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Abstract – Vision sensing systems are experiencing an 
unprecedented growth in numerous applications. The collection of 
such a rich flow of information has brought a new challenge in the 
selection of only relevant features out of the avalanche of data 
generated by the sensors. This paper presents some aspects of our 
research work on intelligent sensing for advanced robotic 
applications. The main objective of the research is to design 
innovative approaches for automatic selection of regions of 
observation for fixed and mobile sensors to collect only relevant 
measurements without human guidance. A solution using neural gas 
networks has been investigated to adaptively select regions of 
interest that require further sampling from a cloud of 3D 
measurements sparsely collected. The technique automatically 
determines bounded areas where sensing is required at high 
resolution to accurately map 3D surfaces. It provides significant 
benefits over brute force strategies as scanning time is reduced and 
datasets size is kept manageable. Experimental evaluation of this 
technology is presented for 3D surface sampling/sensing.  

 
Keywords – Selective sensing, 3D vision, neural networks, neural 
gas, feature detection, surface modeling. 
 

I. INTRODUCTION 
 
Due to the high measurement speed of 3D data 

acquisition devices (e.g. laser scanners) on one side and to 
the lack of knowledge on appropriate accuracy levels for 
correct description of shape and geometry on the other side, 
the data acquisition process is elaborate and often produces 
too many sample points. Reducing the complexity of such 
datasets is one of the key techniques required in order to 
operate subsequent applications on the resulting data at a 
reasonable computational cost. To tackle this issue, the most 
widely exploited trend in literature implies the post-
processing of large datasets obtained by acquisition devices. 
Frequently, the proposed algorithms rely on the user input for 
providing parameters such as the desired density of sampling, 
the regularity of sampling, or the minimum distance between 
samples. This is a difficult task as the user is not always 
aware of the appropriate level of accuracy required for a 
model in order to be further processed and the adjustment of 
such parameters can be a lengthy trial-and-error process. 
Further research on adaptive sampling would benefit from 
automated selective procedures to determine regions of 
interest and collect only relevant measurements for modeling 
applications. 

The main objective of this research is the design of 
innovative approaches to achieve automatic selection of 
regions of observation for vision sensors to collect only 

relevant measurements without human guidance. The 
relevant regions of interest are extracted from 3D point 
clouds during the acquisition procedure to prevent an 
avalanche of data and the related excessive processing load. 
Starting from an initial, fast, and sparse scan of an object, a 
neural gas network map is used to adaptively select areas of 
interest for further scanning in order to improve the accuracy 
of the model. The final model is a multi-resolution model 
with a higher resolution in areas rich in features.  

The paper is structured as follows: we start by showing 
the state-of-the-art in post-processing and sampling of large 
datasets in form of point clouds in Section II. We then detail 
our proposed solution for selective sensing in Section III and 
show experimental results for data sampling using vision 
sensors in Section IV. Finally, we present future research 
directions and draw the conclusions. 

 
II. LITERATURE REVIEW 

 
In general, there are three sampling policies proposed in 

the literature: uniform sampling, random sampling and 
stratified sampling. In uniform (regular or grid) sampling, 
samples are spread such that the probability of a surface point 
to be sampled is equal for all surface points. The method is 
popular because it can be easily implemented and ensures 
complete coverage of the surface within the sensor’s field of 
view. However the cost is high, since in order to achieve 
adequate sampling density over those regions requiring the 
highest resolution, the sampling density must be uniformly 
high everywhere. In random sampling, each point of the 
object has an equal chance of being selected, but only a lower 
number of points are collected. As the percentage of sampled 
points increases, the cost gets higher to eventually reach the 
one of uniform sampling. The risk here is that samples 
randomly collected can miss important features.   

Stratified sampling is a technique that generates evenly 
spaced samples by subdividing the sampling domain into 
non-overlapping partitions (clusters) and by sampling 
independently from each partition. The method ensures that 
an adequate sampling is applied to all partitions. This idea is 
often exploited in the context of post-processing of large 
point clouds or meshes [1, 2, 3, 4, 5, 6, 7], where a 
subdivision of models into grid cells occurs and sample 
points that fall into the same cell are replaced by a common 
representative.  

The 3D model proposed by Nehab et al. [1] is first 
voxelized with an octree and one sample is outputed for each 
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voxel. The common representative for a voxel is selected 
according to a probability that decays as the distance of the 
sample to the center of the voxel increases. The user controls 
the sampling resolution, the regularity of the sampling, and 
the minimum distance between samples. In [2] the 
representative point is the measured point that is closest to 
the average of points that fall into the same voxel. 

The 3D grids proposed by Lee et al. [3] are octrees that 
voxelize 3D points constructed by registration and integration 
of multiple scanned datasets of an object or scene of objects. 
The method uses point normal values on the surface of the 
object (computed based on the knowledge that scanned lines 
and points are ordered due to raster scanning and based on a 
triangulation performed on two neighbouring scan lines) 
from which non-uniform grids are generated using the 
standard deviation of normal values. The representative point 
for each grid is the point whose normal is closest to the 
average of the points in the same voxel. 

The standard volumetric subdivision strategy cannot adapt 
to non-uniformities in the sampling distribution and 
sometimes joins unconnected parts of a surface if the grid 
cells are too large. To alleviate these problems, Pauly et al. 
[4] perform surface-based clustering, where clusters are built 
by collecting neighbouring samples while taking into account 
local sampling density. Points are incrementally added to a 
cluster until a maximum size and/or a maximum allowed 
variation is reached. The sample points of those clusters that 
do not reach the minimum size or variation bound are 
distributed to the neighbouring clusters. Alternatively, 
clusters can be computed by recursively splitting the point 
cloud using binary space partitions. 

Uesu et al. [5] simplify large unstructured meshes by 
segmenting them into two parts: the boundary of the original 
domain and the interior samples and then simplifying each 
part separately, considering proper error bounds. For the 
boundaries, a modified surface-simplification algorithm that 
takes into account the scalar field defined at the vertices is 
employed, while the interior points are sampled using a k-d 
tree partition of the mesh from which the samples that are 
outside the boundary, or closer than a certain minimum 
distance to the boundary are removed. Finally, the simplified 
domain boundary and scalar field are combined into a 
complete, simplified mesh using a Delaunay 
tetrahedralization. 

A similar idea is employed by Song and Feng [6] whose 
point cloud simplification algorithm starts by identifying and 
retaining edge boundaries (using a measure of the deviation 
of the normal vectors in the Voronoi neighbourhood) and 
then removing less important points from the remaining data 
based on their contribution to the local surface geometry. If 
the local geometry cannot be reliably reflected by the 
neighbouring points of a point and their associated properties, 
that point is considered important for defining geometry, 
otherwise it can be removed. The removal procedure ends 
once the specified data reduction ratio is reached. 

Kalaiah and Varshney [7] propose a scheme to compactly 
decimate and represent point clouds using Principal 
Component Analysis (PCA). The input is pre-processed using 
an octree and PCA analysis is performed for each cell. Due to 
the fact that PCA parameters (orientation, frame, mean, 
variance) tend to be similar for coherent regions, the node 
parameters can be classified using clustering and 
quantization. At run-time, based on the viewpoint, a cut in 
the octree is determined and each node of the cut is 
visualized using a Gaussian random generator. Attributes like 
normals and color are also generated in the same manner. 

Based on the fact that sampling algorithms are usually 
implying a measure of error, the idea of using error 
propagation neural networks that minimize an error measure 
seems a good choice to Fiori et al. [8], who propose a 
multilayer-feedforward network for non-uniform image 
sampling for robot motion control. The neural algorithm 
allows a controller to determine the robot’s location within a 
structured environment based on a digital image sequence 
coming from a camera. The proposed sampling starts with a 
number of points (pixels in the image) uniformly distributed 
over the whole image that all become input points in a neural 
network. Network pruning is then performed on the basis of 
inputs relevance and therefore the number of inputs is 
reduced while the mean-squared error is kept below a pre-
defined threshold. After pruning, the remaining sampling 
points are moved toward the high relevance areas based on a 
radial-basis-function sampling operator.  

All these methods are not meant to be incorporated in the 
actual sampling procedure, but they rather post-process 
collected data. An approach to integrate the sampling 
procedure into the measurement procedure is proposed by Pai 
et al. [9, 10] in the context of deformable object modeling. 
The authors use a probing procedure that considers a known 
mesh of the object under study, as well as a set of parameters 
such as the maximum force exerted on the object, the 
maximum probing depth and the number of steps for the 
deformation measurement. During probing, an algorithm 
generates the next position and orientation for the probe 
based on the specifications and the mesh of the object under 
test. It performs at the same time proximity checks and 
verifies the expected contact location of the probe with the 
mesh based on line intersection. However, the procedure is 
not selective and therefore is similar to collecting data for all 
the points of the mesh and can take very long.  

 
III. PROPOSED FRAMEWORK 

 
Meant to be incorporated directly in the sampling 

procedure, the proposed framework to achieve automated 
selective scanning over large workspaces uses a self-
organizing neural network architecture that adaptively selects 
regions of interest for further refinement from a cloud of 3D 
sparsely collected measurements. The framework is depicted 
in Fig. 1. 
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Fig. 1. Proposed framework for selective sampling. 
 
Starting from an initial low resolution scan of an object, a 

neural gas network is employed to model the resulting point 
cloud. Those regions that are worth further sampling in order 
to ensure an accurate model are detected by finding higher 
density areas in the neural gas map. This is done by applying 
a Delaunay tessellation to the resulting neural gas output map 
and by subsequently removing all the triangles in the 
tessellation that are larger than a set threshold. The threshold 
is automatically computed based on the length of vertices for 
each triangle in the tessellation. Rescanning at higher 
resolution is performed for each identified region and a 
multi-resolution model is then built using the initial sparse 
model and augmenting it with the high resolution regions of 
interest. 

 
A. Neural Gas Network 

 
The use of a self-organizing architecture is justified by its 

ability to quantize the given input space into clusters of 
points with similar properties. As it was presented in the 
literature review, clustering is an efficient way to compress 
data. In our previous research we proved that a neural gas 
network is able to cluster both geometric and elastic 
properties of the objects embedded in a modeled point cloud 
[11, 12]. The neural gas network is selected instead of other 
self-organizing architectures due to its capability to capture 
fine details, unlike other architectures that tend to smooth 
them, as the Kohonen self-organizing map for example [11]. 

Starting from the points collected during a fast scan of an 
object via an active range finder and an initial configuration 
of unconnected nodes, the latter move freely over the data 
space while learning and the model contracts asymptotically 
towards the points in the input space, respecting their density 
and thus taking the shape of the objects encoded in the point 
cloud. This ensures that density of the probing points will be 
higher in the regions with more pronounced variations in the 
geometric shape.  

The training is stopped early in order to avoid that the 
nodes become uniformly distributed instead of capturing 
details. As the point clouds that we obtain using our sensors 
are raster-like models and their density is uniform, the neural 
gas, that respects the density in the point cloud, after a long 
training, will tend to build uniformly dense maps as opposed 
to keeping nodes in the regions rich in features. Therefore the 
need for a shortened training period. 

B. Selective Sampling 
 
Since we know that the higher density regions in the 

neural gas are the ones of interest, a simple technique is 
employed to detect them. First, a Delaunay triangulation is 
applied over the output map in order to connect the nodes of 
the neural gas map. The triangulation is traversed and the 
length of vertices is estimated between every pair of points 
for every triangle. The average value of all these lengths is 
computed and a threshold is set equal to this value. All the 
triangles that contain vertices larger than the threshold are 
then removed from the model. The points of the remaining 
triangles identify those regions that require additional 
sampling. Data is collected over these regions and the 
resulting selectively sampled multi-resolution model is 
constructed by augmenting the initial sparse low resolution 
scan with the higher resolution data samples. The procedure 
can be repeated to improve accuracy in successive steps. 

 
IV. EXPERIMENTAL RESULTS 

 
The proposed method is tested in the context of range 

imaging where selective sampling of points is performed with 
range vision sensors in order to accurately describe a 3D 
object. Two objects are used for experimentation: a foam 
armchair and a mockup car door, each presenting different 
sorts of regions of interest, as depicted in Fig. 2a and Fig. 2c. 
The armchair should have as regions of interest the edges, 
while for the door model, regions of interest should be 
depicted around the door knob and the door opening gap. The 
model of the armchair depicted in Fig. 2a is obtained using an 
automated Jupiter laser scanner mounted on a robot arm [13], 
as shown in Fig. 2b. The full resolution point cloud shown in 
Fig. 2c is collected with the Neptec Design Group Inc.’s 
Laser Metrology System (LMS) range sensor, depicted in 
Fig. 2d. 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. a) Foam armchair, b) Jupiter laser scanner used to collect 
 the data, and c) rendered point cloud of car door collected 

 using d) Neptec’s full image LMS range sensor. 
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Starting from an initial fast, sparse scan of each object, a 
neural gas network is employed to model the data in the point 
cloud. The data is normalized prior to the neural gas mapping 
such that its variance is unity in order to improve the learning 
procedure. 

The results for the model of the armchair are presented in 
Fig. 3. The 3851 points of the initial low resolution scan and 
16384 points of the initial medium resolution scan are 
presented in Fig. 3a and 3b respectively. The data is used as 
provided by the Jupiter laser scanner, without any filtering 
procedure, therefore some noise is present in the scans. These 
point clouds are provided each to a neural gas network with 
the map size of 45×40 and 35×45 respectively (implying a 
size of about 40% and about 10% respectively from the point 
cloud of the initial scan). The training using Matlab code, on 
a Pentium IV 1.3GHz machine with 512MB of memory takes 
about 3.5 min and 2 min respectively for 40 training epochs. 
The relative error is 0.04 and 0.011 respectively. The 
obtained output maps are compressed models for the dataset 
in which the weight vectors consist of the 3D coordinates of 
the object’s points and are shown in Fig. 3c and 3d 
respectively. The artifacts in neural gas map are due to the 
fact that the training is stopped early, as explained in Section 
IIIA. 

 
 

 
a)  b) 

 
c) d) 

e)  f) 

Fig. 3.  Initial scan of an armchair at (a) low resolution 
and (b) medium resolution; neural gas model for a map 

 size of (c) 45×40 for low resolution model and 
 (d) 35×45 for medium resolution; and detected regions  
of interest for further sampling from (e) low resolution 

and (f) medium resolution models. 
 

Since there are no other significant details in the model 
apart from the edges and the back plane, these are selected as 
regions of interest for additional sampling in order to 
improve the accuracy of the model. Even in the case of a low 
resolution initial dataset and in spite of some noise and 
artifacts visible in the modeling result (Fig. 3e), the proposed 
algorithm succeeds to identify the edges. When the initial 
dataset is denser, those features are more accurately located 
(Fig. 3f). But it is interesting to observe that the training time 
of the neural gas does not grow proportionally with the 
increase in the dataset size. 

The more complex case of the car door which presents 
finer details is shown in Fig. 4 and Fig. 5. A fast scan is 
initially performed to obtain a very low resolution point 
cloud of 4096 points shown in Fig. 4a (0.39% of the high-
resolution full scan of 1048576 points) and a medium low 
resolution of 16384 points depicted in Fig. 5a (1.56% of the 
high-resolution full scan). The data provided by the Neptec’s 
full image LMS range sensor is less noisy, due to its higher 
resolution when compared to the Jupiter laser scanner. Fig. 
4b and 5b show the rendered mesh models embedded in each 
point cloud. The region representing the door opening gap is 
very small in comparison with the whole model and so is the 
number of points representing it. This requirement poses 
additional challenges to the modeling. In case of the very low 
resolution model, a denser neural gas map is required in order 
to capture the details, again stopped early in the training as in 
the case of the armchair. The normalized point cloud is 
provided as input to a neural gas network with a map size of 
45×40 (1800 points which represents a map size of 43% of 
the number of points in the initial very low resolution sparse 
scan) and the resulting model is depicted in Fig. 4c. The 
training procedure takes about 5 min for 30 epochs and the 
relative error is 0.011. A map with lower density provides 
good results both in terms of accuracy and length of training 
for the medium low resolution model. The training for a map 
size of 35×45 (roughly 10% of the number of points in the 
initial medium low resolution sparse scan), for 30 epochs 
takes about 4 min. The relative error reached is 0.009 and the 
resulting model is shown in Fig. 5c.         

Those regions that are worth further sampling in order to 
ensure an accurate model are detected by finding high density 
areas in the neural gas model as described in Section IIIB. 
The detected regions of high density in the neural gas output 
map are identified in Fig. 4d and 5d for the two low 
resolution point clouds, by building the Delaunay 
triangulation and removing large triangles from it. The 
regions of interest superimposed on the rendered model are 
depicted in Fig. 4e and 5e respectively. The resulting 
augmented multi-resolution models for the sample of regions 
of interest are presented in Fig. 4f and 5f respectively.  The 
selectively densified model in Fig. 4f contains 111596 points 
and it represents a reduction of about 90% in the number of 
points when compared to the full scan, while the one in Fig. 
5f contains 173884 points (about 83% reduction of the full 
resolution scan). 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 4. Modeling steps from a very low resolution mockup car door point cloud: a) initial point cloud, b) rendered mesh model,  
c) neural gas model, d) higher density areas in neural gas model, e) identified regions of interest, and f) selectively densified models. 

 

 
a) 

  
b) 

  
c) 

  
d) 

 
e) 

 
f) 

 
 
 

Fig. 5. Modeling steps from a medium low resolution mockup car door point cloud: a) initial point cloud, b) rendered mesh model,  
c) neural gas model, d) higher density areas in neural gas model, e) identified regions of interest, and f) selectively densified models. 

 

Starting from the medium low resolution scan, the model 
is able to determine finer regions of interest and therefore 
saves from larger amounts of less relevant data in the scan.  
We would expect that even higher resolution initial scans 
would give better results in terms of regions of interest 
identification. However, this is not necessarily true. 
Additional points in the model make the door gap almost 
invisible, since the relative number of points representing it is 
significantly reduced for point clouds with higher number of 
points than 40% of the highest resolution scan available.  

The same procedure can be repeated recursively for each 
of the regions of interest detected in the previous step. Each 

region can be provided as input to a neural gas network in 
order to further detect fine details that are worth to be 
scanned at a higher resolution. Fig. 6 presents the details of 
the high resolution rendered model of the door, with the 
selected regions from the very low resolution scan in the 
previous step. For each of the regions it also shows the neural 
gas model for a map size of about 20% of the total number of 
the points in the region and the selected sub-regions for 
additional sampling, identified as high density areas in the 
neural gas model. The training time is about 6 min and the 
relative error is below 0.01 for each of the regions. 
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Fig. 6.  Model of a car door showing a sample of selected regions, their enlargement, their local neural gas model and the selected sub-areas for sampling. 

 
V. CONCLUSIONS 

 
Both examples show the ability of the neural gas map to 

capture the fine details in the sparsely collected point clouds 
of the objects under study. By finding the high density areas 
in the neural gas map, the proposed selective sampling 
procedure is able to identify and guide the vision sensors to 
collect only measurements in those regions that are of interest 
for the improvement of accuracy of the obtained models, 
saving large amount of less relevant data in the scans. 

In a wider context, the same procedure can be extended to 
sample elastic behavior by tactile probing since changes in 
geometry are usually correlated with changes in the elastic 
behavior. The fact that similar architectures can be used for 
adaptive tactile sensing and selective vision sensing opens the 
door to the development of multi-resolution composite 
geometric and elastic models based on the proposed 
approach. 
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