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Abstract – Recently, significant advances have been made in many 
sub-areas regarding the problem of markerless human motion 
capture. However, current markerless systems tend to introduce 
major simplifications, especially in early stages of the process, that 
temper the robustness and the generality of any subsequent modules 
and, consequently, of the whole application. This paper 
concentrates on improving the aspects of multi-camera system 
design, multi-camera calibration and shape-from-silhouette 
reconstruction. A thoughtful system analysis is first proposed with 
the objective of achieving an optimal synchronized multi-camera 
system. This multi-camera system is then accurately calibrated 
using a flexible method which allows free camera positioning. A 
novel region-based silhouette extraction procedure is proposed to 
remove the requirement of static and highly contrasting 
backgrounds. The outcome of our work is the achievement of robust 
voxel data reconstruction and coloring in complex and 
unconstrained scenes. 
 
Keywords – motion capture, multi-camera calibration, JSEG 
segmentation, shape-from-silhouette, voxel coloring. 
 

I. INTRODUCTION 
 

Computer-based monitoring of human activities is of great 
interest in a wide variety of applications. Motion capture is 
heavily used for animated television shows, in cinema 
industry, and for advanced realistic 3D video games. In 
biomedical engineering, human motion capture finds 
applications in computerized gait analysis for rehabilitation 
and prevention of injuries. Prompt recognition of human 
activities can also be applied to the field of surveillance and 
security, for example, to detect and locate hostile behaviors. 
In this research project, we are particularly interested in 
monitoring human motion, using passive vision, for piano-
playing performance evaluation as well as prevention of 
injuries. This particular application poses several challenges 
and problems: complexity of the background and of the 
human postures, limited extent of movement, non-empty 
scenes, self-occlusion, etc. 

Systems for motion capture can be distinguished in two 
main categories: marker-based and markerless systems. 
Marker-based systems, like the Vicon system [1], are 
characterized by the fact that the performers must wear 
multiple markers in order to capture their various movements. 
Marker-based solutions are typically more robust and almost 
always preferred to markerless solutions because they support 
complex and rapidly varying human postures. However, 

marker-based solutions also admit several drawbacks. They 
typically require very specialized and high cost equipments, 
and lengthy setup time in installing the markers. Furthermore, 
wearing such markers can be cumbersome, uncomfortable, 
and can interfere with natural motion of the performers. 
Markerless solutions attempt to remove those constraints by 
using solely passive vision for gesture monitoring. The 
current trend in markerless motion capture is to merge the 
content of multiple views of a performer into a consistent 3D 
model, which is ultimately used to estimate and analyze the 
human posture at every instant in time. In recent applications, 
voxel data, generated by the intersection of multiple 
silhouette images of the human body, is almost always used 
because this volumetric representation, due to its Cartesian 
nature, automatically lends itself to post-processing analysis 
such as the human posture extraction.  

Early attempts, by Mikic et al. [2] and Cheung et al. [3] 
resulted in systems that can track the human body using 
binary voxel data with acceptable robustness. However 
several constraints are imposed to the system. Performers are 
required either to wear tight clothing of a distinct color [2] or 
to evolve in a completely static scene [3]. In both cases, only 
a subset of simple and non-occlusive postures is supported. In 
a later iteration [4], Cheung et al. proposed to incorporate 
color information to volumetric models at the expense of 
removing any real-time aspirations. Color information 
provides a complementary cue to resolve ambiguities 
occurring in complex human postures. This idea has been 
further investigated in the work of Kehl et al. [5]. In their 
system, a fast voxel coloring scheme is proposed with very 
satisfying results. Very recently, Caillette [6] proposed a real-
time motion capture implementation also based on colored 
voxels. To achieve a real-time system, many tradeoffs and 
simplifications had to be made, regarding the complexity of 
the multi-camera setup and of the applied algorithms, making 
this work unsuitable for real-world applications.  

From this analysis many issues remain unresolved and 
prevent markerless solutions to make marker-based systems 
obsolete, from a commercial standpoint. This paper 
concentrates on resolving issues related to multi-camera 
system design and its calibration, silhouette extraction and 
volumetric reconstruction in minimally constrained 
environments. A synchronized multi-camera system 
architecture for human motion capture is developed in section 
II. Section III overviews a flexible multi-camera calibration 
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approach, which allows free camera positioning. Section IV 
presents a novel technique for human silhouette extraction 
which removes the requirement of using a static and highly 
contrasting background. In section V, the camera calibration 
data and human silhouette data from all views are combined 
to obtain a colored voxel model of the performer. Results of 
the calibration, silhouette extraction and volumetric 
reconstruction procedures are presented in the final section.  
 

II. MULTI-CAMERA SYSTEM ARCHITECTURE 
 

The system design aspect of markerless motion capture 
applications is often overlooked. However, inadequate 
selection of camera equipment or improper system design can 
temper the spatial and temporal quality of the input video 
data and thus impact every subsequent module which deals 
with the actual gesture analysis. For this reason, multi-camera 
system design is the first topic addressed in this paper. 
 
A. Hardware Camera Setup 
 

Our acquisition system is shown in Fig. 1. It is composed 
of 3 Pentium IV 3.40 GHz computers and 8 Point Grey 
Research® Flea2 IEEE1394b Firewire cameras. All cameras 
are mounted to a reconfigurable structure. This structure 
allows free positioning of cameras all around the workspace. 
The structure itself can be enlarged to accommodate various 
sizes of working volume. The camera setup used to monitor 
the gesture of pianist musicians occupies a volume of 
approximately 2.5 m x 2.5 m x 2.5 m. 

The decision of using Flea2 cameras is motivated by 
multiple factors. To monitor human activities with high 
precision, the use of global shutter exposure is clearly a 
predominant requirement because it allows all pixels to be 
measured simultaneously in contrast with a rolling shutter 
where the pixels are measured sequentially line by line. The 
Flea2 cameras also allow multiple mechanisms for multi-
camera frame synchronization, which is essential especially 
when cameras are distributed across multiple computers. 
These cameras can operate at a high frame rate (60 fps) and 
therefore provides high flexibility in adjusting the temporal 
resolution to match the speed of motion to be captured. The 
frame resolution is limited to 640x480 pixels but it is 
sufficient for the purpose of volumetric reconstruction. 
Indeed, in current applications, a resolution of 320x240 is 
often privileged because it allows faster silhouette extraction 
and also because of inherent memory limitations in the 
resolution of voxel models, making irrelevant the use of 
higher image resolutions. Furthermore, cameras possess 
internal color calibration functionalities and several pre-
processing functionalities to enhance the quality of the 
acquired video. Finally, the IEEE1394b bus speed allows for 
multiple cameras to be connected to a single acquisition node 
at high frame rate thus helping reduce the global system cost. 

 
Fig. 1. Setup used for multi-camera video acquisition. 

 
B. System Architecture 
 

The cameras are distributed over multiple acquisition 
nodes according to the diagram of Fig. 2. The main purpose 
of the acquisition nodes is to receive and store frames of 
video from multiple cameras. All acquisition nodes are daisy-
chained by an IEEE1394a link for inter-camera 
synchronization. A main computer serves the purpose of 
merging the content of all synchronized video streams 
featuring the performer. In off-line applications, where the 
motion capture is performed only once the video acquisition 
is completed, it is not necessary to use a separate computer 
for this task. 

 
C. Inter-Camera Synchronization 
 

Inter-camera synchronization serves the same purpose as 
the global shutter exposure featured independently in every 
camera. Global shutter exposure ensures that all pixels in a 
frame are measured at the exact same time. This allows all 
pixels in a frame to be spatially synchronized. Analogically, 
inter-camera synchronization ensures that concurrent video 
frames are exposed simultaneously across all cameras. All 
cameras in the network are synchronized with high precision 
using the Point Grey Research® MultiSync software. For all 
acquired frames of video in each view, timestamps are 
extracted and saved along with the image data. The main 
computer has the special task of comparing timestamps from 
all received images in order to regroup and process together 
frames that occurred simultaneously. 
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Fig. 2. System architecture for multi-computer 

synchronized video acquisition. 
 

III. MULTI-CAMERA CALIBRATION 
 

As a premise to multi-view reconstruction, the multi-
camera system, previously presented, needs to be calibrated 
in order to align all cameras to a common global coordinate 
system. It is well established that multi-camera calibration is 
a complex problem since many requirements need to be 
satisfied. In particular, classical approaches that use complex 
calibration targets are not scalable, require an empty working 
volume and do not allow free camera positioning.  
 
A. Camera Calibration Scheme 
 

The proposed calibration procedure [7] intends to answer 
the major flexibility issues associated with classical 
approaches and, in particular, allows for very large baselines 
and major orientation changes between camera poses. The 
procedure is executed in two stages. In the first stage, the 
intrinsic parameters and lens distortion coefficients are 
computed, only once, for each camera independently using 
the classical multi-frame approach of Zhang [8]. Then 
cameras are positioned in their final configuration. The 
second stage is the core of the procedure and consists of 
extrinsically registering all cameras to a global coordinate 
system using a single visible marker waved over the entire 
working volume.  
 
B. Framework for Extrinsic Camera Calibration 

 
The proposed framework counts on seven major steps to 

achieve complete and accurate estimation of the extrinsic 
parameters. 1) The first step consists of creating a virtual 3D 
calibration object by waving a small visible marker, obtained 
with a light-emitting diode, over the full working volume to 
collect image matches across the entire camera network. 2) 
Those matches are regrouped by pair of cameras and the 

fundamental matrix is computed for each pair that contains 
enough matches. A robust RANSAC implementation [9] is 
used to eliminate outliers. 3) Each pair-wise fundamental 
matrix is then decomposed to extract stereo relations up to a 
scale factor using the method described by Hartley and 
Zisserman [10]. 4) Pair-related scale factors are solved 
incrementally by intersecting translation vectors in the 3D 
space such that a consistent camera network is defined up to a 
global scale factor. Links are scaled in a preferential order, 
using a weighted graph analysis, to minimize the 
accumulation and propagation of errors in links located far 
from the reference camera. 5) Upon completion of the 
weighted camera graph, all cameras are unified to a common 
global coordinate system, therefore resulting in an initial 
estimate of the extrinsic parameters for all cameras. This is 
done by linking all cameras to the reference camera using the 
rule of the shortest path. 6) This estimate is then optimized 
using a bundle adjustment [11] which is implemented in 
conjunction with the framework proposed by Lourakis et al. 
[12]. 7) The camera network can optionally be rescaled to 
absolute dimensions because it can be advantageous, from a 
human operator perspective, to represent the final calibration 
with meaningful (i.e. metric) units. This scale factor can be 
estimated coarsely by measuring the baseline between any 
camera and the reference camera or more precisely by using a 
dual-marker calibration target instead of a single marker one. 
 

IV. SILHOUETTE EXTRACTION 
 

It has been established previously that current markerless 
solutions to the problem of human motion capture impose 
unreasonable constraints and assumptions in order to operate 
on individuals. These limitations typically consist of static, 
highly contrasting backgrounds or assumptions on the degree 
of motion exhibited by the performer. Most current systems 
utilize a background subtraction technique to extract human 
silhouettes. However, image segmentation in unconstrained 
environments is complex and remains an open problem [13]. 
This section overviews a novel approach, developed within 
this project, to resolve the constraint of static backgrounds 
using a region-based segmentation methodology. The reader 
is referred to the original paper [14] for implementation 
details. The proposed technique uses color-texture 
information to produce homogenous regions within a set of 
frames that are then tracked throughout the sequence. The 
technique is based on Deng and Manjunath’s JSEG 
implementation [15] with key improvements making it more 
appropriate to the context of human beings performance 
evaluation. The algorithm is structured as a set of five key 
processes: clustering, soft-classification, J-Value 
segmentation, merging and tracking. 

1) Clustering: As a precursor to the actual segmentation, 
the video first undergoes a clustering process. Originally 
proposed by Deng et al. [15] was a k-means based approach 
which assumes that the colors present within a scene follow 
Gaussian-like statistics. This hypothesis cannot always be 
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guaranteed for complex scenes. Wang et al. [16] also reached 
this conclusion and modified the approach to use a 
nonparametric clustering technique called the Fast Adaptive 
Mean-Shift (FAMS) introduced by Georgescu et al. [17]. It is 
used within our approach to cluster color distributions within 
a video without applying assumptions to their distributions. 

2) Soft-classification: In a list of improvements to the 
original JSEG algorithm, Wang et al. [16] introduced the 
concept of soft-classification maps. These maps represent a 
measured membership value that a pixel has to its assigned 
cluster. These values allow the JSEG algorithm to soften the 
color-texture edges between two similar cluster distributions. 
The classification maps are created using normalized 3D 
histograms of pixel intensities [14]. This nonparametric 
representation of the clusters allows for better results in the 
segmentation process.  

3) J-Value segmentation: The JSEG process, introduced by 
Deng et al. [15], allows images to be segmented into regions 
based on a color-texture homogeneity criterion. This 
criterion, called the J-Value, is computed for every pixel in 
an image and is based on a neighborhood cluster distribution. 
Once all J-Values are computed the result is a gradient image 
representing the edges of color-texture areas. Using a seed 
growing algorithm these areas are labeled. These regions can 
be refined by iteratively re-computing J-Values using a 
smaller set of neighborhood pixels. As a start-point, key 
regions representing the subject of interest are identified from 
the first frame by a human operator.  

4) Region merging: The JSEG algorithm suffers from a 
problem of over-segmentation. This issue, originally 
addressed using a color merging process [15], is solved here 
by incorporating Hernandez et al.’s joint-criteria merging 
algorithm [18]. The latter allows both edge and color 
information to be taken into consideration in order to produce 
better defined regions.  

5) Region tracking over time: The tracking algorithm is 
based on a hybrid approach [14] that cuts the video into 
blocks. Regions within a block are tracked based on Deng et 
al.’s Jt-Value computation for temporal seed correspondence 
[15]. Regions between blocks are tracked using Withers et 
al.’s research on cell tracking [19] using overlap-ratios. 

 
V. VOLUMETRIC RECONSTRUCTION 

 
A premise to most recent vision-based motion capture 

applications is the computation of a volumetric model of the 
targeted performer. Nowadays, voxel data often serves as an 
intermediate representation in estimating the actual posture of 
the human body. A voxel-based model can be obtained by 
intersecting silhouette images from multiple views as shown 
in the diagram of Fig. 3. Synchronized frames of color video 
are acquired using the system developed in Section II. 
Silhouettes are then extracted and back-projected in the 3D 
space using the camera calibration data computed in Section 
III and the segmentation technique described in Section IV. 

 
Fig. 3. High-level view of shape-from-silhouette reconstruction process. 

 
A. Voxel Occupancy Evaluation 
 

Constructing a voxel model fundamentally consists of 
evaluating the occupancy (foreground or background) of each 
voxel independently. This is done by computing the 
volumetric intersection of multiple silhouettes back-projected 
in the 3D space. In practice, a voxel is labeled as foreground 
only if the voxel projects in a region that pertains to the 
targeted performer in every image view. Consequently, a 
voxel is labeled as background if it falls in a background 
region in at least one image view. To account for possible 
imperfections in the silhouette extraction process, this 
criterion can be relaxed to two views to the expense of 
possibly resulting in a coarser volumetric representation as 
some background voxels could be misclassified as 
foreground. 
 
B. Voxel Coloring 
 

In addition to the voxel occupancy information, a color is 
assigned to each surface voxel based on the color information 
provided by the original video streams and can serve as a 
supplementary cue to disambiguate complex postures. Instead 
of using highly photorealistic, but very computationally 
demanding, texturing approaches that rely on multiple plane-
sweeps [20], our approach is inspired from Kehl et al.’s 
method [5] which presents a good compromise between 
efficiency and texturing quality. Our algorithm proposes the 
use of depth buffers (one per camera) to detect cases of voxel 
occlusions. Depth buffers maintain the Euclidian distance to 
the closest foreground voxel, for every pixel in every view. In 
the original approach of Kehl et al. [5], the coloring was 
based only on the point projection of voxel centers, rather 
than the surface projection of full voxels, for the sake of 
speed. This approximation leads to an insufficient condition 
for occlusion detection, especially when the voxel resolution 
is unbalanced with respect to the working image resolution.  

Once every surface voxel has been visited, the average 
color among all views that can see a voxel without occlusion 
is used as the final color for that particular voxel. For special 
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cases where all views are disqualified, the minimal depth 
distance separating this voxel from the occluding voxel is 
used to pick the best view. Finally, as Caillette [6] observed, 
it can be relevant, for the purpose of human posture 
estimation, to propagate voxel color to interior voxels. Our 
implementation allows color to be propagated to interior 
voxels simply by re-applying this scheme, layer-by-layer, to 
every interior voxel. 
 

VI. RESULTS 
 
A. Multi-Camera Calibration 
 

The calibration procedure of section III results in the 
accurate estimation of the global camera structure with an 
average reprojection error of less than ½ pixel even when 
using highly distorting wide angle lenses. Fig. 4 shows a 
virtual model of the camera positioning after the calibration 
of the physical setup displayed in Fig. 1. The bottom-left 
camera was chosen to be the reference camera (in red). The 
black dots represent the position of all calibration points 
forming the virtual calibration object generated by waving 
the visual marker. They are displayed to demonstrate that 
uniform coverage of the working volume is obtained.  
 
B. Silhouette Extraction  
 

Results of our region-based silhouette extraction procedure 
are shown in Fig. 5 for four camera views. The first frame of 
video is segmented in many regions based on similarities 
between neighboring pixels, without any prior knowledge of 
the background. Particular regions of interests are then 
manually chosen, but the tracking is automatic afterwards. In 
comparison with work from other motion capture 
implementations reviewed in this paper, this new scheme 
does not compromise the overall perceptual quality of 
extracted silhouettes. To the contrary, segmentation results 
are improved since region-based segmentation does not suffer 

from the problem of shadows inherent to most background 
subtraction methods. In particular, our results show that 
shadowed pixels over the keyboard are not mistakenly 
incorporated to the foreground silhouettes, therefore yielding 
better extraction and reconstruction of the pianist hands.  

 

 
Fig. 4. A virtual model representing the physical camera structure of Fig. 1.  

 
C. Volumetric Reconstruction 

 
Volumetric reconstruction results are shown in Fig. 6. The 

voxel occupancy is computed using the binary silhouette data 
with satisfying precision for human posture estimation. The 
color content of the original videos is then incorporated to the 
voxel data with competitive accuracy to Kehl et al.’s work 
[5] and especially in presence of complex self-occluding 
postures such as the pianist posture. 

 
Fig. 5.  Synchronized color and segmented frames for four camera views.
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Fig. 6. Four views of a reconstructed colored voxel model of a pianist. 

 
VII. CONCLUSIONS 

 
Markerless human motion capture in unconstrained 

environment remains a challenging computer vision problem. 
Our implementation relies on the use of a synchronized and 
fully calibrated multi-camera system. Our solution innovates, 
with respect to existing systems, by the use of an enhanced 
region-based silhouette extraction scheme which removes the 
constraint of static and highly contrasting background. 
Extracted silhouettes are also combined into a consistent 
voxel model with coherent texturing. Future work will 
concentrate on using 3D depth information, as a 
supplementary cue to color and edge information, to 
disambiguate special cases in the silhouette extraction 
procedure, and on high-level analysis of voxel data to extract 
human kinematics information for gesture quantification and 
analysis. 
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