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Abstract – The paper discusses an intelligent sensor system 
developed for the haptic-control of the robotic manipulation of 3D 
objects. Based on a 16x16 array of Force Sensing Resistor (FSR) 
elements, the sensor system is able to provide an estimate of the 
object’s surface orientation along with a fine description of features 
located within the sensing area. 
 

I. INTRODUCTION 

Haptic sensing technologies have experienced significant 
development over the last two decades that resulted in the 
identification of the best transduction methods and 
configurations [1]. This brought interesting results in haptic 
perception for virtual environments [2]. As haptic perception 
essentially emulates biological haptic perception mechanisms 
[3], it integrates two distinct sensing modalities: (i) 
cutaneous tactile sensing provides information about contact 
force, contact geometric profile and eventually the 
temperature of the touched object [4], and (ii) kinesthetic 
sensing provides information about the position and velocity 
of the structure carrying the tactile sensor [5]. 

A recent trend in haptic/tactile sensing focuses on the 
application of this technology in robotics and automation 
with various applications in industrial assembly, assisted 
surgery where palpation is important [6], or in safe human-
robot cooperation [7, 8]. More specifically, a strong interest 
has been put in the development of articulated hands made of 
a few tactile sensitive fingers for dexterous manipulation [9, 
10, 11]. Germagnoli et al. [12] present an approach to drive a 
robot gripper during the exploration of unknown objects 
based on the recognition of a limited set of tactile primitives 
and the interpretation of stress maps with neural networks to 
locate and follow edges on the object. Pedreno-Molina et al. 
[13] propose a neural-network based approach that uses 
artificial skins in guiding grasping operations to ensure stable 
grasp of object with a two-finger robot hand. Even though 
relatively good performances can now be achieved with this 
technology [14], the area and the complexity of the space 
that can be explored is limited due to the small size of the 
tactile sensors (mostly single point) and the fact that they are 
usually mounted inside the gripper fingertips [15]. 

On the other hand, the merge of haptic information with 
3D models obtained from optical data for telerobotic 
manipulation of complex objects has not yet been widely 
explored in spite of the numerous new possibilities that it 
might open.  As vision-based modeling is highly sensitive to 
object’s surface reflection characteristics, tactile sensors can 

be advantageously integrated to complement 3D models. 
Canepa et al. [16] propose to extend computer vision 
approaches to tactile data in order to extract cutaneous 
primitives. Taking advantage of the fact that tactile sensors 
are directly in contact with the object surface allows to 
precisely identify fine shape primitives that remain invisible 
to vision systems. 

Since a detailed representation of surface shape clearly 
revealed to be critical in controlling fine interactions between 
a robot manipulator and complex objects, these examples 
demonstrate the necessity for the development of haptic 
sensing systems targeted to robotic manipulation operations. 

This paper describes a compliant haptic sensing system 
that is able to provide an estimate of the object’s surface 
orientation along with a fine description of features located 
within the sensing area. A multilayer feedforward neural 
network operating directly on the raw data provided by the 
haptic sensor is also introduced to achieve the orientation-
independent recognition of fine features detected on the 
surfaces. These features take the form of geometric symbols 
defining a pseudo-random encoding scheme that is meant to 
facilitate the recognition and the localization of each object 
in a complex scene. Being able not only to model the objects 
in the scene but also to precisely segment them in the 
representation brings a strategic advantage in guiding the 
robot during the manipulation phase. 

II. KINESTHETIC SENSING SYSTEM  

The robotic haptic sensing system consists of a 
commercial manipulator, a custom designed instrumented 
passive-compliant wrist and a tactile array sensor [5] as 
shown in Figure 1. The compliant wrist allows the tactile 
sensor to accommodate the constraints of the explored object 
surface and thus to increase the information acquired by the 
tactile sensor. Position sensors placed in the robot’s joints 
and on the instrumented passive-compliant wrist provide the 
kinesthetic information. 

The amount of information acquired by haptic exploration 
depends on how well the probing tactile sensor 
accommodates the constraints of the local geometry of the 
object. The instrumented passive-compliant wrist shown in 
Figure 2 allows the tactile sensor to better accommodate the 
object surface.  It consists of two planar plates having three 
relative degrees of freedom:  two rotations about the x and y 
axes of the tactile probe’s plane and one displacement along 
the z axis (normal to the tactile sensor’s plane).  A set of four 



linear displacement transducers allows one to measure the 
distances between the two plates of the wrist, enabling the 
calculation of the relative orientation and distance between 
the wrist's plates. 

 

 
 

Fig. 1. Robotic haptic perception system. 

 

 
 

Fig. 2. The instrumented passive-compliant 
 wrist with the tactile sensor probe. 

III. TACTILE SENSOR 

Most of the known tactile sensors: (conductive elastomer, 
piezoelectric or piezoresistive) measure the contact force 
profile rather than the contact displacement profile. Under 
the pressure from an external bias force the local object 
geometric profile indents an elastic pad [1]. The induced 
contact forces are transmitted through an elastic overlay to a 
force sensitive array of transducers. There is a complex and 
difficult to control relation between the displacement and the 
effectively measured strain in the elastic pad [17, 18], as 

shown in Figure 3. Despite these problems the force sensitive 
tactile sensors are very robust and very good candidates for 
industrial applications. 

The piezoresistive tactile sensor consists of a 16x16 
matrix of Force Sensing Resistor (FSR) elements spaced by 
1.5875 mm (1/16 inch) on a 645.16 mm2  (1 square inch) 
area [19]. The FSR elements exhibit exponentially 
decreasing electrical resistance with applied normal force: 
the resistance changes by two orders of magnitude over a 
pressure range of 1 N/cm2 to 100 N/cm2. These elements 
sense compression forces and thus should be placed on a 
rigid backing. 
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Fig.  3. I/O characteristics of a force sensitive 
transducer and its elastic/compliant overlay. 

The elastic overlay has a protective damping effect 
against impulsive contact forces [20, 21], and its elasticity 
resets the measuring system when the sensor ceases to touch 
the object. Moreover, in order to avoid the inherent blurring 
effect of the one-piece elastic pads we are using a proprietary 
elastic overlay with protruding round tabs sitting on top of 
each node of the FSR matrix providing a de facto spatial 
sampling as shown in Figure 4. 

Based on recommendations made in [22, 23], we are using 
circular tabs, which occupy 50% of each 2D sampling area. 
This allows each tab to expand laterally without any stress 
allowing for a proportional relationship between the  

displacement in the normal direction and the resulting 
stress component in each tab.  As a result, the tactile probe 
output is a 16x16 array of data that represent normal 
displacement components of the 3D geometric profile of the 
investigated object surface [z(i,j) | i=1,…,16; j=1,...,16],  
where i and j are the row and column coordinates of the 
tactile sensor matrix. 
 



 
 

Fig. 4.  The FSR sensor array with the 
 tab-shaped elastic overlay on top. 

IV. TACTILE SENSOR INTERFACE 

An onboard PIC microcontroller gathers the data from the 
four linear displacement sensors on the compliant wrist and 
calculates the 4x4 homogeneous transformation matrix 
representing the kinesthetic sensor data that define the tactile 
sensor position and orientation. The microcontroller also 
provides a serial data communication interface to transfer 
these parameters to the user interface. 

Figure 5 illustrates the block diagram of the tactile sensor 
interface. Two analog multiplexer circuits, one for the 
selection of the selected row address and another for the 
selection of the column address, allow random access to any 
individual force sensitive resistor within the 16x16 FSR 
array. The resistance of each selected FSR element is 
measured by an A/D convertor onboard a 16-bits PIC 
microcontroller. The microcontroller also provides the 
following sensor control functions: FSR address selection, 
and serial data communication interface. 

Auto-calibration and basic image filtering functions are 
implemented in software, running on the PC.  The auto-
calibration function allows systematic correction of 
measurement errors due to changes in the analog electronics.  
A graphical user interface (GUI), provides convenient 
access to all these functions. 

 

Fig. 5.  Block-diagram of the tactile sensor interface. 
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 Fig. 6. Example of PC implemented GUI window.
 

V. OBJECT RECOGNITION WITH TACTILE DATA 

The intelligent haptic sensor system has been tested for 
model-based blind tactile recognition of 3D objects [24]. 
Conveniently shaped geometric symbols representing 
quaternary terms of a pseudo-random array (PRA) defined 
over the Galois field GF(4) ={0, 1, A, A2} are embossed on 
object surfaces. 

Symbols recovered by tactile probing are recognized 
using a neural network (NN) and then clustered in a 2x2 
PRA window that contains enough information to fully 
identify the absolute coordinates of the recovered window 
within the encoding PRA. By knowing how different object 
models were mapped to the PRA, it is possible to 
unambiguously identify the object face and the exact position 
of the recovered symbols on the face [24].  

A two-layer feedforward architecture, with 8 neurons in 
the first hidden layer and 4 in the second one as shown in 
Figure 7 is employed to classify tactile data representing the 
four encoding symbols. The network receives as inputs four 
8x12-element vectors and the corresponding target will be 
indicated by a one in the position of the recognized character 
and zero elsewhere. The network is trained with 8x12 binary 
maps of the tactile images of the centered four characters as 
illustrated in Figure 8. A gradient descent backpropagation 
with momentum and adaptive learning rate is used as a 
training algorithm. A value of 0.95 for the momentum 
constant and a sum-squared-error goal of 0 are applied over 
5000 epochs. 

 

 
Fig. 7.  Two-layer feedforward NN architecture 

for four characters classification. 

 

  

  
 

Fig. 8. Tactile images of the four symbols used to emboss  
 PRA terms on the encoded object surfaces. 
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The NN was trained using two noise free images of the 
characters then with a series of images corrupted with noise 
levels of 0.1, 0.15 and 0.2 respectively and then finally 
trained one more time with noise free images in order to 
make sure that noise free images are always identified 
correctly.  

To evaluate the generalization capability, the network was 
tested for different levels of noise with a mean of 0 and a 
standard deviation varying from 0 to 0.5. The average 
recognition rate and the error rate are presented in Figure 9 
and Figure 10 respectively.  

 

 
 

Fig. 9. Average recognition rate for noise ranging between 0 and 0.5. 

 

 
 

Fig.  10. Average error rate for noise ranging between 0 and 0.5. 

Another set of tests is run to test the behavior of the 
network in case the characters are not in vertical position. 
The network as presented previously is only able to detect 
characters rotated by 90 degrees. To solve this problem, the 
initial character recognition module is cascaded with a 

transformation module. The purpose of the latter is to 
recuperate the displacement information between a raw 
character and the characters stored in a database of centered 
and aligned objects. 

The transformation network has no hidden layer and 
receives as inputs a map of the raw character and as outputs a 
map of the character in the database. It has a linear activation 
function and is trained using gradient descent 
backpropagation with momentum and adaptive learning rate, 
with a value of 0.95 for the momentum constant and a sum-
squared-error goal of 0, for 530 epochs in 5 steps. The 
training procedure lasts for about 5 sec. The neural network 
learns and stores in its weights the displacement information 
between the vertical character and the rotated one. This 
information is then used to align the rotated character to the 
vertical position in order to be subsequently recognized. 

A sample of rotated tactile data and the corresponding 
aligned data are shown in Figure 12 and Figure 13 
respectively. As expected, once the training is completed, the 
raw object is aligned with the character in the database and 
this aligned object becomes the input of the tactile 
recognition module. 

 

 
 

Fig. 12.  Raw rotated data 

 

 

Fig. 13. Raw aligned data 



VI. CONCLUSION 

Experimental results have shown that the intelligent 
haptic sensing system presented in this paper increases 
considerably the performance of the tactile sensor initially 
developed in our laboratory [5]. 

The incorporation of a microcontroller has resulted in a 
more compact electronic interface for the FSR tactile sensor. 
It also makes possible the straightforward migration of the 
calibration and basic image filtering functions, which are still 
running on the PC.   

Simulation and experimental results have shown that the 
NN recognition of the tactile images of the specially 
designed symbols embossed on object surfaces has error 
rates better than 0.6% even in the case of images having up 
to a 50% noise ratio. 
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