
IEEE Instrumentation and Measurement
Technology Conference
Anchorage, AK, USA, 21-23 May 2002

Abstract - This paper introduces an automatic approach for
registration estimation between successive viewpoints of a laser
range camera that takes advantage of the raw measurements and
does not require any external device for pose estimation nor
complex feature extraction or triangulation. Assuming only object
rigidity and some overlap between the scan areas, the approach
allows to estimate the six rotation and translation parameters that
link 3-D scans gathered from different viewpoints. A compact
modified Gaussian sphere representation is used to encode a simple
planar patch approximation of the objects surface and to validate
mapping between the measurements as the appropriate rotation
and translation parameters are computed. This solution results in
an important reduction of the computational workload and a
sufficient accuracy for most robot navigation applications. The
proposed approach is demonstrated in an experimental context
using real range measurements collected from a series of
viewpoints.

I. INTRODUCTION

Building virtual representations of 3D environments from
range measurements requires that data are gathered from a
large number of viewpoints. This requirement results from the
complexity of objects to be modelled, from the limited field of
view of sensors and from occlusions that occur between
objects. Each dataset gathered from a given point of view is
defined with respect to a local sensor-based reference frame.
As a result, the sensor position and orientation at each
viewpoint must be precisely estimated to ensure that the
information obtained from every source is merged in a
consistent way to build a 3D model. The problem of
registration consists of determining the geometric relationship
that exists between different views provided by the sensor. An
imprecise registration between viewpoints prevents from
computing reliable models for collision avoidance or fine
interaction between a robot and its environment [11].

The sensor pose can be measured with external means such
as magnetic position and orientation trackers, robotic arms or
even CCD cameras providing images from which the sensor
position and orientation can be extracted. The latter solution
implies very complex image processing and pattern
recognition algorithms that are time consuming and rarely
fully reliable. The first two approaches appear to be more
realistic. A magnetic position and orientation tracking device,
such as the Fastrak system commercialized by Polhemus Inc.
has been tested in our robotic workcell. Unfortunately, the
magnetic fields used by the device to track the pose appear to

be very sensitive to the environment. In an experimental setup
containing quite a large number of metallic parts such as
computer boxes, power supplies and robotic equipments, such
a device does not succeed in providing the required pose
information except in very limited circumstances and under
constrained displacements.

When a robotic arm is used to move the sensor from one
viewpoint to another, the internal encoders of the robot also
provide a good estimate of the sensor position and orientation.
But our experiments revealed that there is still room for
refinement on this information in order to enhance the quality
of the virtual representation of the environment. Moreover,
the sensor is then constrained to the robot physical workspace
and cannot get an access to narrow areas of the environment.
An interesting solution to estimate range sensor registration
between successive viewpoints without any peripheral devices
is to take advantage of the raw range data provided by the
sensor. Assuming that there is an overlap between the areas of
the scene that are measured from each viewpoint, it becomes
possible to search for some matching characteristics in both
sets of information and then compute the necessary
registration information that would make the projections of
those matching elements to superpose.

In spite of the fact that the registration problem between
range measurements has been studied for a while in computer
vision, no extensive and definitive solution has been found
yet. Many variations to the widely known iterative closest
point (ICP) algorithm [1] have been proposed to match
characteristic point sets [3, 10], curves, meshes [2, 4] or
parametric surfaces [8]. Some of them use both range and
intensity data, also provided by most range sensors, to
improve their selection of control points that are to be
matched [7, 12]. These algorithms generally provide good
results but the search for characteristic curves or surfaces is
very complex and time consuming.

Moreover, research works on the topic of registration
generally assume that full range images are directly available
from the sensors. As a result, they search for matching
characteristics between such full images and compute
geometrical transformations from there. Such a framework
does not correspond to the reality because the majority of
range sensors currently available on the market or even
prototypes found in laboratories do not provide such full
images by themselves. They rather generate single points or
scan lines of range measurements [6]. Those sensors that
generate full images rely on an external mechanical device to
translate the sensor or change its orientation [9]. This solution
compares to the use of a robot to move the sensor and is
sensitive in terms of registration errors.
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In this paper, we introduce an approach to estimate
registration between range scan lines that makes use of a
simple representation of raw data as they are provided by a
laser range sensor. There is no need for any exhaustive search
for features or sophisticated representations. In its normal
operation mode, the technique does not require any help from
an external position/orientation tracking device to provide an
initial estimate of the translation and rotation between
successive viewpoints. Computing registration from range
data generated independently from any positioning device
enhances the flexibility of sensing systems in a variety of
applications. The following sections describe how scan lines
are processed to create a compact representation of the surface
shape. The estimation of the rotation and translation
parameters is detailed. Finally, experimental results using real
range measurements are presented and discussed.

II. PROPOSED APPROACH

The proposed algorithm is based on the fact that most man-
made objects are composed of a set of planar surfaces. Even
objects of a higher complexity can be approximated by a set
of planar surfaces that are easy to represent. Assuming that the
rigidity constraint is validated, these planar regions remain
unchanged and the same reality is always projected on the
image plane of a range sensor. Only the relative position and
orientation of the sensor has an influence on the object
representation. It is then possible to take advantage of these
planar regions to estimate the registration between two or
more sets of measurements gathered from different
viewpoints. These assumptions are the same that are made in
most research work on the problem of registration estimation.
However, most of the proposed techniques invest a lot of
efforts in building a sophisticated representation of object
surfaces before they estimate the position and orientation
parameters. Roth [12] provides a nice example of that by
proposing a registration technique that is based on the match
between surface representations obtained by means of a
Delaunay triangulation. The conversion of range
measurements into a triangular mesh mapping of the object
surface is computationally intensive. As a result, much time is
spent on modelling objects with respect to a camera-based
reference frame while the actual goal is to estimate the motion
of the sensor between viewpoints in order to eventually merge
all range measurements in a comprehensive model defined
with respect to a single reference frame that has nothing to do
with the sensor reference frame. The strategy that is presented
here rather relies on a simpler surface representation such that
the emphasis is put on the estimation of the position and
orientation variations of the sensor between viewpoints in 3-D

space. This way, the main part of the effort is dedicated to the
registration estimation rather than to an intermediate
modelling technique or feature extraction.

A Jupiter laser range sensor able to provide scan lines of up
to 256 range measurements is used. As for most practical
systems, the resolution of these measurements depends on the
depth and on the angle of the laser beam. Also, the spacing
between the 256 points on one scan line is not constant. The
sensor is moved in small constant increments along a straight
line to collect a series of scan lines on the visible surface of
the object. The sensor orientation is kept approximately
constant. These small displacements are under the control of a
F3 robotic arm operated in the world coordinate mode in order
to ensure a precise control of the sensor position along the
straight line. Then, the sensor is moved to a completely
different viewpoint and the process is repeated. Figure 1
shows the experimental setup for two viewpoints.

Our goal is to estimate the translation, T, and rotation, R,
parameters between two successive viewpoints from which
range measurements are collected. The first step consists in
segmenting each range profile to locate the linear sections and
to approximate them with straight line segments. This allows
to overcome the difficulties associated with irregular spacing
between points on the same scan line that would preempt a
point-based matching between two scans, even though they
are collected on the exact same surface. These line segments
provide an efficient way to merge neighbor profiles that show
similar shapes into planar patches of various sizes. The
normal vectors and the areas of these patches are then used to
encode the surface representation as a modified Gaussian
sphere which significantly simplifies the search for rotation
parameters. Provided two sets of scan lines encoded as
Gaussian spheres, the next step consists in estimating the
rotation parameters by finding the appropriate rotation
parameters that make similar vectors on the spheres to
overlap. Finally, the translation parameters associated with the
two sets of scan lines, and therefore with the displacement of
the sensor between viewpoints, are estimated by computing
the necessary shift of the patch centroids to make
corresponding planar patches to match. Figure 2 illustrates the
data flow of the proposed approach.

III. COMPACT REPRESENTATION OF SURFACES

The proposed approach relies on a simple representation of
surface shape that can be easily and quickly computed from
the raw range measurements in order to estimate the rotation
and translation parameters between different viewpoints. This
section describes the two-step procedure that is used to obtain
the modified Gaussian sphere representation of surfaces.

Figure 1: Range sensor scanning from two viewpoints. Figure 2: Steps of data processing for registration estimation.
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III.1. Segmentation of range profiles

Starting from the raw range measurements, each scan line
is segmented into a sequence of straight lines that best match
the set of 256 points. Before a straight-line fitting technique is
applied, outliers are removed from the scans and a median
filter is applied on the range profiles to reduce the effect of
noise. This eliminates large deviations that often occur in raw
measurements. Next, the straight line segments are computed
as shown in figure 3. The process starts at one extremity of the
scan line. The first three measurements are initially used to
determine the orientation of the straight line. The following
points encountered along the scan are then successively
checked for their proximity in terms of the distance with
respect to the initial line estimate. When the deviation
between a measurement point and the straight line estimate is
below a given threshold (4 mm in our experiments), then the
point is integrated into the straight-line segment. A segment is
terminated when one measurement point is located too far
away from the straight line estimate. In this case, a new
straight-line segment is initialized and the remaining points in
the scan line are successively checked for their proximity with
this new segment. The process is repeated in the same way
until the end of the profile is reached. Once a segment is
terminated, it is revisited in order to refine its estimation. The
parameters of each straight-line segment are computed on the
basis of the entire set of measurement points that are
associated with it rather than only with the estimate of the first
three points.

The straight-line segments are next parameterized to obtain
a compact representation of the profile of the surface along
the scan line. The normal vector and the center point of each
segment are computed. The length of the segment is used to
define the length of its normal vector. As a result, a scan line
of 256 measurements can be encoded as a set of 2a
parameters, where a corresponds to the number of straight line
segments associated with a given scan as shown in figure 4.
This simplified notation allows both the compactness of the
representation and an approximation of the surface structure
along a single line in 3-D space.

III.2. Scan merging

The line segmentation previously obtained provides an
efficient way to merge similar neighboring range profiles and
to create a simple patch-based surface representation.
Assuming that the gap between two successive scan lines is
kept small enough to ensure a proper coverage of the object
surfaces (5 mm in our experiments), the variation of the shape

between successive profiles should be smooth. As a
consequence, these profiles should have a similar normal
vector distribution where the object surfaces are continuous,
which is the case in most man-made environments. The vector
representations for each scan obtained in the previous step are
then compared with that of the first profile to measure the
similarity between scans. If the angle and length of vectors
associated with each straight-line segment are within a given
deviation (0.025 rad for angle and 25% in length in our
experiments), then neighbor scan lines can be merged to
create patches associated with each of their segments.

On the other hand, transitions between objects appear as
abrupt changes between two successive profiles. When such a
transition occurs, the respective profiles are assigned to
different neighbor patches as shown in figure 5. For example,
scans 1 to 4 have been collected on a continuous surface and
can therefore by merged. As these scans have been previously
segmented, a different surface patch is created for each scan
segment (patches 1 to 5 inclusively). The same idea applies to
scans 5, 6 and 7 as they are similar. However, there is an
important transition between scans 4 and 5 which are
successive profiles in the raw data set. Locating this transition
allows to delimitate the boundaries between patches
associated with the first and the second group of scan lines
respectively.

This way, planar patches are defined for each group of
merged straight-line segments. Three points from each
segment (one in the middle and two at the extremities) are
considered to estimate the patch orientation. Figure 5
illustrates the process for the first patch as p1, p2 and p3 are
selected from the first segment in scan 1, while p4, p5 and p6
are extracted from the same segment in the second profile.
Knowing the distance between two successive profiles, the
X,Y coordinates of p4 can be estimated. The corresponding Z
coordinate of p4 is then extracted from the first segment of the
second profile. The same steps also apply to estimate the
coordinates of p5 and p6. Eventually the process is repeated to
locate p7 to p9 from p4 to p6 and so on for as many scans as
necessary to fully define a given planar patch.

When the 3-D coordinates of all triplets are known for a
given patch, the best fitting planar surface parameters are
computed. For each planar patch previously defined, the
center point coordinates, , the normal vector, , and the
area are computed. The center point is defined as the average
of the coordinates of all triplet points belonging to the patch.
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Figure 3: Straight line fitting on a sequence of range measurements. Figure 4: Compact representation of a segmented range profile.
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The normal vector, , corresponds to the smallest eigen

vector of the matrix , where:

(2)

with .
The compact representation used for line segments is

extended to 3-D space under the form of a modified Gaussian
sphere representation to encode the distribution of patches that
describe the surface as shown in figure 6. Here, the length of
normal vectors defines the area of the planar patches.

Given the relatively large number of planar patches that
might exist in a real 3-D scene, we observed that this
representation can still be advantageously compacted to a
limited number of normal vectors. Specifically, those normal
vectors which have a small angle difference in between them
can be merged into a single vector and their respective lengths
added. Merging them is equivalent to the unification of the
corresponding patches that must have a very similar
orientation (within some tolerance level) with no
consideration of their respective depth. Figure 6 shows the
metric of co-normality that we introduced to select normal
vectors that can be merged.  and  are two normal vectors
corresponding to two patches. p1 and p6 are their projection
points on the unit sphere surface. If the distance between p1
and p6 is less than a given threshold (0.14 mm in our

experiments), then  and  can be merged. The resulting

vector  has the total length of  and . In practice, the
number of normal vectors is significantly reduced by this
process. This opportunity to further reduce the complexity of
the representation is provided by the fact that most objects can
be approximated by a large number of separated patches,
many of them having a similar orientation.

In comparison with the thousands of 3-D points collected
by the range sensor, this simplified representation is much
more compact. As a result, the computation time required to
match the representations of scans decreases dramatically. In
spite of some lost into the resolution of the representation, this
strategy proves to be sufficient for many applications while it
significantly speeds up the computation in comparison with a
classical triangular mesh representation for which a large
number of facets are required to approximate the object
surface.

IV. REGISTRATION ESTIMATION

Using the modified Gaussian sphere representation for
each planar patch, the three rotation parameters between
successive viewpoints are directly estimated from the set of
normal vectors. Then the three translation parameters can be
computed from the center points coordinates, cpi, while taking
into account the rotation values previously obtained.

IV.1. Rotation parameters estimation

Three correspondences of normal vectors are required to
uniquely determine the rotation matrix, R, from which the
three rotation angles, (θ, ϕ, ψ), can be computed [13].
Provided that  and ,  and ,  and  are three
non-degenerated sets of corresponding normal vectors
respectively extracted from the two sets of raw data associated
with two viewpoints between which a rotation, R, exists, these
vectors must satisfy the following constraint equations:

(3)

(4)

(5)

If we let:
 and (6)

 and (7)

 and (8)

where the rotation matrix, R, is defined in accordance with the
standard RPY (roll-pitch-yaw) convention [5]:

(9)

The three rotation angles, (θ, ϕ, ψ), can be extracted as
follows from the R matrix for the RPY convention:

(10)
(11)
(12)

where θ represents the rotation around the Z axis, ϕ is the
rotation around the Y axis and ψ corresponds to the rotation
around the X axis of the reference frame.
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Figure 5: Definition of patches as merged segmented scans. Figure 6: Compact representation of a surface shape.
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The values of the rotation matrix parameters can be computed
by solving the following system of equations for the rightmost
vector:

(13)

The resulting rotation matrix is then checked for
orthogonality. Note here that the centroids of patches are not
taken into account as only the orientation information is to be
estimated at this step.

Applying the computed rotation matrix to all other normal
vectors should result in the overlap of these vectors. However,
because of errors in the measurements and the approximations
made on the surface representation, the matching might not be
exact. In order to refine the estimation of the rotation matrix,
its computation is repeated for all possible triplets of
corresponding normal vectors in the simplified Gaussian
sphere representation. The rotation parameters that lead to a
maximum overlap between normal vectors are considered as
the best estimate for the rotation matrix.

IV.2. Translation parameters estimation

Once the rotation parameters have been estimated, the
application of the resulting rotation matrix to one Gaussian
sphere representation leads to two sets of normal vectors
having the same orientation but submitted to a shift in 3-D
space. Therefore, the translation parameters, T=[dx, dy, dz],
can be estimated as the translation along the reference axes
between the centroids associated with each surface patch. As
many surface patches need to be matched, a good estimate of
the translation parameters is the average of the necessary
displacement along each axis to align the two different sets of
center points, that is:

(14)

where R is the rotation matrix previously estimated,  and

 are the corresponding centroids of the ith matched planar
patches.

The matched centroids correspond to patches having
similar orientation. As many patches in the surface description
might share the same orientation, this may result in some false
matches of centroids. However, the correct translation
parameter set is considered to be the one with the maximum
number of correspondences. Figure 7 illustrates this idea with
some experimental data. All possible coordinate shifts are
shown as 3-D points. They tend to be spread everywhere in
the working space. But if the area with the highest density of
translation values is extracted for each axis, as depicted by the
small cube, a good estimate of the translation parameters can
be extracted as the average of those points within the high
density area.

V. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on a real
experimental testbed as illustrated in figure 1. The
development and validation of the algorithm has been made
on a set of range profiles collected on various objects with a
Jupiter range finder mounted on a 7-DOFs robotic arm.
However, the robotic arm is only used to move the sensor and
to validate the results. It doesn’t play any role in the
estimation of the registration parameters. Figure 8 shows a set
of raw range measurements from the right-side viewpoint
along with its simplified patch representation. The results of
the registration estimation procedure are illustrated in figure 9
for one of our experimental objects as a fitted superposition
between the two sets of raw range measurements. The
computation time for the whole process is about 30 seconds
on a Pentium III - 933 Mhz processor running Matlab for two
sets of scans having 44 scan lines each.

Our experiments revealed that for geometrically symmetric
objects having only a few distinctive surfaces, an overlap of
up to 50% between the scan areas might be required to
achieve correct registration. For usual man-made objects, the
required overlap area is much less. However it always
depends on the complexity of the object. Increasing the
overlap between scan areas increases the reliability but makes
the scanning process longer.
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Figure 7: Extracting translation parameters from all possible matches. Figure 8: Range measurements and patch representation.



Figure 9: Superposition of two sets of scan lines after registration.

The scan segmentation and surface representation as a
modified Gaussian sphere revealed to significantly improve
the computation efficiency. It also makes patch fitting simpler
and faster. Using the overlap of normal vectors as an
evaluation factor rather than the number of matched points
between the two sets of data speeds up computation. It also
gives more weight to those points that belong to larger
patches. This strategy appears to be appropriate as large
approximated patches appear to be a more reliable
representation of the object surface for a given required
accuracy in fitting.

The accuracy of the estimated registration parameters is
sufficient for most applications in robot navigation with
collision avoidance where computing time is a critical issue
that makes more sophisticated algorithms based on triangular
meshes or high-level feature extraction not tractable.

VI. CONCLUSION

We have introduced an automatic approach for registration
estimation based on raw range measurements provided by a
single line laser range sensor. The registration parameters are
computed without any need for an external device to provide
an initial estimate, nor any feature extraction or triangulation.
Assuming only object rigidity and some overlap between the
scan areas, the approach allows to estimate the six rotation
and translation parameters that link 3-D scans gathered from
different viewpoints. Taking advantage of a modified
Gaussian sphere representation, the mapping of planar patches
that result from the merge of similar range profiles is
significantly compacted. This solution results in an important
reduction of the computational workload while providing an
efficient mean for matching estimation and validation all
along the process. The proposed approach provided excellent
experimental results on scans gathered with a Jupiter range
finder with a sufficient accuracy for most robot navigation
applications.

Further developments to this registration technique will
examine some alternative ways to merge range profiles in the
areas where only a small number of scan lines exhibit similar
characteristics. Some improvements on the planar patch
estimation step might also be introduced to be able to deal
with generic objects that could advantageously be represented
by non-rectangular patches. An implementation in C with
optimization of the code will also result in an important
reduction of the computation time.
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