
IMTC 2006 – Instrumentation and Measurement 
Technology Conference 
Sorrento, Italy 24-27 April 2006 

Application of Segmented 2D Probabilistic Occupancy Maps  
for Mobile Robot Sensing and Navigation 

Bassel Abou Merhy, Pierre Payeur, Emil M. Petriu 
School of Information Technology and Engineering 

University of Ottawa 
Ottawa, ON, Canada, K1N 6N5 

[bassel, ppayeur, petriu]@site.uottawa.ca 
 

Abstract – The concepts of occupancy grids and probabilistic maps 
were introduced at the end of the eighties. Since then, research work 
focussed mainly on the definition of the representation, data fusion 
and generation of occupancy models. Few consideration has been 
given to processing occupancy maps as textured images in order to 
extract meaningful information required for robot navigation and 
control of interactions with the environment. This paper investigates 
the application of segmentation techniques on probabilistic 
occupancy maps represented as textured images. Enhancements are 
proposed to a uniformity estimation technique based on local binary 
pattern and contrast (LBP/C) to achieve robust segmentation of 
occupancy maps that typically result from range sensors with 
limited resolution. The accuracy of the segmented 2D occupancy 
maps is demonstrated experimentally through an application on 
mobile robot navigation with collision avoidance. 
 
Keywords – segmentation, path planning, probabilistic maps, local 
binary pattern, contrast, texture. 

I. INTRODUCTION 

Navigating mobile robots from occupancy maps permitted 
the development of very efficient platforms while keeping the 
amount of processing at a relatively low level. However, 
most occupancy maps discussed in the literature ensure 
perfectly reliable knowledge about the state of the robot 
workspace, that is, areas are either empty, occupied or have 
not been explored. Applying this type of maps for safe robot 
navigation with autonomous perception capabilities implies 
that regions are scanned without any gap between the 
viewpoints and that sensors are perfectly calibrated. The use 
of probabilistic occupancy maps alleviates these constraints 
by encoding uncertainties directly into the maps. On the other 
hand, identification of secure areas for the mobile robot to 
circulate is made more difficult as maps no longer show 
uniformity and sharp transitions. This paper extends an 
innovative segmentation approach for applications where a 
mobile robot must navigate around obstacles located with 
uncertainty in a map obtained from a range finder that only 
provides partial coverage of space. 

Probabilistic occupancy maps are characterized by the 
fuzziness of texture distribution which increases considerably 
the degree of complexity in comparison with standard 
deterministic representations. In spite of a wide interest in 
this type of mapping, no consensus is yet established about 
the representation of probabilistic images. Heterogeneity in 
the representation implies that each model is treated on a 

purely individual basis and methods of extrapolation are 
necessary in order to generalize the concepts which have 
been validated on a particular scheme. Complication also 
arises from the fact that existing segmentation methods are 
extremely specialized as they generally treat only one preset 
type of images. Extrapolation of classical segmentation 
techniques to cover the case of probabilistic images is 
therefore more laborious. 

Typically, segmentation algorithms try to classify the 
pixels of an image based on their properties and their 
relationship with their entourage. Thereafter the goal of 
segmentation is to divide an image into areas characterized 
by homogeneous properties. Several segmentation 
approaches have been proposed in the literature that can be 
classified either as region-based, boundary-based or as a 
combination of the two. In addition, segmentation is either 
supervised or unsupervised. Unsupervised segmentation is 
applied in cases where no a priori information about the 
contents or the textures of the image is available. Approaches 
based on classical methods such as split and merge [1], 
pyramid node linking [2, 3], as well as quadtrees [4] for the 
combination of statistical and spatial data, were the first to 
provide unsupervised region-based segmentation. Recent 
unsupervised segmentation methods explore, on one hand 
multi-resolution filtering, using Gabor filters [5, 6, 7] or the 
wavelets [8, 9], and on the other hand statistics with hidden 
Markov fields [10, 11]. 

In the context of autonomous mobile robotic exploration 
in cluttered environments, the value associated with each cell 
of an occupancy map corresponds to the probability of this 
cell being occupied, resulting in clustered distributions of 
textures. Therefore, region-based segmentation appears to be 
well suited to ensure obstacle location and identification of 
safe areas for the robot to navigate. As well, object 
identification can eventually be achieved by shape 
recognition to provide controlled interaction with the 
environment. Considering that the workspace configuration is 
initially unknown and get scanned by a laser range finder 
only along specific directions, the resulting map of explored 
space is characterized by a series of edges corresponding to 
the rays emitted by the active range sensor. Under such 
conditions, a segmentation approach that combines contrast 
and texture properties to identify regions of uniform density 
reveals to be an appropriate strategy for differentiating 
between segments present in a probabilistic map. 
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Ojala et al. [12, 13, 14] proposed such a segmentation 
technique based on “Local Binary Pattern” and “Contrast” 
(LBP/C) to subdivide images with sharp patterns. But unlike 
the images that they considered, in probabilistic maps 
transitions between free and occupied spaces do not define 
clear boundaries and are spread out according to the 
uncertainty level introduced by the sensor model. Refinement 
to the original LBP/C segmentation mechanism has been 
proposed in [15] to handle smooth transitions in complex 
images while achieving accurate contours definition. Here, 
the work is extended and an evaluation is conducted on the 
application of segmented probabilistic occupancy maps for 
path planning and collision avoidance with a mobile robot. In 
order for the planning to be successful, the probabilistic space 
must first be segmented into areas of a relative size with 
uniform occupancy. The application of probabilistic maps for 
path planning extensively depends on the success of the 
segmentation step. This aspect has not been widely 
investigated in the literature while taking into account 
realistic sensing mechanisms that do not provide an absolute 
knowledge of the state of the space around the robot.  

The following sections summarize the extended 
probabilistic maps segmentation technique based on the 
double distribution of "Local Binary Pattern" and “Contrast” 
(LBP/C) used to describe textures. Next the impact of the 
proposed segmentation technique on safe trajectory planning 
is investigated and experimental results are presented to 
demonstrate the validity of the approach. 

II. SEGMENTATION ALGORITHM 
In a similar way to the approach introduced by Ojala et al. 

[12], the proposed segmentation algorithm is divided in three 
phases. That is the hierarchical division, the segments 
creation and the refinement step. The first phase of the 
proposed method is similar to that of the original algorithm. 
However, the proposed approach introduces major changes 
into the second and third stages to adapt and optimize the 
original algorithm to handle probabilistic images, while 
significantly reducing computation time.  

The first phase divides the image into areas characterized 
by roughly uniform textures. Thereafter the segments creation 
step combines similar adjacent regions into segments that 
only approximate the various regions present in the image. 
Therefore, a final refinement stage is applied to increase the 
accuracy on contours localization. 

A. Hierarchical Division 
This phase hierarchically subdivides the original image 

into square blocks of variable sizes but of relatively uniform 
textures. A new uniformity test is introduced to determine if a 
given region of size [α x α] contains heterogeneous textures 
and therefore must be subsequently subdivided into four sub-
regions of equal size. Initially the four sub-regions of size 
[α/2 x α/2] are identified and a logarithmic likelihood ratio is 
computed between each of the six possible pairs. The largest 
and the smallest G-statistic values, eq. (1), denoted 

respectively by 2
maxGα  and 2

minGα , are identified among those 
pairs. 
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In eq. (1), fi corresponds to the number of pixels 
characterized by a pair of LBP/C values in bin i. s and m 
represent the two distributions to compare and n is the 
number of bins in each of them [15]. 

The parent block is considered non-uniform and thus 
subdivided if the ratio between 2

maxGα  and 2
minGα  is higher 

than a certain threshold designated by X: 
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Setting of the threshold value is guided by the fact that 
supplementary subdivisions that segment regions without 
strong distinctive features can easily be corrected in the 
second phase. On the opposite, segments missed in the first 
phase cannot be reintroduced afterwards. An over-
segmentation is therefore privileged in this early phase. In the 
case of 2D probabilistic maps, a choice of X=1.2 performs 
well, since 20% of variation between the largest and the 
smallest G-statistic values corresponds to a perceptible 
deviation in the region’s texture. 

 The hierarchical division phase starts by subdividing the 
entire probabilistic image into blocks of [64x64] pixels. For 
each of the blocks, the decision to operate a first level of 
subdivision depends on the result of the uniformity test 
introduced above. As shown in Fig. 1, if the test result is 
positive for a given block, four sub-blocks of size [32x32] 
each are obtained. In this case, each of these blocks is 
submitted to the uniformity test described above which 
decides if a second level of subdivision is necessary. A 
positive level-two subdivision result is represented for the top 
right [32x32] block in Fig. 1. 

The subdivision process continues iteratively until a 
stopping condition is met. The minimum size that a sub-
region size can reach is chosen as a criterion. Ojala et al. 
claim in [12] that two levels of subdivision are sufficient and 
provide an adequate segmentation final result, but our 
experimentation with probabilistic maps of a higher 
complexity demonstrated that a third level of subdivision, 
leading to a block size of [8x8], is necessary. The values of α 
in eq. (2) correspond to the possible sizes of the regions 
which undergo the uniformity test. Fig. 1 illustrates the 
recursive subdivision process in which the upper-right sub-
blocks have been obtained after three levels of subdivisions. 
Despite the computational overhead that is added by this 
supplementary step, the refinement phase is relieved from a 
costly reclassification, and more accurate segmentation 
results are achieved. 
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Fig. 1. Representation of the subdivision scheme. 

B. Segments Creation 
This phase merges similar neighboring regions until a 

convergence criterion is met. Fusion between adjacent blocks 
is performed when an average occupancy probability, OP, for 
each block is in the same range. This parameter represents the 
average pixels intensity level, I, in a region Ri of size [NxM], 
and is determined as follows:  
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The choice of the OP parameter, used to evaluate texture 
similarity between adjacent regions, is related to the structure 
of the probabilistic occupancy grid in which pixel intensity 
values correspond to the probability of space occupancy. 
After normalizing the pixels’ values in the range [0;1], if a 
region is totally unknown it is characterized by an OP of 0.5; 
if the region is scanned by a range sensor mounted on a 
mobile vehicle, two possibilities exist: either it generates an 
OP value below 0.5 and this corresponds to the case where 
the region of space is mostly free; or it produces an OP value 
higher than 0.5 which involves a mostly occupied region of 
space. 

For the purpose of safe robot navigation, the probabilistic 
map first needs to be segmented into regions characterized by 
deterministic states, S, that is S(Ri) ∈ {free, unknown, 
occupied} upon which navigation decisions can be 
performed. These states fall respectively in the following 
ranges of OP’s values: [0;0.5[, [0.5] and ]0.5;1]. Following 
this evaluation, if a group of adjacent regions have OPs in the 
same range, they are readily merged together and are 
classified as a single segment of free shape with a uniform 
occupancy level. On the other hand, if two different segments 
with OP values in the same range are not adjacent in space, 

they are kept as two distinct areas that will eventually be 
connected by the path planner. 

One of the major problems encountered with the original 
algorithm proposed in [12] comes from the fact that it is 
incapable of correctly merging segments that correspond to 
known space, either free of occupied. Thereafter, Ojala et 
al.’s algorithm cannot identify the occupied and free spaces 
as unique segments. In addition, this algorithm does not 
provide any information about the occupancy state of the 
segmented regions. For these reasons, numerous applications, 
such as path planning for autonomous mobile robots cannot 
rely on the original LBP/C algorithm [12]. Fig. 2 provides a 
comparison between  the segmentation results obtained on the 
same probabilistic map with the algorithm proposed in [12], 
and with the enhanced approach introduced in [15]. This 
shows that the original LBP/C algorithm fails at properly 
merging adjacent uniform regions into single segments while 
the improved segmentation approach successfully groups free 
and occupied regions of space in distinct but unified regions 
that are optimal for robot navigation. 

 

 
(a) Original LBP/C algorithm 

 
(b) Proposed algorithm 

 
Fig. 2. Comparison of segmentation 

 results obtained after the second phase. 
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C. Refinement 
Finally, segmentation results are refined by reclassifying 

the pixels located on the edges between two adjacent regions. 
The refinement step is based on the fact that the range of OP 
values leading to an unknown segment classification is very 
narrow and is limited to a single value [0.5]. Even if a 
segment overlaps between an unknown space and a known 
one (free or occupied) by a limited number of pixels, it will 
still be considered as known by the segments creation phase. 
As a consequence, the space whose occupancy is known 
always juts out into the unknown one, which represents 
potentially hazardous situations for safe robot navigation. 

A process of compaction must be applied to the free and 
occupied segments in order to better delimit them and to 
expand unknown ones. At the implementation level, this 
process consists of scanning the probabilistic image along 
each of the four possible horizontal and vertical directions: 
right-left, left-right, bottom-top and top-bottom. In each of 
the scans, when a boundary between an unknown and a 
known space is found, pixels of the known space that have a 
value of 0.5 are reclassified as belonging to the unknown 
region, until a pixel with a different value is met. The four 
sides scanning procedure ensures coverage of all possible 
boundary shapes.  

The refinement step implements this compaction process 
between the free/occupied segments and the unknown 
segments adjacent to them. Since free and occupied spaces do 
not define clear boundaries in probabilistic maps given that 
sensor’s uncertainty is taken into account, the compaction 
process is revisited. Boundaries between free/occupied 
(occupied/free) spaces are scanned as for the compaction 
process described before, from the four possible sides, but in 
this case if each pixel on the boundary has an occupancy 
probability equal or below (equal or higher than) 0.5, three 
successive pixels are considered along the scanning direction. 
Three cases are then possible. First, if the three pixels have a 
value of 0.5, no reclassification is done; this case ensures that 
no holes are created in the segments due to the fact that the 
rays emitted by the range sensor do not cover the entire space 
and are often separated by unknown cells due to the angular 
resolution of the sensor. Second, if at least one of the pixels 
has an occupancy probability strictly less (higher) than 0.5, 
the pixels, up to the one under observation, are reclassified as 
being free (occupied). The third case corresponds to the 
situation in which no classification occurs due to the fact that 
an occupied (free) cell is encountered. 

III. PATH PLANNING APPLICATION 
In order to evaluate the potential of the enhanced LBP/C 

segmentation technique as a preliminary processing stage for 
path planning with probabilistic occupancy maps, a standard 
A* path planning algorithm [16] has been implemented and 
tested with several occupancy maps of various complexity. 
The well-known A* algorithm guides a mobile robot toward a 
destination cell in the map by successive minimization of the 

remaining distance between the goal and the current location 
while avoiding prohibited areas. For testing purposes, safe 
travel areas have been considered as regions characterized by 
an average occupancy probability below 0.45. The choice of 
this value is justified by the fact that only areas with average 
occupancy probability strictly lower than 0.5 can have been 
scanned by a laser range sensor without being occluded. 

On the other hand, regions characterized by an average 
occupancy probability around 0.45 can be generated under 
two circumstances. On one side, such a low certainty level on 
the empty state of space occurs when the region of interest is 
located far away from the scanner. Given that the laser beam 
is scanning following a radial pattern, the unscanned area 
between two adjacent beams is proportional to the distance to 
the range sensor. The further away from the sensor, the lower 
is the density of measurements and therefore the lower is the 
certainty on the state of the space. On the other hand, 
successive measurements with highly contradictory 
information resulting from noise or limited reflection of the 
laser on specular surfaces can also lead to similar occupancy 
levels. Considering regions with an occupancy probability 
lower than 0.45 ensures a sufficient safety margin without 
significantly reducing the workspace. This threshold however 
remains dependent on the accuracy and resolution of the 
range sensor. 

IV. EXPERIMENTAL RESULTS 
Enhanced LBP/C segmentation and A* path planning have 

been applied in combination on various probabilistic maps 
representing cluttered bidimensional workspaces. Results are 
presented here on two probabilistic maps, each of size [320 x 
320]. These maps have been generated using a mobile laser 
range finder simulator for 2D surface mapping that was 
developed in previous work [17]. Occupied space shape as 
well as the number and positions of the range sensor’s points 
of view differ between maps. In Fig. 3a and 4a, white pixels 
represent the surface of objects, dark pixels correspond to 
free space, and intermediate grayscale pixels map unexplored 
areas. The first map (Fig. 3a) contains an object resembling 
an electrical plug, while the objects used in the following 
image (Fig. 4a) have a circular and a rectangular shape. Five 
range sensor scans are taken with a Gaussian error (σ2=16) on 
the range measurements and merged to build the probabilistic 
maps shown in Fig. 3a, while six scans are used in Fig. 4a. 
The step angle between two adjacent sensor’s rays which 
defines the angular resolution is fixed to 0.5 degree in all 
maps to create non-uniform textures in explored spaces. 

The parameters used in the segmentation technique’s 
implementation are the same as the ones described in the 
preceding sections. In the hierarchical division phase, the size 
of the first level of subdivided blocks is [64x64], and three 
subdivision levels are conducted, leading to a minimum 
subdivision level of [8x8]. Fig. 3b and 4b present the results 
of the hierarchical division phase of the algorithm, while Fig. 
3c and 4c show the segmented maps after the segments 
creation phase. 
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(a) (b) 

  
(c) (d) 

 
Fig. 3. Probabilistic map segmentation on a complex object. 

 
The segments obtained at the end of the second step 

approximate well the shape of the regions present in the 
probabilistic images; nevertheless, some isolated regions are 
generated in Fig. 3. These originate from the absence of range 
measurements from certain points of view materialized by an 
insufficient exploration of the environment, especially where 
complicated objects are used, such as that of Fig. 3. The 
rough localization of contours between free and unknown 
space is also obvious in both cases. 

Segmentation results obtained after the refinement phase 
are shown in Fig. 3d and 4d respectively for the two 
probabilistic maps. Important improvement on contours 
definition is achieved and isolated regions are removed as 
they get merged with the corresponding areas. From a 
qualitative point of view, segmentation results obtained with 
the proposed approach advantageously compare with those 
obtained by Ojala et al. [12]. 

Path planning results with the A* algorithm are presented 
in Fig. 5 and 6 for the two probabilistic maps shown 
respectively in Fig. 3a and 4a. The parameters of the path 
planner are those described in section III. In Fig. 6 and 7, the 
safe travel space characterized by a low occupancy 
probability is shown in black, while the occupied and 
unknown spaces considered as unsafe are represented in 
intermediate grayscale intensity. The fact that no distinction 
is made at this level between objects and the unknown space 
is justified by the need to plan the trajectory only in areas 
where no object can be encountered. The path followed by 
the robot is shown in white. During his movement, the mobile 
robot chooses as the next step destination, the free cell that 
minimizes the distance with its final destination. 

  
(a) (b) 

  
(c) (d) 

 
Fig. 4. Probabilistic map segmentation with extra viewpoints. 

 
For this reason when the robot meets an unsafe travel area 

on his trajectory, it runs along its borders while minimizing 
the distance criterion. Even though the trajectories are not 
optimal in nature due to the simplicity of the path planning 
algorithm that is used, these experimental results demonstrate 
that the enhanced LBP/C segmentation algorithm can provide 
major improvement on the traversability of space, the safety 
of the robot and the smoothness of the resulting path, 
independently from the sophistication of the planning 
algorithm, when probabilistic occupancy maps are used. Safe 
navigation areas being readily unified by the segmentation 
phase reduces the search effort for a collision-free path. 

 

 
 

Fig. 5. Trajectory restricted to the safe travel space. 
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Fig. 6. Path planning involving objects avoidance. 
 
This research work demonstrates that the enhanced 

segmentation technique can be directly used for applications 
such as path planning, collision avoidance and interaction 
control for a mobile robot navigating in an unknown 
environment mapped by sensors with high uncertainty level. 
The proposed algorithm is also computationally efficient. The 
complete segmentation and path planning processes for the 
environments shown in Fig. 6 and 7 took between 35 and 40 
seconds when running on a Matlab 7.0 platform with a 1.8 
GHz Pentium M processor. By translating the code to C, 
computational time was reduced by a factor of more than 10 
leading to an execution time between 2 and 4 seconds for the 
complete task. When compared with the implementation that 
we have realized of the algorithm proposed in [12], the 
proposed scheme leads to more accurate segmentation and 
performs more than a hundred times faster. 

V. CONCLUSION 
An enhanced version of the local binary pattern and 

constrast (LBP/C) segmentation algorithm has been proposed 
and adapted to efficiently process bidimensional probabilistic 
occupancy maps represented as textured images. 
Experimental results on environment maps of various 
complexity demonstrated the accuracy and the computational 
efficiency of the proposed approach over the original 
technique found in the literature. An application to safe 
mobile robot navigation in cluttered environments strictly 
guided by segmented 2D occupancy maps acquired with 
realistic range sensors submitted to limited spatial resolution 
proved the relevance of the approach for collision-free robot 
path planning and interaction control with the environment. 
On-going research aims at extending the proposed technique 
for segmentation of 3D probabilistic occupancy maps to also 
allow guidance of manipulator robots. 
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