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Abstract—The paper addresses the topic of intelligent sensing and 
mapping of deformable objects’ properties for virtualized reality 
applications. Shape information in form of contours of soft 
deformable objects tracked over a sequence of images is 
correlated to the interaction measurements collected at the level 
of the fingers of a robotic hand by means of neural networks. The 
proposed solution allows the automated and implicit modeling of 
the actual elastic behavior without a priori knowledge on the 
material of an object. It also provides the ability for the 
application to estimate the shape of an object for unrecorded 
interactions. Experimental results presented for several soft 
objects show the ability of the proposed solution to accurately 
capture and predict severe shape deformations in spite of slight 
changes in lighting, contrast and background. 
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I.  INTRODUCTION  
Virtualized reality environments differ from virtual reality 

environments in the manner the virtual world object models are 
constructed. While virtual reality is typically constructed using 
artificially-created, simplistic models that lack fine details and 
accurate description of objects’ characteristics, virtualized 
reality starts from the real world scene and virtualizes it [1]. In 
other words, a virtualized environment contains conformal 
representations of real world objects based on information 
captured by a variety of sensors [2]. For soft objects, such 
representations have to preserve the visible detail of the 
described real-world scene [3] as well as accurately encompass 
the elasticity of the corresponding objects. While the problem 
of rigid objects has been solved, virtualized reality still needs to 
introduce accurate representations of deformable objects in 
order to fully reach its potential and to ensure its full usability 
and functionality. Such representations are critical for a 
plethora of applications such as medical robotics, interactive 
virtual environments for training and robotic assembly, and are 
highly desirable in other applications such as computer gaming. 

This paper uses shape and force measurements for the 
acquisition and mapping of properties characterizing 
deformable objects. It is a continuation of our work on 
innovative approaches to design and implement an automated 
framework to acquire data and model 3D deformable objects 
for virtualized reality applications. In particular, the work in 

this paper is based on a previously proposed neuro-inspired 
algorithm for object segmentation and contour tracking of 
deformable objects in image sequences [4]. A series of 
unsupervised neural networks is employed to track the contour 
of the object over a series of images collected using a camera 
while the object deforms under the forces imposed by the 
fingers of a robotic hand. These networks are then associated 
to the interaction parameters collected at the level of the 
robotic hand to obtain a complete description of the object’s 
shape deformation. As a significant improvement over the 
previously proposed solution, the work in this paper provides 
an original mapping of a deformable object contour and its 
elastic behavior. It does not only capture the contour of the 
object and its dynamics under deformation, but also predicts in 
real-time its shape and implicitly the behavior of an object 
under previously unrecorded interactions, without imposing 
particular material models. Such a description greatly 
enhances the accuracy of the models obtained and represents a 
significant advantage over existing deformable object models. 

II. LITERATURE REVIEW  
Mass-spring models and finite-element methods are still 

the standard for virtual reality applications as the latest 
research on the topic proves [5-7]. Mass-spring models are 
constructed on well-understood dynamics, are relatively 
simple to build and can often be simulated in real-time. 
However their structure is often application-dependent and the 
resulting behavior varies dramatically with different spring 
configurations and different values of the spring constants. 
The values of constants are not easy to set or derive from 
measured material properties and the models obtained have in 
general low accuracy. Finite-element methods can obtain more 
accurate models, but they require a very high computation 
time. Because the force vectors, mass and stiffness matrices 
are computed by integration over the surface of the object, 
they have to be re-evaluated each time the object deforms [8]. 
Due to the fact that this evaluation is very costly, the 
assumption that the body undergoes only small deformation is 
often made and offline pre-computations are used to minimize 
the intensive computational requirements, leading undoubtedly 
to less accurate models. Because of these challenges, much of 
the current research on deformable object models is still based 
on simplistic computer-generated models with simulated 
elastic behavior [5, 6].  



A natural way to provide more accurate models without 
assumptions and pre-computations is to interact with them in a 
controlled manner, observe and then try to mimic as accurately 
as possible the displayed object behavior. Neural networks, 
due to their intrinsic non-linearity, their computational 
simplicity and the ability to learn and generalize are natural 
candidates for such tasks. In the area of deformable object 
models, a neural-based solution to learn the behavior of an 
elastic object subject to an applied force is presented by 
Greminger et al. [9]. Their neural network has as inputs the 
coordinates of a point over a non-deformed body and the 
applied load on the body, and as outputs the coordinates of the 
same point in the deformed body. The non-deformed body 
point coordinates are obtained by a computer vision 
deformable body tracking algorithm based on boundary-
element method that builds on the equations of the elasticity. 
A different deformable object modeling approach where the 
deformation is formulated as a dynamic cellular network that 
propagates the energy generated by an external force among 
an object’s mass points following Poisson equation is 
presented in [10].  

In the area of robotic grasping and manipulation, neural 
networks have also received considerable interest due to their 
capability to learn the complex functions that characterize the 
grasping and manipulation operations [11-15] and/or to 
achieve real-time interaction after training [14]. Pedreno-
Molina et al. [11] integrate neural models to control the 
movement of a finger in a robotic manipulator based on 
information from force sensors. A neural network is used by 
Xia et al. [12] to approximate the dynamic system that 
describes the grasping force-optimization problem of multi-
fingered robotic hands (the set of contact forces such that the 
object is held at the desired position and external forces are 
compensated). Howard and Bekey [13] represent the 
viscoelastic behavior of a deformable object according to the 
Kelvin model and train a neural network for extracting the 
minimum force required for lifting it. Chella et al. [14] use a 
neuro-genetic approach for solving the problem of three-finger 
grasp synthesis of planar objects. An object is first segmented 
from the background, fitted with superellipses and a neural 
network estimates an approximation of the grasp. This 
approximation is refined with a genetic algorithm. A 
hierarchical self-organizing neural network to select proper 
grasping points in 2D is proposed in [15].  

In the context of this work, neural architectures are chosen 
for similar reasons to those mentioned above, namely their 
capability to store (offline) and predict (online, in real-time) 
the complex relationship between the deformation of the 
object and the interaction parameters at each robotic finger. 
Unlike the other neural network solutions, the proposed 
approach neither imposes a certain representation of the 
deformable object [13, 14], nor requires certain equations to 
model the elastic behavior [9, 10] or certain dynamic models 
at the points of contact [12]. The proposed solution 
innovatively combines neural architectures to identify an 
object of interest, to track its contour in visual data and to 
associate and predict its shape under a certain interaction 
exercised with a robotic hand. 

III. PROPOSED FRAMEWORK 
In order to map the elastic properties of a deformable 

object, its controlled interaction with a robotic hand is 
observed by means of shape and force data. Its elastic 
behavior is then learned as a complex relationship between the 
interaction parameters measured at the level of the robotic 
hand and the deformed contour of an object obtained from the 
visual data. Neural network approaches are used both to 
segment and track the object contour in the image sequence 
[4] and to capture implicitly the complex relationship between 
the object’s contour deformation and the forces exercised on 
the object through the robotic fingers. The choice to use a 
supervised (feedforward neural network) architecture for 
capturing the relationship between the interaction parameters 
at the level of the robotic hand and the corresponding contours 
is justified by the capability of the neural network to eliminate 
the need for predefined elastic parameters of the object. Most 
of the objects under study are made of soft, highly deformable 
material whose elastic behavior is very difficult to be 
described in terms of standard elastic parameters. The choice 
of a neural-network approach also ensures the ability of the 
application to estimate the contour of an object for previously 
unseen and untrained combinations of interaction parameters.  

A. Experimental Setup 
A setup composed of a Barrett robotic hand and a camera 

situated perpendicularly to the surface of an object 
manipulated with the hand is used to collect the shape 
deformation and the interaction parameters. As shown in Fig. 
1, the robotic hand is positioned with the palm up in order to 
allow the observation of the interaction without unnecessary 
occlusions. 

 

    
Figure 1. Setup with camera and Barrett hand. 

Two interaction parameters are recorded at each finger. 
One corresponds to the position, Pij, of each fingertip and it is 
represented by the number of pulses in the encoder that reads 
the angle of the motor that drives the finger. This 
measurement is referred to as “position” measurement to 
simplify the explanations and create a compact representation 
of the hand motion. It is equivalent to the Cartesian 
coordinates of the fingertip, using the Barrett hand kinematic 
model. The second parameter is a measure of the interaction 
force, Fij, applied at each fingertip and obtained via strain 
gauges embedded in each finger. It will be called hereon the 
“force” measurement as the strain value can be converted to 
equivalent physical force measurements, in kg or N, through 
proper calibration. These interaction parameters are collected 
simultaneously with an image sequence of the object’s shape 



deformation as captured by the camera. Measurements are 
collected for different force magnitudes applied on a set of test 
objects made of deformable materials. The force and position 
measurements are then associated with the tracked contour of 
the object in the image sequence using an innovative 
combination of neural network architectures. 

B. Visual Data Processing 
The proposed solution for the acquisition and mapping of 

the elastic properties characterizing deformable objects is 
summarized in Fig. 2. 
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Figure 2. Proposed framework for acquisition and mapping of properties 

characterizing deformable objects. 

The segmentation and tracking algorithm, depicted in the 
left side of Fig. 2, can be briefly summarized as follows [4]: 
the object of interest is automatically segmented from the 
initial frame of the sequence of images collected by the 
camera. A growing neural gas, GNG1, maps the color (HSV 
coding) and spatial components (X, Y coordinates) of each 
pixel of the initial frame in the video sequence. The clustering 
map obtained by GNG1 is split into two categories: object of 
interest and background. The color of interest is then 
automatically computed as the mean for all HSV values within 
the cluster representing the object of interest. The identified 
HSV color code is then searched over every subsequent frame 
in the sequence where some movement occurs. The contour of 
the object is identified after straightforward image processing 
with a Sobel edge detector.  

A second growing neural gas, GNG2, is employed  to 
represent the position of each point over the contour with the 
main purpose to detect the optimum number of points, cn, on 

the contour that accurately represent its geometry. This 
compact growing neural gas description of the contour is then 
used as an initial configuration for a sequence of neural gas 
networks, NGi, that track the contour over each frame in the 
image sequence in which motion occurs.  

A new neural gas network, initialized with the contour of 
the object in the previous frame, is used to predict the new 
position of its neurons and to readjust them to fit the new 
contour. This new contour will then be used iteratively to 
initialize the next neural gas network in the sequence. As 
illustrated in Fig. 2, the procedure is repeated until the last 
frame of the sequence, resulting in nm separate neural gas 
networks, as determined by the number of frames exhibiting 
motion. The full description of the object segmentation and 
contour tracking algorithm is presented in [4]. These networks 
will later be associated to the measured interaction parameters, 
as shown in the right side of Fig. 2, for a more comprehensive 
description of the object’s deformation. 

C. Mapping of the Contours with Interaction Parameters  
A feedforward neural network is employed to map the nm 

contours extracted from the sequence, as obtained in Section 
III.B, with the interaction parameters, as defined in Section 
III.A. The network modeling an object has six input neurons 
associated with the interaction parameters namely: the position 
of the three fingers (Pi1, Pi2, Pi3) and the force measurements 
at each fingertip (Fi1, Fi2, Fi3), as shown in Fig. 3.  
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Figure 3. Neural architecture to store and predict the object contour shape 

based on the position of the robotic fingers and force measurements. 
 

A number of 30 hidden neurons is used for all the objects 
under study and this number is identified such that it ensures a 
good compromise between the length of training and the 
accuracy of modeling. The output vector is the set of 
coordinates for the points on the contour. In order to contain 
the concatenated vectors of X and Y coordinates for each point, 
its size is the double of the number of points, cn, in the 
contour. This is also the number of nodes in the second 
growing neural gas network, GNG2, which defines those 
contours, and in the series of neural gas networks, NGi.  

The only preprocessing applied on the input is a 
normalization to the [0 1] interval prior to training. Three 
quarters of the data available (values for Pij and Fij) is used for 
training and a quarter for testing. The network for each object 
under study is trained for 150,000 epochs using the batch 
version of scaled conjugate gradient backpropagation 
algorithm [16] with the learning rate set to 0.1. Once trained, 



the network takes as inputs the interaction parameters (Pi1, Pi2, 
Pi3, Fi1, Fi2, Fi3) and outputs the corresponding contour that the 
object should exhibit under the current interaction 
configuration. 

IV. EXPERIMENTAL RESULTS 
Experimental evaluation was conducted with the setup 

presented in Fig. 1 on a set of deformable objects with 
different shapes and colors, of which a limited set is presented 
here, namely a green rectangular foam sponge, an orange foam 
ball, and a smoothly curved yellow foam sponge. Fig. 4 
summarizes the object segmentation and tracking stage for the 
rectangular sponge, as explained in Section III.B and 
illustrated in the left side of Fig. 2. It starts with the automated 
identification of the color of interest with GNG1, continues 
with the modeling of the contour with an optimal number of 
nodes, cn, using the second growing neural gas, GNG2, over 
the initial frame, and concludes with the tracking over a series 
of frames using a sequence of neural gas networks, NGi.  
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Figure 4. Object segmentation and tracking stage for the rectangular sponge: 
a) initial frame, b) identification of the color of interest, c) results when a 
tolerance level of 0.07 for H and S and 0.01 for V value is accepted and after a 
median filtering is applied, d) contour identification, e) contour overlapped on 
initial frame, f) growing neural gas model of contour in the initial frame and 
g) - l) contour tracking using a series of neural gas networks. 

After initialization, the computation time required to track 
the objects is low, on average 0.35s per frame when running 
on the Matlab platform. The average error (measured as the 

Hausdorff distance from the points in the contour obtained 
with the Sobel edge detector and the modeled neural gas 
points) is of the order 0.215. Fig. 5 illustrates the average 
computation time per frame (in seconds) as well as the error 
incurred during tracking for each of the objects under study. 
The error is slightly higher for objects that deform rapidly 
from one frame to the other and/or roll during probing, as for 
the case of the ball.   

 
Figure 5. Average time per frame and average error for tracking points. 

  

Figure 6. Continuous tracking of points during the compression 
of the yellow rounded sponge. 

Fig. 6 illustrates a part of the complex trajectory that the 
points in the neural gas model of the yellow rounded sponge 
follow during the interaction with the robotic hand. It can be 
observed in the detailed image, where the trajectory is marked 
with arrows, that due to the choice of a fixed number of nodes 



in the neural gas network, NGi, and with the proposed learning 
mechanism, the nodes in the contour retain their 
correspondence throughout the deformation. This one-to-one 
correspondence of the points in the trajectory helps to avoid 
their mismatch during deformation and ensures a unified 
description of the contour deformation throughout the entire 
sequence of images, a property that is not offered by any 
standard approach for tracking.  

The sequence of contours is mapped with the 
corresponding interaction parameters at the level of the robotic 
hand by means of a feedforward neural network as described 
in Section III.C. Figs. 7 and 8 illustrate the performance of the 
neural network approach for the ball and for the rectangular 
sponge. 

 

 
 

 
 
 
 

 

 

 

Figure 7. Real, modeled and estimated contour points  
and details for the ball. 

The training/learning error for the neural networks 
corresponding to these two objects is of the order 5×10-5, 
illustrating the capability of the network to accurately map the 
interaction parameters to the corresponding deformed contour. 
The testing error (the error obtained on the testing set) is of the 
order 4×10-3.  

Fig. 7 shows real data (marked with dots), results for 
testing data (green circles) and an estimated deformed contour 

for a set of forces that were not part of the training set, in order 
to test the prediction capability of the network. For example, 
in this experimental scenario, the finger positions are kept 
almost at the same position, but the force at second finger 
(F2=208) is slightly decreased from the value in the magenta 
dot contour (F2_magenta=212), while kept above the value in the 
cyan curve (F2_cyan=206). The estimated profile depicted with 
black stars is placed, as expected, in between the magenta and 
cyan contours, but closer to the cyan one to which the force 
value is closer.  

Another example is presented for the rectangular sponge in 
Fig. 8. In this example, the network provides an estimate for a 
value of the force at the third finger (F3=168) that is in 
between the one of the cyan contour (F3 cyan=164) and the 
magenta contour (F3 magenta=171), associated as well with a 
slight movement in the position of the fingers.  

 

 

                                  

Figure 8. Real, modeled and estimated contour points  
and details for the rectangular sponge. 

Moreover, one can notice multiple interactions and 
changes in the contour that occur due to increased forces at 
different fingers. For example, while the forces at Fingers 1 
and 2 in Fig. 8 are almost unchanged, an increased force at 
Finger 3 creates a bending in the object that appears to be due 
the forces applied at Fingers 1 and 2.  

Finger 2 

Finger 2 

Finger 3 

Finger 1 



A careful observation leads to the conclusion that the 
estimate is still correctly placed around the extra fingers under 
these conditions. The proposed approach is therefore able not 
only to capture the contour, but also to predict its shape in 
spite of the coupling between multiple finger interactions. 

V. CONCLUSION 
This paper demonstrates the benefit of using neural 

networks approaches for mapping and predicting the shape of 
soft deformable objects from actual measurements collected 
by a robotic hand and a camera. The proposed combination of 
networks for segmentation and tracking runs fast, with low 
errors and guarantees the continuity of points in the tracked 
contours. The neural approach used for the modeling and 
prediction of contour shapes based on force measurements and 
the position of the robotic fingers ensures that the application 
handles properly the situations on which the system was not 
trained. As future work, the study will be expanded for 
different orientations of the robot fingers for a more extensive 
description of the interaction and for objects with diverse 
elastic properties. 
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