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Abstract—Safe manipulation of soft deformable objects is a 

challenging task generally requiring a complete knowledge on the 

object, including its shape, material properties, surface texture, 

as well as its position in the environment. Due to the complexity 

of the problem, relatively few researchers dedicated their 

attention to the characterization of 3D object properties without 

imposing assumptions on the object’s material. This paper 

proposes an original solution for in-hand characterization of 

deformable objects’ material. A Kinect sensor observes the 

object during interaction with a Barrett robot hand. The 

proposed solution capitalizes on an advantageous combination of 

user-guided object selection, a RANSAC-based automated 

background removal procedure, an original fast level set method 

in the log-polar domain to identify the contour of the 

manipulated object, and dynamic time warping to characterize 

the object as rigid, elastic, plastic, or elasto-plastic, based on the 

tracked contour. When integrated in the control scheme for the 

robot hand, the proposed approach can contribute to ensuring a 

stable grasp and precise manipulation capability, enabling robots 

to handle efficiently unknown objects. 

Keywords—soft object characterization; deformation tracking; 

robot hand; Kinect; contours; material properties; log-polar 

transform; dynamic time warping.  

I. INTRODUCTION  

Safe and efficient manipulation of soft objects without 
human intervention, while being a fundamental capability of 
autonomous robot systems, is still a challenging area of 
research. Such dexterous manipulation generally requires a 
complete knowledge of the manipulated object, including its 
properties (i.e. shape, texture, material, stiffness) and its 
location in the environment. Relatively few publications 
address the issue of manipulation and grasping of 3D objects 
[1, 2], and even fewer researchers so far developed solutions 
for automated characterization of the properties of 3D 
deformable objects under interaction. In most cases presented 
in the literature, this characterization involves the approximate 
identification of the material properties (i.e. elasticity 
parameters) for the object model by comparing the real object 
subject to interactions and its simulated counterpart, and 
aiming to minimize the differences between them. The model 

is generally either a mass-spring model or a finite element 
(FEM) representation [3, 4]. A few other representations have 
been proposed as well, such as surfels [2, 5]. However, these 
approaches work by making assumptions on the object 
material, such as linearity, or isotropy, which are inadequate 
for several real-world materials such as foam or rubber for 
which the elastic parameters are not well defined.  

In this paper we propose a solution for the automated 
characterization of 3D soft or deformable objects without 
assumptions on their material. The object in interaction with a 
robotic hand is observed by a Kinect sensor, placed above a 
robotic hand. The RGB-D data is analyzed to initially segment 
the object of interest from the background. Starting from a 
point selected by the user over the surface of the object in the 
color image, a background removal procedure is performed 
over the depth point cloud based on the commonly used 
random sample consensus (RANSAC) iterative method to fit a 
model with observed data. It is followed by a k-nearest search 
to identify the most probable 3D points representing the object 
of interest. The obtained point cloud containing the object is 
projected back in 2D and the corresponding area in the color 
image is further analyzed in the YUV color space. A color 
selection scheme is applied that uses either the U or V 
component and a novel fast level set method in the log-polar 
domain is proposed to enable real-time contour identification 
and subsequently contour tracking in the data stream coming 
from the Kinect. A solution based on dynamic time warping is 
employed over the tracked contour to characterize the object 
material as rigid, elastic, plastic or elasto-plastic. This 
characterization enables better manipulation capabilities for a 
robot hand. When included in the control scheme for the 
robotic hand, it contributes to ensuring stable grasp and precise 
manipulation capabilities without a priori knowledge on 
object’s material, therefore enabling robots to handle 
efficiently unknown objects. 

II. LITERATURE REVIEW 

This section summarizes the most relevant related work on 
object material characterization and on robotic manipulation of 
3D objects. The solution for in-hand modeling of 3D rigid 
objects from RGB-D data proposed by Krainin et al. [2] 
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employs a Kalman filter that produces at each frame estimates 
of the robot manipulator, the object and the Kinect sensor. 
These estimates enable the segmentation of the object, and its 
model is built as a series of surfels. Stuckler and Behnke’s 
registration method [5] based on multi-resolution surfel maps 
provides a dense displacement field between object shapes 
monitored in RGB-D images. In [4], a linear isotropic 3D 
deformable object in interaction with a three-finger robot hand 
is modeled as a mass-spring system based on a tetrahedral 
mesh. The object deformations and the contact points 
estimation are based on node position tracking and solving the 
dynamic equations of Newton’s second law. Mateo et al. [6] 
measure the stiffness of a 3D planar elastic object by the 
curvature of surface points extracted from the object’s 
geometry. A level set curve describes the local deformation of 
the object. In the same line of research, the authors of [7] 
inscribe markers on the surface of a piece of paper to track its 
folding in visual data. The paper in interaction with a robot 
hand is represented as a 2D grid of nodes connected by links 
that specify the bending constraints. In [8], sparse sets of 
oriented 3D points along the contour of an object manipulated 
by a robotic manipulator are monitored using a stereo camera 
and then predicted based on the motion induced by the robot. 
Schulman et al. [9] track deformable objects from a sequence 
of point clouds by identifying the correspondence between the 
collected data and a model of the object represented by a 
collection of linked rigid particles, governed by dynamical 
equations. The most probable positions of the particles are 
found using an expectation-minimization algorithm. The 
experimentation is performed against a green background, 
limiting the applicability of the solution in normal conditions.  

Navarro-Alarcon et al. [10] propose a solution for robotic 
manipulation of elastic objects that controls simultaneously the 
object’s final position (i.e. interest points over the object and its 
centroid) as well as its deformations (i.e. the compression 
distance between points of interest, the folding angle and the 
normalized curvature of the object). The solution is however 
limited to elastic deformations only. Similarly, the work in [3] 
is dedicated to the real-time tracking of 3D elastic objects in 
RGB-D sensor data. Assuming that a prior segmentation of the 
object of interest exists, the object is tracked using a graph-cut 
approach, and an iterative closest point (ICP) approach is 
applied on the resulting point cloud to estimate a rigid 
transformation from the point cloud to a linear tetrahedral 
finite-element model representing the object. Linear elastic 
forces exerted on vertices are computed from the point cloud to 
the mesh based on closest point correspondence and the 
mechanical equations are solved numerically to simulate the 
deformed mesh. Hur et al. [11] propose a 3D deformable 
spatial pyramid model to find the dense 3D motion flow of 
deformable objects in RGB-D data without assuming a prior 
model or template for the object. A depth hole-filling algorithm 
is applied to correct the point cloud, followed by Gaussian 
filtering prior to the computation of a series of perspectively 
normalized descriptors. The 3D deformable spatial pyramid 
finds dense correspondences between instances of a deformed 
object by optimizing an objective function, in form of an 
energy corresponding to a Markov random field, taking into 
consideration factors such as: translation, rotation, warping 
costs and descriptors matching costs. 

III. PROPOSED APPROACH FOR SOFT OBJECT TRACKING 

AND MATERIAL CHARACTERIZATION IN RGB-D DATA 

The proposed approach for in-hand object material 
characterization from RGB-D data is illustrated in Fig. 1.  

 
Fig. 1. System for object detection, tracking and material characterization. 

The system takes as inputs the RGB-D data and a user 
selected point in the color image, so-called 2D fixation point. 
The latter guides the system towards the location of the object 
of interest. In an initial step, a 3D fixation point is calculated 
from the 2D fixation point provided by the user, using 2D-3D 
mapping in the RGB-D data. The depth point cloud 
recuperated from the Kinect is then subject to a background 
removal operation using the RANSAC algorithm [12], with the 
purpose to eliminate undesirable elements from the scene (i.e. 
measurement table, the robot hand mounting plate and other 
measurement equipment visible in the RGB-D data stream). 
This helps better identify the object shape and thus reduce the 
processing time. A cluster representing the object is identified 
based on the computed 3D fixation point in the point cloud 
from which the background is removed. This cluster is 
projected back to 2D to compute a bounding window around 
the identified object that is analyzed in the YUV color space 
and that serves for the initialization of the level set contour 
tracking method. A novel fast level set method in the log-polar 
domain is applied to extract and track the contour of the object 
within this bounding window. The object contour is then 
converted back to the RGB image coordinates and the object 
material is classified based on the contour information as 
belonging to a rigid, elastic, plastic or elasto-plastic object, or 
to the elastic, plastic, or elasto-plastic stages of deformation for 
more complex objects, using a dynamic time warping 
approach. 

A. User-Selected Fixation Point and 2D-3D Mapping 

As previously mentioned, the system is initially guided 
towards the location of the object of interest using a user-
selected 2D fixation point. The user’s intervention is only 
required for the first frame of the data stream. Such guidance is 
common in the current literature, but in many cases is more 
extreme than in the proposed solution. For example a prior 
segmentation of the object of interest is assumed to be 
available in [3], or the user is asked to fully crop the object in 
the initial frame. In this work, the fixation point can be selected 
randomly on the object of interest, but experiments 
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demonstrated that a 2D fixation point chosen roughly at the 
centre of the object generally leads to better segmentation 
results and to smoother contours. To obtain the corresponding 
point in 3D, the 2D-3D mapping uses the intrinsic depth 
camera parameters of the Kinect sensor [13]. This 3D fixation 
point serves as a seed point to best separate the object of 
interest from the background in the RGB-D data stream. 

B. Background Removal and Object Cluster Identification 

During experimentation the object is placed in a robot 
hand situated on a table (Fig. 2a). Therefore an efficient way 
to remove most of the background is to locate the planar 
surface representing the table and to extract that surface from 
the RGB-D data. The planar surface identification is viewed as 
a plane-fitting problem which can be resolved with the 

random sample consensus (RANSAC) algorithm [12]. Once 
the best plane model is identified, the planar surface and the 
background information are represented by the inliers of the 
model. They can then be removed from the point cloud (Fig. 
2c). In order to extract the object of interest from the 
remaining part of the point cloud, the nearest elements to the 
3D fixation point, in a Euclidean sense, are extracted using a 
k-nearest neighbors search [14], with an empirically chosen 
value of k=100. The point cloud is mapped in a k-d tree data 
structure to accelerate the neighbor search. 

 

 
(b) (d) 

 
(a) (c) (e) 

Fig. 2. (a) Experimental setup, (b) raw point cloud collected by Kinect, (c) 

background extraction result, (d) extracted point-cloud representing the 

object, and (e) color image with 2D fixation point shown in red. 

The group of 2D pixels corresponding to the 3D points in 

the identified cluster (Fig. 2e) is then employed as 

initialization for the level set method. In particular, the 

bounding window with which the level set is initialized 

represents the bounding box of the 2D points (left, right, up, 

down extrema) enlarged by a border of 50 pixels all around to 

ensure that the contour remains within the search region in 

case the object shifts or rotates during manipulation. 

C. Fast Level Set in Log-polar for Object Contour Tracking 

In order to segment and track the object contour, a novel 
fast level set method in the log-polar domain is proposed. The 
advantage of using this transformation (Fig. 3a) is that the 
object of interest gets to fill a relatively large area of the log-
polar image compared to the remaining background area, as 
can be observed in Fig. 3b. The percentage of space occupied 
by the object of interest (left side of the green separation line) 
is larger than in the original image as the log-polar map is 
centered on the fixation point. Moreover the mapping can 
reduce the size of the representation with respect to the original 
image (i.e. from 187×200 to 93×167 pixels in our case) based 

on the set resolution of the log-polar mapping. These 
contribute to accelerate object segmentation. Instead of directly 
using RGB color values in the log-polar image (Fig. 3b), a 
transformation to the YUV color space is performed, where Y 
is the luminance of a color, and U and V represent the two 
chromatic components. 

  
(a) (b) (c)

Fig. 3.  (a) Cartesian to log-polar transformation, (b) log-polar image 

corresponding to the RGB image in Fig. 2d, and (c) RGB image with 

contour obtained by inverse mapping from log-polar domain. 

The simplified UV map offers a more compact and 
therefore faster solution to process color information. In this 
work, either the U or the V component is selected for contour 
detection, depending on which one has the largest standard 
deviation. This choice is justified by the desire to work with 
higher contrast to enable more accurate segmentation. 

The proposed method to segment and track the object 
contour builds on the fast implementation of level sets [15], 
while also drawing inspiration from [16, 17] that find contours 
in the log-polar domain based on the YUV color coding. In the 
log-polar domain, the curve, represented as the zero level set 
of the level set method is not an enclosing contour of the 
object, but rather an open boundary line in the vertical 
direction, as shown in green in Fig. 3b. As in [15], the 
proposed fast level set method in log-polar domain employs 

two neighboring lists, denoted by  and , respectively 
representing the inside and outside neighboring pixels of the 
curve, and defined as follows: 

 and  such that 

 and  such that 
 (1) 

In Fig. 4a, the green line represents the curve , which 
splits the log-polar image into two parts: the object on its left 

and the background to its right. The list  contains the pixels 
located on the left side of the curve, shown in dark gray, while 

the list  contains the pixels located on the right side of the 

curve, shown in light gray.  represents a 4-connected 
discrete neighborhood of a pixel, in a two-

dimensional cortical image.  contains the four neighboring 
pixels of , as illustrated in Fig. 4c.  is 

the level set function. It is negative for the object and positive 
for the background and is defined as follows [15]: 

if  is exterior pixel;

if  is in ;

if  is in ;

if is interior pixel

 (2) 

To illustrate the movement of switching pixels from  to 

 and vice versa during the tracking of the object, Fig. 4b 
shows an example in which the curve  moves outwards 
relative to the object at a pixel B and inwards at a pixel D. This 

behavior is represented as a switch of pixel B from  to  

and a switch of pixel D from to .  

732



 

  
 

(a) (b) (c)

Fig. 4. (a) Representation of the curve , and the two lists of neighboring 

pixels and  in the log-polar domain, (b) the motion of switching pixels 

of and , (c) representation of the 4-connected discrete neighborhood, 

, of a pixel . Each element of the grid denotes a pixel of the image. 

The functions of switching the pixels from one list to the 
other are described in pseudocode as follows [15]: 

and 

 
The function switch_in( ) is employed for a curve moving 

outwards at a pixel , and switch_out( ) is employed for 

a curve moving inwards at a pixel . The curve is evolved 
according to the speed function, which is separated into two 

parts: the data-dependent speed function,  and the curve 

smoothness regularization speed function, , where the data-

dependent speed function, , is computed as in [18]:  
 

 (3) 

 

where  is the color information at pixel , coming 
from either the U or V component. The parameters and are 
the mean intensities of the images on the left and right side of 
the curve , respectively, given by: 

(4) 

where  is the Heaviside function such that . 

The curve smoothness regularization term of the speed 

function  is approximated by: 

 (5) 

where  is the curvature of the evolving curve,  is the 
regularization parameter, and  represents the derivative 
function. The curvature is computationally expensive and 

therefore the Laplacian of  is used as a simplified term of the 
curvature [15]. Furthermore, the evolution of the Laplacian of a 
function is equivalent to Gaussian filtering this function. As a 
result, a Gaussian filter, G, is employed as a smoothness 
regularization term to accelerate the fast level set 
implementation. The Gaussian filter is applied only on the 

pixels of  and  in order to smooth the zero level set. With 

the defined speed function, , the evolution of curve  follows 
the following algorithm: 

 

The two stop conditions for this algorithm are as follows:  

(1) the speed at every neighboring pixel satisfies: 
 

 (6) 

 

(2) a pre-specified maximum number of iterations is reached.  

The variable  represents the size of the Gaussian filter, 

G, applied over the contour in order to smooth it. In this work, 

the two parameters are set empirically such that =80 and 

= 3. The resulting contours are remapped into the RGB 

image domain (Fig. 3c) for object material characterization.  

D. Object Material Characterization 

The comparison between the initial contour, the contour 
under the largest deformation, and the final object contour once 
the force is removed can be exploited to detect the object 
material as illustrated in Table 1. 

An elastic object returns to its initial shape (contour) once 
the deformation force is removed. In this case the initial and 
the final object contour are identical within a certain tolerance 
(Table 1, column 1). A plastic object remains in the same state 
of deformation when the force is removed (Table 1, column 2); 
while in the case of an elasto-plastic object, the object partially 
retrieves its shape once the deforming force ceases (Table 1, 
column 3). Finally, for a rigid object, the three contours are 
roughly identical (Table 1, column 4) as no deformation occurs 
when forces are applied.  

Exploiting these observations, we propose a solution based 
on dynamic time warping (DTW) to compare these three 
contours. Starting from a contour, its center (cntr) is first 
identified by applying principal component analysis. The first 
point of the contour is then identified as the pixel whose slope 
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with respect to the center is 0 and is located on the right side of 
the center. Once this pixel is identified, the contour sequence is 
filled up with the remaining pixels in the counter-clockwise 
direction (along the arrow in Fig. 5a). 

TABLE I.  CONTOURS COMPARISON FOR MATERIAL CHARACTERIZATION 

 
Elastic 

material 
(stage) 

Plastic 
material 
(stage) 

Elasto-plastic 
material 
(stage) 

Rigid object 

Initial contour 

   
Contour 

under largest 
deformation     
Contour after 
the force is 
removed    

(a) (b)

(c) 

Fig. 5. Contour comparison for objects with various material properties: (a) 

contour alignment, (b) DTW matrix with warping path for two consecutive 

contours, (c) distance computation for score calculation. 

Figure 5a shows an example of two consecutive contours of 
different lengths, and

, at time  and  respectively, extracted 

from the data stream. Dynamic time warping is employed to 
optimally match pixels from the two contours. In order to 
compare the differences between  and , the DTW matrix 
maps the similarity of each pair of pixels in the sequences of  
and . In the DTW matrix, the value of each element is the 
sum of accumulated value of the previous element and the 
local cost that is the Euclidean distance between the pixel  
from the first contour and the pixel  from the second contour. 
The value of local cost is low if and  are similar to each 
other, or high otherwise [19]. The warping matrix is computed 
with an additional locality constraint [20]. This means that for 
the contour sequences  and , instead of calculating the 
DTW distance over all pairs of pixels, the DTW distance is 
only calculated for the part of warping matrix where the 
condition  is satisfied. With this locality constraint 
(i.e.  and then set to , the 
computed DTW distance is restricted to a band (shown in 
white in Fig. 5b), along the diagonal of the warping matrix. In 
Fig. 5b, the black corners are eliminated from the calculations 
to accelerate the computation. 

To compute the differences between the initial contour, 
, the contour under largest deformation, , and the 

contour after the force is removed, , we compute a score 
inspired from [21] which monitors their similarity. But in our 
case the score also takes into account shifting and slight 
rotation movements that the object could exhibit during 
manipulation. The proposed score is calculated as: 

, L  (7) 

where L is the length of the warping path (marked as a black 
line over the white diagonal in Fig. 5b), and , 

where is the Euclidean distance between the pixel  and 
its contour center , , and  is the 
Euclidean distance between the pixel  and its contour centre 

,  Fig. 5c illustrates the Euclidean 
distances between a contour pixel and the center of the contour. 
Because it is desired that the method is robust with respect to 
noise and fast at the same time, we impose two conditions in 
order to consider that a contour has been deformed. In 
particular, we verify if a displacement of the contour occurred 
and that the displacement affects more than three continuous 
pixels over the contour. Considering the sequence of 

values, if the value of an element in this vector is larger 
than a threshold (e.g. 4 pixels in our work), it is considered that 
a displacement occurred, otherwise, the difference is attributed 
to noise and it is considered that no displacement occurred. In 
case a displacement occurred, we also verify the number of 
continuous pixels affected by the displacement. In particular, if 
the number of continuous pixels with displacement is larger 
than 3 pixels, the contour is considered being deformed. Only 
the deformed contours are evaluated using eq. (7). The decision 
making process based on the computed score is summarized in 
Fig. 6, where the threshold, thr, on the score was empirically 
set to 0.75. Experiments revealed that for larger threshold 
values (e.g. ), the proposed classification approach is 
over sensitive and noise impacts the classification; on the other 
hand, for lower threshold values (e.g. ), the approach 
is insufficiently responsive to slightly different contours. 

 
Fig. 6. Classification process for rigid, elastic, plastic, and elasto-plastic 

materials. 

IV. EXPERIMENTAL RESULTS 

The proposed approach was initially tested on four objects 
with different material properties, as illustrated in Fig. 7 and 8, 
to evaluate the performance of the framework. Fig. 8 also 
shows that the contour is correctly tracked regardless of the 
position of the object in the robot hand. Fig. 9 demonstrates 
that the solution is relatively robust to the location of the user-
selected fixation point, marked by a green dot. However, one 
can notice that a more central position of the 2D fixation point 
leads to a smoother contour, while the contour is more jagged 
if the user selected point is closer to the sides of the object. 
This is a consequence of the use of a log-polar mapping which 
centers the contour extraction on the selected fixation point. 
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(a) (b) (c) (d)

Fig. 7. (a) Elastic, (b) plastic, (c) elasto-plastic and (d) rigid material object. 

   

   

   

Fig. 8. Tracked contours at various stages of deformation for: elastic, plastic 

and elasto-plastic objects. 

  
Fig. 9. Initial contour for various positions of the 2D fixation point. 

To evaluate the object material characterization with the 
proposed dynamic time warping approach, tests were repeated 
20 times for the 4 objects. During each repetition, the object is 
squeezed with a strong force and released three times and the 
result of material characterization is obtained by voting over 
the three trials. A recognition rate of 100% was achieved for 
rigid material, 100% for elastic material, 100% for elasto-
plastic material, and 95% for plastic material. These results 
show that the approach works very well for most types of 
object material. The lower performance for plastic material is 
related to the use of plasticine packed in a transparent plastic 
bag, which is in fact not a perfect plastic material. The robot 
fingers tend to stick to the plasticine when a strong force is 
applied, impacting on the contour recognition. 

V. CONCLUSION 

The paper proposed a novel approach for real-time object 
deformation tracking in RGB-D data with the purpose of 
characterizing deformable objects under robot hand 
manipulation. The approach combines advantageously an 
automated background removal procedure based on the 
RANSAC algorithm over the depth point cloud, and a novel 
fast level set method in the log-polar domain accompanied by 
a color selection scheme to identify the contour of the object 
of interest in the RGB-D data stream. Dynamic time warping 
and an adapted scoring scheme are then employed to 

characterize the object properties based on the recuperated 
contour.  
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