. There are four nodes
chosen in the output layer in order to achieve orthogonal repre-
sentations for the four different classes that are to be recognized
and, therefore, ensure a better learning of the trained network.

Each 16 16 tactile image is initially truncated to an 8 12
image to keep the focus on the embossed area containing the
symbol. This reduces the complexity of the neural network. The
resulting 96 elements are provided as an input vector to the
network and the corresponding target symbol is identified by the
largest value appearing on one of the output nodes,

, that corresponds to the position of the recognized
symbol.

The network is trained with four 8 12 binary maps of the
tactile images representing the centered four symbols. A gra-
dient descent backpropagation with momentum and adaptive
learning rate is used as a training algorithm. A value of 0.95
for the momentum constant and a sum-squared-error goal of 0
are applied over 5000 epochs.

The neural network is initially trained using two noise-free
tactile images of each of the symbols and then with a series of
images corrupted with Gaussian noise having a standard devi-
ation of 0.1, 0.15, and 0.2, respectively. It is finally trained one
more time with noise-free images in order to make sure that
noise-free images are always identified correctly. To evaluate
its generalization capability, the network was tested for different
levels of Gaussian noise with a 0 mean and a standard deviation
varying from 0 to 0.5. Fig. 10 shows raw tactile images of the
four symbols that are recognized by the network. The average
recognition rate for each symbol is depicted in Fig. 11.

Another set of tests has been run to validate the behavior of
the network for test scenarios where the symbols were not prop-
erly aligned in a vertical position. The network presented pre-
viously only allows to detect symbols rotated by steps of 90 .
To solve this problem, the initial symbol recognition module
is cascaded with a transformation module. The purpose of the
latter is to recuperate the displacement information (in rotation,
scaling, and translation) between a raw symbol and a set of sym-
bols stored in a database of centered and aligned objects.

Fig. 10. Tactile images of the four symbols recognized by the neural network.

The transformation neural network has no hidden layer and
receives as inputs a vector of 96 pixels measured on the
rotated symbol and as target a vector of 96 pixels , corre-
sponding to the same symbol with a correct alignment from the
database. Scanning through the database containing the set of
possible symbols until a suitable match is found, the network
learns the displacement information and stores it in its internal
weights as shown in Fig. 12. This information is then used to
align the rotated symbol to the vertical position such that it can
be subsequently recognized by the network shown in Fig. 9. The
inverse of the weight matrix is multiplied with the transformed
symbol in order to obtain the realigned 96 output pixels .

The transformation network uses a linear activation function
and is trained using gradient descent backpropagation with a
constant momentum value of 0.95 and an adaptive learning rate.
A null sum-squared-error is targeted over 1000 training epochs.
The training procedure lasts for about 5 s.

A sample of rotated tactile data is shown in Fig. 13(a). Note
that the misalignment is with respect to the pixels grid of the
image. Fig. 13(b) shows the corresponding data after realign-
ment of the tactile image with the rotation parameters estimated
by the transformation neural network. The noise appearing on
the realigned geometric symbol is due to the inexact learning of
the neural network which not only finds rotation angles, but also
scaling and translation parameters. However, this does not pre-
empt the system from classifying the symbols correctly. As ex-
pected, once the training is completed, the raw object is aligned
with the original symbol in the database, and this aligned object
becomes the input of the tactile recognition module that is now
able to map it to the proper symbol.

V. EXPERIMENTATION WITH THE HAPTIC SENSOR IN

INDUSTRIAL APPLICATIONS

In order to validate its performance and pursue its develop-
ment, the proposed sensing system has been mounted on a six
degrees-of-freedom manipulator equipped with a laser range
finder and used in modeling a 3-D scene on which a manipulator
has to operate as shown in Fig. 14(a). The application consid-
ered as a testbed is that of detecting, identifying, and estimating
the orientation of screw heads of different types widely found
in industrial setups, such that a robot can properly position a
screwdriver and remove the screws without external assistance.
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Fig. 11. Average recognition rate for tactile data with a Gaussian noise having a standard deviation ranging between 0 and 0.5.

Fig. 12. Neural network architecture of the transformation module for
orientation estimation.

The first step of the experimentation consisted of scanning the
whole scene with the laser range finder to locate the areas occu-
pied by the screws. Next, a refinement of the 3-D model of these
regions is achieved with the haptic sensor to allow identification
of the screw head type, and the required screwdriver tip, along
with an estimate of the orientation of the screw slot.

A. Location of Screws With a Laser Range Finder

Even though laser scanners offer very high resolution that
should theoretically allow a precise localization of tiny parts

Fig. 13. (a) Raw rotated tactile data for symbol C. (b) Corresponding realigned
data.

such as screws, practical experimentation demonstrates that the
sensitivity to textures and reflectivity of surfaces of these sensors
is too high to achieve sufficient accuracy. In this application, a
Jupiter laser line scanner commercialized by Servo-Robot, Inc.
[30] and built on the well-known synchronized triangulation
technology developed at the National Research Council (NRC)
[4] is used to locate an electrical box that has to be opened on a
flat wooden panel.

Relying on the high resolution of the laser scanner that should
typically reach 0.1 mm at a distance of 1 m, it is expected that
screw heads could be recognized by type. However, the metallic
surface of the electrical box tends to act as a specular surface
and generates important diffusion of the laser beam making the
signal received by the sensor very noisy in this area in compar-
ison with the wooden surface whose reflectivity is lower and
returns a larger fraction of the laser beam. Fig. 14(b) shows the
resulting range profile obtained with the Jupiter range finder for
a scan line intersecting with one of the screws on the electrical
box. It is clear from this example that even a high-end laser range
scanner cannot properly handle situations where high precision
is required or when operation occurs in harsh environments. In
this case, the laser scanner allows a precise localization of the
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Fig. 14. Experimental setup in which (a) a laser range finder is used to collect
(b) a distance profile of an electrical box to guide the haptic sensor for precise
location and identification of screw heads.

electrical box but hardly provides an estimate of the exact posi-
tion of the screw head. It is then impossible to rely on this infor-
mation only to determine the type of screw head and its orienta-
tion in order to select the proper screwdriver tip and alignment
in space. Therefore, there is a need to refine the knowledge in
this area of the scene by bringing the haptic sensor to collect
precise measurements on the screw head.

B. Refining the Model of Screws With the Haptic Sensor

The proposed haptic sensor has then been mounted on the
robot end-effector and directed in the region of the screw of in-
terest relying on the information previously collected with the
laser range scanner. The robot arm end-effector is brought in
a position and orientation that makes the haptic sensor perpen-
dicular to the cover of the electrical box. However, as the ori-
entation of the electrical box is not defined with a very high
precision, the passive-compliant wrist accommodates the differ-
ences that might remain between the orientations of the sensor
and the object as shown in Fig. 15(a). The screw head is located
within the 1 square inch surface of the tactile sensor as seen in
Fig. 15(b).

Fig. 15. Measurement of the screw head position and shape with (a) the
passive-compliant wrist accommodating slight misalignment and (b) the screw
head located within the tactile probe area to generate (c) a tactile image of
(d) a round head screw with a square slot.

Fig. 16. Various types of screws tested for identification with the haptic sensor.

Fig. 15(c) illustrates the surface representation of the raw tac-
tile data (not filtered) collected on the screw shown in Fig. 15(d).
Considering that the maximum deflection of the tactile sensor
pad that is used in this prototype is about 1 mm, raw data pro-
vide relatively clear information about the round surface of the
screw head and allow the detection of the square slot. In com-
parison with the precision achieved with the laser range scanner,
the haptic sensor provides a significant improvement in accu-
racy for the location, the identification, and the evaluation of
the orientation of the screw head.

C. Generalization to Various Types of Screw Heads

In order to improve the robustness of the robotic haptic
sensing system, a generalization of the previous application
has been realized to allow the recognition and orientation
estimation for various types of screw heads that are found in
practice. Fig. 16 presents a variety of screw heads that have
been investigated using raw data collected with the proposed
tactile probe.

A similar neural network as the one presented in Fig. 9 is used
to identify them. This time, the input size map has been trun-
cated to 8 8 pixels to best fit with the size of the screw heads
that is about one half of a inch on average. Therefore, the neural
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Fig. 17. Sample of raw tactile data collected on four different types of screw
heads: (a) hexagonal slot, (b) hexagonal head, (c) straight slot, and (d) square
slot.

network used in this process only has 64 inputs, 25 neurons in
the hidden layer, and a number of outputs equal to the number
of screw types to be identified (eight in the presented case).

The network is trained, as in the case of symbol recognition,
with two nonnoisy copies of 8 8 binary maps of screw heads,
then with copies corrupted by Gaussian noise with a standard
deviation level of 0.1, 0.15, and 0.2 respectively, and finally one
more time with the nonnoisy copy. This procedure leads to better
robustness and an enhancement in the generalization capabili-
ties of the neural network required to compensate for the limited
accuracy of the tactile pad.

After being trained for 1000 epochs, with a sum-squared-
error goal of 0, the network is able to correctly identify all the
maps corresponding to screw heads in Fig. 16, apart from the
one with cross embossment (Phillips type). This is due to the
characteristics of the tactile pad which has tactile tabs that are
close to the size of the slots on the screws. Fig. 17 presents a
sample of raw tactile data collected on four different types of
screws that have been classified correctly by the neural network.

For the estimation of the screw heads orientation, experiments
revealed that for nonsymmetrical heads like the straight slot, the
transformation module is able to distinguish between horizontal
and vertical positions. For symmetrical heads like the hexagon
or the square heads, orientation is less critical as the screwdriver
can be positioned anywhere within the 90 degrees range without
compromising the robotic task. The resolution on the estimation
of the orientation is mainly limited by the size of the tactile probe
tabs that do not allow finer measurements of the edges of the
screw slots. This limitation is expected to be easily overcome
with the development of a higher accuracy tactile sensor with
smaller tabs. The neural network architectures developed for
the present application will remain perfectly valid as they do not
depend on the physical size of pixels in the tactile image. In terms
of performance, the computational time for classification of the
object is of the order of seconds when running on Matlab. It is def-
initely not the limiting factor in the type of application considered
as positioning the robot arm, and the tactile probe appears to be
much slower due to the robot’s servo loop response time.

VI. CONCLUSION

An original combination of sensing devices and neural
network architectures has been developed to enhance the
capabilities of robotic systems for intervention on small de-
vices in industrial applications. An innovative haptic sensing
system composed of a passive-compliant wrist and a robust
tactile probe with a relatively high resolution of 1/16 in is
presented along with its controller and interface modules. The
passive-compliant wrist component of the sensor provides
accommodation for slight misalignment of the robotic arm
in delicate manipulation operations while ensuring that the
registration of tactile data is kept accurate.

Using neural network technologies, tactile data processing
stages have been developed to allow recognition and geometric
transformation estimation on a set of geometric symbols en-
coding a pseudorandom array that can be used to locate com-
plex objects in an unknown environment. Simulation and ex-
perimental results have demonstrated that the neural network
recognition of tactile images can reach error rates lower than
0.6% even in the case of images having up to a 50% noise ratio.

Experimentation has also been conducted on a realistic setup
where the tactile probe helps to overcome the physical limita-
tions of a commercial laser range finder in locating and deter-
mining the orientation of screw heads to be removed by a robot
without external intervention. Excellent results were obtained
using this first prototype of the haptic sensor.

Ongoing research work includes the development of a more
compact controller that will be mounted directly on the robot
arm to provide increased flexibility and make possible the
straightforward migration of the calibration and basic image
filtering functions, which are still running on the PC. The
design of a higher resolution tactile sensor is also considered
to allow robotic systems to deal with smaller objects while
reducing the level of noise. Finally, automation of the multi-
modal sensing system is being investigated to allow automatic
switching between the laser range and the haptic sensor such
that an integration of tactile surface maps with laser range data
can be achieved efficiently.
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