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Abstract 
In previous work, an unsupervised texture-based segmentation algorithm was introduced to process 2D 
probabilistic occupancy maps used to navigate mobile robots. Given that numerous robotic applications are 
carried out in 3D environments, this paper presents the extension of the approach to cover the case of 3D 
probabilistic occupancy maps. The proposed unsupervised segmentation technique relies on the analysis of 
texture defined by a double distribution of the “local binary pattern” (LBP) and the “contrast” (C) operators in 
order to subdivide the space into regions characterized by a uniform occupancy state. The algorithm is able to 
identify in separate segments the different objects present in an environment through the analysis of their 
proximity. In order to keep the method tractable in 3D applications, a redefinition of the texture unit and an 
adaptation of the subdivision process are presented that provide very satisfactory results while significantly 
reducing the size of the texture distribution histograms that need to be computed and iteratively compared to 
achieve the segmentation in uniform regions. 
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1 Introduction 
Probabilistic occupancy grids offer a powerful mode 
of representation of occupancy maps computed from 
the fusion of data collected from multiple points of 
view. But the use of range sensors characterized by a 
limited angular resolution plays a major role in 
introducing uncertainty on the topological distribution 
of objects in the environment. This leads to 
occupancy maps that do not exhibit sharp transitions 
on objects’ boundaries as would be desirable for the 
extraction of the occupancy information in 
autonomous robotic applications where mobile robots 
or manipulator arms need to detect safe navigation 
areas, or objects on which they need to perform an 
action. Taking into account all of these factors, this 
work aims at extending a segmentation algorithm that 
was previously developed in the context of 2D 
occupancy maps [1], to generalize it up to a scheme 
capable of subdividing a probabilistic grid of a 3D 
environment into regions characterized by uniform 
and deterministic occupancy states. 

The characteristics of the probabilistic representation 
of occupancy grids and the application considered in 
autonomous robotics impose some constraints on the 
design of an appropriate segmentation algorithm. 
Unlike supervised schemes that assume a preliminary 
knowledge of the processed model, an unsupervised 
segmentation is necessary here as autonomous robots 
typically operate in a priori unknown environments. 

Considering that the workspace is progressively 
scanned by a laser range finder or a sonar only along 
specific directions, the resulting map of explored 

space reveals the content of the workspace only along 
a series of rays corresponding to the beams emitted by 
the active range sensor. Because of this property, a 
region-based segmentation approach is favoured over 
a boundary-based one which tends to confuse the rays 
with the edges of the objects. Approaches based on 
classical methods such as split and merge [2], 
pyramid node linking [3], as well as quadtrees [4] 
were the first to provide unsupervised region-based 
segmentation. Recent unsupervised segmentation 
methods explore, either multi-resolution filtering, 
using Gabor filters [5] or the wavelets [6], or statistics 
with hidden Markov fields [7]. 

Given the specific characteristics of probabilistic 
occupancy maps used in robot guidance, an approach 
that combines contrast and texture properties to 
identify regions of uniform occupancy state reveals to 
be a more appropriate strategy for differentiating 
between segments exhibiting different occupancy 
properties. Ojala et al. [8, 9, 10] proposed such a 
segmentation technique based on “Local Binary 
Pattern” and “Contrast” (LBP/C) operators to 
subdivide images with sharp patterns in the context of 
texture classification. But unlike the images that they 
considered, the transitions between free and occupied 
spaces in probabilistic maps do not define clear 
boundaries and spread out according to the 
uncertainty level introduced by the sensor and data 
fusion. Refinement to the original LBP/C 
segmentation mechanism has been initially proposed 
in [1] to handle smooth transitions in complex images 
while achieving accurate contours definition 
corresponding to segments with deterministic 
occupancy states found in the context of robot 
guidance: free, unknown and occupied regions. 



The quality of the results achieved in the 2D case and 
applied to mobile robots navigation motivated the 
extension of the 2D segmentation scheme to the 3D 
case in order to address the problem of manipulator 
robots collision-free path planning. The development 
of the extended scheme took into account the 
minimisation of the impact of the models’ size 
increase on the execution time. This issue is handled 
by a clever redefinition of the texture unit which is 
adapted to the 3D representation without degrading 
the overall performance of the segmentation. 

2 Texture Representation 
Ojala and Pietikainen [8] defined the principle of 
texture analysis using the distribution of the “Local 
Binary Pattern” (LBP). This operator describes the 
local texture characterizing the entourage of each 
pixel. Although it constitutes an important source of 
information about the local texture characteristics, the 
LBP alone cannot represent the contrast between the 
values of neighbour pixels. Thereafter, Ojala et al. 
extended their scheme by adding a “Contrast” 
operator, C, for each local texture unit. Thus, the 
texture in a given area of the model is to be 
characterized by a double distribution of LBP and C 
measures. The proposed segmentation algorithm 
exploits this multi-variable distribution to achieve 
classification of uniform regions. 

2.1 Bidimensional Texture 
Representation 

In the original scheme [8], the LBP and C values are 
calculated for every pixels of a given region in the 
original image, except for those located on the 
external boundaries. For each processed pixel, a block 
of size [3 x 3] pixels immediately surrounding the 
pixel of interest is considered (figure 1a). A 
discretisation process, which leads to a binary 
representation, is applied to this texture unit. In this 
process, the central pixel is used as a threshold, and 
all neighbouring pixels with a value higher or equal to 
the threshold are set to one, the others are set to zero 
(figure 1b). Next, the binary values are multiplied by 
binomial weights (figure 1c) and the results (figure 
1d) are added, excluding the value of the central pixel, 
in order to obtain the LBP value of the texture unit. 

The LBP parameter is combined with a simple 
measure of contrast that is equal to the difference 
between the average of the pixels’ original values 
having a unity binary representation (i.e. 1 after 
application of the threshold) and the average of the 
pixels’ original values having a null binary 
representation. 

The resulting LBP/C distribution is encoded in a 
bidimensional histogram of size [256 x b]. The first 
dimension size comes from the fact that a central 
pixel has 8 neighbour cells for a texture unit of size 
[3x3] pixels. Each of them being represented by a 

binary variable (figure 1b), a total of 28 possible LBP 
values can be computed. The second dimension size, 
b, corresponds to the number of levels of 
discretisation of contrast, C. This decimal value 
belongs to the interval [-254; 255] for an image 
encoded on 8 bits. For this reason, a process of 
discretisation is necessary to determine the 
correspondence between a given value and its position 
in the LBP/C distribution histogram. The selection of 
a proper number of bins, b, for the C values remains a 
compromise between precision and performance. 

 
Figure 1: LBP and C values estimation 

    for a 2D texture unit. 

2.2 Adapted Tridimensional Texture 
Representation 

A segmentation scheme based on the analysis of a 
double distribution of the LBP and C operators 
directly depends on the definition of the texture unit. 
As introduced previously, the dimensions of the 
LBP/C histogram are defined by the range of the LBP 
possible values and by the number of levels of 
discretisation, b, selected to represent the contrast. 
The 2D texture unit of size [3x3] implies eight 
neighbour cells for each central pixel, which leads to 
28 = 256 possible values for the LBP. Under this 
framework, if a supplementary dimension was 
introduced, the size of the distribution histogram 
would double for each additional neighbouring cell. 
As a result, fully considering a cubic texture unit of 
size [3x3x3] voxels involves 26 neighbours for each 
central voxel, as shown in figure 2. 

9 neighbor voxels

8 neighbor voxels

9 neighbor voxels

26 neighbors
for  ea ch
c entral cell

 
Figure 2: 3D texture unit of size [3x3x3] 

   with its 26 neighbours. 

The proposed redefinition of the texture unit keeps the 
histogram dimensionality low by taking into account 
only the neighbour voxels that share a face with the 
central one. Edge neighbours and vertex neighbours 



are eliminated. The resulting texture unit is 
symmetrical relative to the three Cartesian planes (x, 
y), (x, z) and (y, z) respectively, as illustrated in 
figure 3. The symmetry implies that the proposed 
segmentation algorithm does not discriminate 
between any of the three dimensions of the space 
during the analysis of the textures which characterize 
the environment occupancy. The adapted texture unit 
results in distribution histograms of size [26 x b]. In 
spite of the reduction of the histogram size by a factor 
four compared to the 2D case, the results of the 3D 
segmentation algorithm remain coherent and stable, as 
will be shown in the following sections. 

Level N+1: 1 neighbor voxel

Le vel N: 4 neighbor voxe ls
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Figure 3: 3D representation of the 

          adapted texture unit. 

In a similar way to the 2D case, for a given 3D region, 
the LBP and C values are computed for each voxel, 
except for those located on the external edges of the 
map. For each considered voxel, the six neighbours 
with which the latter shares a face are considered. 
Figure 4 presents a flattened representation of a 
tridimensional texture unit. The central voxel as well 
as its right, left, bottom and top neighbours are 
located at level N, while the neighbour voxels at the 
lower and upper levels are located respectively at 
levels N-1 and N+1. The texture unit (figure 4a) first 
undergoes a discretisation process which leads to a 
binary representation. The occupancy probability of 
the central voxel is used as a threshold and all 
neighbours with a higher or equal value are set to one, 
the others are set to zero (figure 4b). The binary 
values obtained are multiplied by binomial weights 
(figure 4c) and the results (figure 4d) are added, 
excluding the central voxel value, in order to obtain 
the LBP value of the tridimensional texture unit of 
interest (here, LBP = 2+8+16+32 = 58). 

The calculation of contrast follows the model 
introduced by Ojala and Pietikainen [8]. Thus, C 
corresponds to the difference between the average of 
the neighbouring voxels’ intensity having a unity 
binary representation (after thresholding) and the 
average of the neighbouring voxels’ intensity having a 
null binary representation. For examples, the contrast 
value of the texture unit presented in figure 4 is 
computed as follows: C = [(8+7+7+6)/4]-[(2+1)/2] = 
5.5. For the 3D case, the resulting LBP/C distribution 
is represented in a two-dimensional histogram of size 
[64xb]. Based on [8] and on our previous 2D results 
presented in [1], a b value of 8 or 16 leads to similar 
results. However, according to the tests we carried 
out, an attempt to further decrease the number of 
discretisation levels, b, to 4 reduces considerably the 
sensitivity of the segmentation algorithm to the 

differences in contrast between occupied and free 
regions. Consequently, a value of 8 discretisation 
levels on the contrast was selected, resulting in a 
LBP/C histogram of size [64x8] in the 3D case. 

 
Figure 4: Calculation of the 3D texture 
                 unit’s LBP/C characteristics. 

2.3 Texture Comparison 
The logarithmic likelihood ratio, the G-statistic [11], 
is used to compare histograms of LBP/C distributions, 
in both 2D and 3D cases. It provides robust means to 
classify uniform map segments. The value of G 
indicates the level of similarity between two 
frequency distributions. It estimates the likelihood 
that two compared regions have similar texture and 
contrast distributions. This measurement of similarity 
is calculated as follows: 
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where fi corresponds to the number of texture units 
characterized by a pair of (LBP; C) values in bin i. s 
and m represent the two distributions to compare, and 
n equals [64xb] which is the number of bins in each of 
the analyzed histograms. 

3 3D Segmentation Algorithm 
The structure of the tridimensional segmentation 
algorithm is inspired by a split and merge approach 
and is divided in three successive phases. The 
hierarchical division subdivides iteratively the 
probabilistic model in cubic blocks of uniform 
texture. Next, the segments creation phase merges 
adjacent regions with a similar occupancy state. 
Finally, the refinement phase improves the contours’ 
localisation between neighbouring segments. The 
adjustments that were made to adapt the initial 2D 
segmentation technique to take into account the third 
dimension are detailed in this section. 



3.1 Hierarchical Division 
The objective of the 3D hierarchical division consists 
of subdividing the occupancy map in cubic blocks of 
variable sizes and relatively uniform texture. This 
phase first subdivides the probabilistic model in 
regions of size [SmaxxSmaxxSmax] voxels, Smax being 
equal to 64. A modified version of the uniformity test 
proposed by Ojala and Pietikainen [8] has been 
developed in order to determine if a “parent” 
subdivision contains heterogeneous textures and must 
be subdivided in eight sub-blocks of equal size or not. 
After having identified the eight subdivisions for each 
block, the LBP/C distribution histogram is computed 
in each subdivision. The eight resulting histograms 
are used to calculate the 28 logarithmic likelihood 
ratios, eq. (1), between each of the 28 possible pairs 
of subdivisions. 

The largest and the smallest G-statistic values, 
denoted respectively by Gmax and Gmin, are identified. 
The parent block is considered non-uniform and thus 
subdivided if the ratio between Gmax and Gmin is higher 
than a threshold value, X. A proper value has been 
estimated empirically as X=1.2, as it provides a good 
discrimination between regions of different textures. 

X
G
G

R >=
min

max  (2) 

If a block is recursively subdivided, its eight sub-
regions undergo the same test. The iterative process is 
applied on the subdivided blocks until the subdivision 
size reaches [SminxSminxSmin], Smin being equal to 8 
voxels. In a similar way to what was observed in the 
2D case [1], a value of Smin equal to 8 rather than 16 
provides more stable segmentation results as it leads 
to three recursive subdivision levels. 

3.2 Segments Creation 
The goal of the 3D segments creation phase consists 
of merging adjacent subdivisions that are 
characterized by a similar occupancy state until a 
convergence criterion is met. The segments creation 
starts by identifying for each of the subdivisions 
obtained at the end of the first phase, its neighbours 
from the top, the right and the lower level. This 
process guarantees that, at the end of the subdivisions 
scan, all possible pairs of adjacent regions will have 
been taken into consideration, and merged if they 
share similar texture characteristics. 

The neighbouring blocks characterized by a mean 
occupancy probability, MOP, in the same interval are 
merged in a single region. This parameter is defined 
as the average cells’ occupancy probability in a given 
region, Ri, and is calculated as follows: 
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where M, N and O are the dimensions of the region Ri, 
and OP(rj, k, l) is the confidence level on the 
occupancy state of a voxel r with coordinates (j, k, l). 

The motivations behind the choice of the MOP value 
as a criterion to evaluate the similarity between 
adjacent regions are related to the nature of the 
probabilistic occupancy map. After normalizing the 
cells’ occupancy probability values over the range 
[0;1], three possible occupancy states are considered: 
i) if a region is totally unknown, it is characterized by 
an occupancy probability in the interval [0.498; 
0.502] and is tagged as unknown; ii) if the occupancy 
probability belongs to the interval [0; 0.498[, this 
region of space is mostly free and is tagged as free; 
iii) finally, an occupancy probability in the interval 
]0.502; 1] shows a mostly occupied region of space 
that is tagged as occupied. These deterministic states, 
S(Ri) = {free, unknown, occupied}, can indicate 
whether or not a region is safe for robot navigation. 

3.3 Refinement 
The completion of the first two phases leads to an 
approximate segmentation given that the boundaries 
between the segments do not correspond perfectly to 
the edges between adjacent regions that have a 
different occupancy state [1]. Consequently, the last 
phase is dedicated to perfect the contours localisation 
of the segments by reallocating the voxels on the 
boundaries between two or several adjacent regions. 
The refinement process can be divided in two parts: 
the first one deals with the boundaries between the 
free – unknown segments, while the second handles 
boundaries between the occupied – free and free – 
occupied segments. 

The first refinement step is based on the fact that the 
range of occupancy probability values leading to an 
unknown segment classification is relatively narrow, 
being contained in the interval [0.498; 0.502]. Even if 
a segment overlaps between an unknown region and a 
free one by a limited number of voxels, it will still be 
considered as free by the segments creation phase. 
Therefore, the space whose occupancy is free always 
juts out into the unknown one, which is unsafe for 
robot navigation and collision avoidance. Thus, the 
first refinement step consists of expanding the 
unknown segments to the detriment of their free 
neighbours. At the implementation level, this process 
consists of scanning the tridimensional model along 
the six possible directions: right – left, left – right, 
bottom – top, top – bottom, below – above and above 
– below. Along the direction of each scan, the free 
cells, located on the boundary between a free and an 
unknown segments, with occupancy probability equal 
to 0.5 are reassigned to the unknown segment. This 
process continues until a cell with a different value is 
met. The six directions scanning procedure ensures 
the coverage of all possible boundary shapes. 



The second refinement step consists, in a similar way 
to the first one, of scanning twice the probabilistic 
map in the six possible directions. During each of 
these scans, boundaries are considered respectively 
between the free – occupied and occupied – free 
segments. Along the direction of a scan, when a free – 
occupied (occupied – free) boundary is reached, the 
three following voxels in the adjacent occupied (free) 
segment are examined. 

The choice to consider several voxels beyond the 
boundary between two segments of known occupancy 
state comes from the existence of unknown regions 
between the adjacent probing directions of an active 
range sensor. Any misclassification in these unknown 
areas can create discontinuities in the segments, and 
thus distort the object detection process. According to 
our investigation, the choice of three voxels provides 
the best safety/performance ratio. 

Depending on the value of the three considered cells, 
four reclassification cases are identified: i) if the three 
cells have a normalized occupancy probability of 0.5, 
no reclassification is applied given that these pixels 
might fall into the unknown region between adjacent 
sensor measures; ii) if at least one of the three voxels 
has a normalized occupancy probability strictly higher 
(lower) than 0.5, and the other voxels have an 
occupancy probability equal to 0.5, no reclassification 
is applied; iii) if at least one of the voxels has an 
occupancy probability strictly lower (higher) than 0.5, 
and the other voxels have an occupancy probability 
equal to 0.5, then the three voxels are reassigned to 
the free (occupied) segment; and iv) if at least one of 
the three voxels has an occupancy probability strictly 
lower (higher) than 0.5, and at least another one is 
strictly higher than 0.5, then the voxels with value 
lower (higher) or equal to 0.5 are reassigned to the 
free (occupied) segment. 

4 Experimental Results 
In this section, segmentation results on three 3D 
probabilistic models each of size [320x320x128] are 
presented. These tridimensional probabilistic maps of 
an environment are created using a stack of planar 
images of the same size separated by a constant gap to 
create volume. These images are obtained using a 
laser range finder simulator for planar surface 
mapping that was developed in previous work. The 
width, the height and the depth of these environments 
correspond respectively to the dimensions of the 
images ([320x320]) and the number (128) of images 
that were piled up. 

The occupied space shape as well as the number and 
position of the range sensor’s points of view differ 
from a model to another. Gray areas in figures 5a, 6a 
and 7a represent the occupied regions by the objects 
in the models. These objects have respectively a 
conical, cubical and cylindrical shape. 

The range sensor scans, used in the probabilistic 
models construction, are collected assuming a 
Gaussian error with standard deviation of 4 cm on the 
range measurements. The step angle between two 
adjacent sensor’s rays which defines the angular 
resolution is fixed to 0.5 degree over all the 
measurements. The parameters used in this 
implementation of the segmentation technique are the 
same as the ones described in the preceding sections 
and are not modified when dealing with objects of 
different shape. In the hierarchical division phase, the 
size of the first level of subdivided blocks, Smax is 
[64x64x64] voxels, and three subdivision levels are 
conducted, leading to a Smin of [8x8x8] voxels. 

Figures 5b, 6b and 7b present the segmented maps 
after the segments creation phase. The segments 
obtained at the end of the second step approximate 
well the shape of the regions present in the 
probabilistic map of the environment for all cases. 
Segmentation results obtained after the refinement 
phase are shown in figures 5c, 6c and 7c respectively 
for the three probabilistic maps. Important 
improvement on contours definition is achieved. The 
rendering of these 3D objects uses a slicing approach 
to allow easy navigation inside the map for accurate 
evaluation of the segmentation performance. The 
white regions observed inside the cubical and 
cylindrical objects in figures 6 and 7 respectively, 
correspond to the interior volume of the objects that 
was occluded from the sensor and therefore was never 
scanned. Beyond the external shape of the 3D objects, 
unknown regions are also correctly identified by the 
proposed segmentation scheme. 

a) Lateral and vertical views of the c onic al objec t.

b)  Segments creation results c) Fina l segmentation results  
 Figure 5: Segmentation results of a 3D environment 

containing a conical object. 

a) Latera l and vertical views of  the cubical object.

b)  Segments creation results c ) Final se gmentation results  
Figure 6: Segmentation results of a 3D environment 

containing a cubical object. 



a) Lateral and vertical view s of  the cylindrical obje ct.

b) Se gments creation results c) Final segmentation results  
Figure 7: Segmentation results of a 3D environment 

containing a cylindrical object. 

From a qualitative point of view, these experimental 
results demonstrate that the segmentation technique 
previously developed for bidimensional maps [1] can 
readily be extended to process tridimensional 
probabilistic maps of an environment. The proposed 
extension opens the door to a multitude of 
applications involving interaction between 
autonomous manipulator robots and their environment 
in exploration or manufacturing tasks. 

From a quantitative point of view, the proposed 
tridimensional segmentation algorithm remains 
computationally efficient for a static model of the 
environment when global path planning is considered. 
This was made possible by the redefinition of the 
texture unit for 3D voxels that compresses the 
intermediate histogram representation by a factor of 
1048576 [= (226 x 8) / (26 x 8)]. On average, the 
segmentation of a probabilistic model of size 
[320x320x128] voxels, as presented here, requires 
less than 11 minutes, which represents about 50 µsec 
per voxel. The segmentation time is minor compared 
to what is required to generate tridimensional 
probabilistic maps (data acquisition, registration, and 
range data fusion). Therefore it offers a realistic 
solution considering the accuracy of the segmented 
maps that can be achieved. 

5 Conclusion 
This paper proposes and evaluates an extended 
version of a texture-based segmentation scheme to 
operate on 3D probabilistic maps as obtained from 
limited resolution active range sensors. The 
redefinition of an optimal “Local Binary Pattern” and 
“Contrast” texture metrics successfully limits the 
increase in processing workload associated with the 
additional dimension introduced in the model which is 
known to drive numerous algorithms into a 
computational explosion. 

The proposed texture unit definition is designed to 
preserve the robustness of the LBP/C texture 
mapping, thus leading to accurate segmentation 
results of tridimensional objects. Such segmented 3D 
maps can readily be used by manipulator arms 
classical path planning approaches to navigate 
without collision in cluttered environments, or to 

perform tasks on specific objects. It can also operate 
as a first processing stage in pattern recognition and 
object classification in 3D space. 

6 References 
[1] B. Abou Merhy, P. Payeur and E.M. Petriu, 

“Application of segmented 2D probabilistic 
occupancy maps for mobile robot path 
planning”, Proceedings International 
Instrumentation and Measurement Technology 
Conference (IMTC2006), Sorrento, pp 2342-
2347 (2006). 

[2] X. Wu, “Adaptive Split-and-merge segmentation 
based on piecewise least-square approximation”, 
IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 15(8), pp 808-815 (1993). 

[3] F. Arman and J.A. Pearce, “Unsupervised 
classification of cell images using pyramid node 
linking”, IEEE Transactions on Biomedical 
Engineering, 37(6), pp 647-650 (1990). 

[4] M. Spann and R. Wilson, “A quad-tree approach 
to image segmentation which combines 
statistical and spatial information”, Pattern 
Recognition, vol. 18, pp 257-269 (1985). 

[5] D.P. Mital, “Texture segmentation using Gabor 
filters”, Proceedings International Conference 
on Knowledge-Based Intelligent Engineering 
Systems and Allied Technologies, Brighton, UK, 
vol. 1, pp 109-112 (2000). 

[6] M. Unser, “Texture classification and 
segmentation using wavelet frames”, IEEE 
Transactions on Image Processing, vol. 4, pp 
1549-1560 (1995). 

[7] H. Choi and R.G. Baraniuk, “Multiscale image 
segmentation using wavelet-domain hidden 
Markov models”, IEEE Transactions on Image 
Processing, vol. 10, pp 1309-1321 (2001). 

[8] T. Ojala and M. Pietikainen, “Unsupervised 
texture segmentation using feature distributions”, 
Pattern Recognition, vol. 32, pp 477-486 (1998). 

[9] T. Mäenpää, T. Ojala, M. Pietikäinen and M. 
Soriano, “Robust texture classification by subsets 
of local binary patterns”, Proceedings 
International Conference on Pattern 
Recognition, vol. 3, pp 935–938 (2000). 

[10] T. Ojala, M. Pietikäinen and T. Mäenpää, 
“Multiresolution gray-scale and rotation 
invariant texture classification with local binary 
patterns”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 24, pp 
971-987 (2002). 

[11] R.R. Sokal and F.J. Rohlf, Biometry: The 
Principles and Practice of Statistics in Biological 
Research, 2nd Edition, W. H. Freeman and 
Company, San Francisco (1981). 


