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Abstract—This paper introduces an adaptive contour 
following method for robot manipulators that originally 
combines low accuracy RGB-D sensing with eye-in-hand 
visual servoing. The main objective is to allow for the 
detection and following of freely shaped 3D object contours 
under visual guidance that is initially provided by a fixed 
Kinect sensor and refined by a single eye-in-hand camera. A 
path planning algorithm is developed that constrains the end 
effector to maintain close proximity to the surface of the 
object while following its contour. To achieve this goal, a 
RGB-D sensing is used to rapidly acquire information about 
the 3D location and profile of an object. However, because of 
the low resolution and noisy information provided by such 
sensors, accurate contour following is achieved with an extra 
eye-in-hand camera that is mounted on the robot’s end-
effector to locally refine the contour definition and to plan an 
accurate trajectory for the robot., Experiments carried out 
with a 7-DOF manipulator and the dual sensory stage are 
reported to validate the reliability of the proposed contour 
following method. 

Keywords— contour following; contour detection; visual 
servoing; RGB-D sensors; eye-in-hand imaging; robotic control. 

I. INTRODUCTION 

Autonomous contour following in real time based on visual 
information is a delicate task often involved in industrial robot 
manipulation. Typically, the robot is holding a tool while 
closely following the contour of an object, either using 
previous knowledge about the shape and pose of the surface, 
or in an adaptive way. Furthermore, contour following can be 
accomplished with or without contact [1]. Contour following 
applications include cleaning, inspection, sealing, painting, 
part polishing, sewing, etc [2]. Previously reported approaches 
on contour following can be divided into three categories: 
contact-based, vision-based and hybrid.  

In contact-based approaches [3, 4], a direct feedback, either 
from a force/torque sensor or a position/force sensor, is used 
to follow the object contours. An initial contact point between 
the tool and the object must be prescribed and the force 
controlled contact must be maintained. Therefore, due to the 
limited bandwidth of the contact or force sensor, the execution 

speed of the task is limited to prevent loss of contact and 
information [5].  

In visual servoing approaches [6, 7], a camera is mounted on 
the end effector, in an eye-in-hand configuration, to find and 
track an object contour using image processing techniques. In 
contrast to contact-based approaches, visual servoing methods 
do not impose delays due to the limited contact point. 
However, they face latency due to computationally heavy 
image processing and massive data transfer. The time delay 
can be reduced by adding feedforward signals, but this may 
result in following wrong contour or misalignment between 
the tool center point (TCP) and the measured contour [8] when 
no prior knowledge about the object is available.  

To address these shortcomings, recent work proposed hybrid 
control [5,8,9]. In these approaches a combination of vision 
and force (position) feedback are used to track and follow the 
object’s contours. These approaches demonstrate a good 
performance in dealing with planar contour following but are 
not very successful over 3D structures because the depth of 
the object’s contour is also required for precise path planning. 
Furthermore, without any global information about the object 
shape, as it is lacking from an eye-in-hand configuration, it is 
difficult to keep the contour in the camera field of view. The 
lack of global information can cause the robot to follow the 
wrong direction or contour, especially at corners and on 
curved surfaces.  

This work proposes an adaptive contour following 
methodology without contact that operates in real time and is 
based on visual servoing. During the process, the tool is 
constrained to maintain close proximity to the surface while 
following its contour. Unlike previously reported approaches, 
this work combines visual cues from a fixed Kinect sensor, 
located behind the robot at a distance from the object to 
provide global shape and depth information, and an eye-in-
hand color camera mounted close to the end effector that 
provides higher accuracy measurements on the contour 
location. The main advantages of the proposed method reside 
in the rapid localization and shape estimation of the surface 
that efficiently bring the end effector in proximity to the 
surface of the object, the precise control of the position of the 
end-effector on 3D surface contours, and the reduction in 
complexity and cost that result from the use of a multi-
dimensional force sensor. 
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II. PROBLEM FORMULATION 

The main goal of this work is to design a reliable path 
planning method using visual servoing that ensures accurate 
tracking with a robot manipulator of the contour of an object 
that is not previously defined by CAD models but only 
acquired at high speed by affordable off-the-shelf RGB-D 
sensors, and therefore submitted to important inaccuracies. A 
Kinect sensor is used as the primary vision stage to provide 
full coverage and rapid 3D profiling of an object. The Kinect 
device is a priori calibrated with the robot’s base reference 
frame during the setup procedure.  As a result, the 3D points 
collected by the Kinect sensor are defined by Cartesian 
coordinates with respect to the robot’s base reference frame. 
This representation provides global 3D information about the 
object to support the contour following path planning task, but 
at low resolution [10,11]. Since data acquired with Kinect 
sensors is not accurate enough to provide a high accuracy 
definition of the contour, it is used only to support an initial 
estimation of the depth of the object with respect to the 
manipulator’s base and to approximately locate the contours. In 
addition, an eye-in-hand camera mounted on the robot’s end 
effector provides closer and higher accuracy feedback about 
the object’s contours (Fig. 1). The robot controller is designed 
such that the eye-in-hand vision system adds a feed forward 
signal which provides real-time look-ahead information in 
front of the tool center point (TCP) of the robot. Fig. 2 shows 
the proposed control architecture for contour following using 
the dual input vision stage combining Kinect sensor and eye-
in-hand camera.  

 

 
Fig. 1: Kinect sensor and eye-in-hand camera configuration to locate  and 
follow the object contours. 

 
Fig. 2: System control architecture with position feedback (inner loop) and 
visual feedback (outer loop). 

III. DESIGN OF THE CONTOUR FOLLOWER 

In order to control the robot for it to accurately follow the 
contours of an unknown object using the global information 
from the Kinect sensor and the local information from an eye-
in-hand camera, three major processing steps are considered, 
as  detailed in the following sections. 

1) Object Surface Localization and Shape Profiling 

In this work the primary information about the object’s shape, 
position and orientation is provided by a Kinect sensor. This 
RGB-D sensing technology is selected because of the rapidity 
with which it can provide a fair 3D reconstruction of an object 
of relatively large dimension, as found in numerous industrial 
applications. The Kinect sensor is used to capture color images 
of the scene and the depth corresponding to each pixel within 
the field of view. The data is processed to extract the 3D 
information about the object, that is its location in the 
workspace and an estimate of its surface shape. In order to 
coordinate the movement of the manipulator with the depth 
data collected by the Kinect sensor, the Cartesian coordinates 
of the object are defined with respect to the robot’s base 
reference frame. An extensive procedure was proposed in [12] 
to estimate the internal and external calibration parameters of 
Kinect sensors, as well as their correspondence with the 
manipulator’s reference frame. The method takes advantage of 
the depth and color information captured by the RGB-D sensor 
and achieves complete calibration within a distributed network 
of RGB-D sensors. To further reduce the shape profiling time, 
the calibration procedure is performed offline. Therefore, the 
calibration process does not impact the execution time in 
production.  

The depth information about the object is processed to 
estimate its specific location, curvature, as well as extract the 
edges and corners of the object that define, with relatively low 
accuracy, the contours of the object. These locations are 
primordial to navigate the robot end effector while keeping the 
object boundary within the eye-in-hand camera field of view, 
and to maintain it in close proximity to the object [13], 
independently from the object’s shape. For this purpose, the 
raw information from Kinect is stored in a textured 3D point 
cloud. The point cloud represents the shape and visual 
appearance of the surface (Fig. 3). 

2) Border Edge Detection 

In this work, we are focusing on following the outer contours 
of a surface. Therefore, border edges should be extracted from 
the 3D point cloud.  Border edges can be extracted using the 
angle criterion method [14], convex hull method and splitting 
technique [15]. But these methods have some shortcomings in 
dealing with 3D surfaces or tend to be very slow. This work 
proposes an alternative efficient method to extract the border 
edges from a 3D point cloud. For this purpose, the surface is 
divided by N horizontal lines and M vertical lines separated by 
a distance of 1 mm from each other,  along the Y axis and Z 
axis respectively (Fig. 5a). Horizontal lines go from Ymin to 
Ymax and vertical lines  from Zmin to Zmax. The Ymin, Ymax, Zmin 
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and Zmax correspond respectively to the minimum and 
maximum values of the Y and Z coordinates in the point cloud 
(Eq.1). 

M = Ymax – Ymin 
N = Zmax – Zmin 

 

(1) 

where M is the number of horizontal lines, and N is the number 
of vertical lines. 

After splitting the surface, the distance between the points 
which lie on a same line and the line’s start point is calculated. 
The points with the maximum and minimum distances are 
selected respectively as the border edges. The points that have 
equal Y or Z coordinates in the point cloud belong to the same 
horizontal or vertical line respectively (Eq. 2). For example, if 
P[j] contains the list of points on the first horizontal line, two 
points which have a minimum and maximum distance from 
Zmin correspond to the border edges (Eq. 3) 

For (i = 0:Vnum) 
If  ������ �	 
 ���� � 	�	���    then  ���� 	� 	���� 
 

(2) 

���� � 	 ������ �	� 	����                                                      (3)   

where Vnum is the number of vertices in the point cloud, V[i].y 
represents the Y coordinates of points in the point clouds, P[j] 
map points on the same horizontal line, and Dist is the distance 
of each point P from Zmin. 

The same procedure repeats for all M horizontal lines and N 
vertical lines and provides the border edges on the Y-Z plane. 
In the next step, the same process is performed for the Y-X and 
Z-X planes. These steps result in extracting all border edges 
with various depths. Since it is desired to follow the outer 
contour of an object in the Y-Z plane, given the configuration 
of the robot with respect to the object, as shown in Fig. 3, the 
edge borders extracted in different planes regardless of their 
depth value are compared and the edge borders with maximum 
and minimum Y and Z coordinates in each row and column 
represent the outer edge border of the object. These edge points 
provide the initial estimate of the surface contour, as shown in 
Fig. 4b. However, given the low resolution on depth 
information provided by Kinect sensors, these edge points are 
not accurate enough to precisely guide the robotic contour 
following operation.  
 

 
 
Fig. 3: Textured 3D point cloud captured by Kinect sensor. 

 
(a)                                                        (b) 

Fig. 4: a) Surface split by M horizontal and N vertical lines, and b) border 
edges extracted from the point cloud. 

3) Adaptive Contour Following  

The objective of the robot path planning under dual visual 
guidance is to allow the manipulator’s end effector to first 
approach the surface using the initial RGB-D vision stage, and 
then to efficiently and precisely follow the object’s contour, 
under higher precision visual servoing provided by the local 
eye-in-hand camera images. The proposed path planning 
design is detailed in the following subsections: 

a) Contour starting point 

A start point over the object’s contour must first be defined. 
The start point can be any of the edge points identified in the 
edge map extracted from the Kinect sensor data. It provides 
the primary position and orientation for the end effector of the 
robot on any of those locations. These point coordinates are 
sufficient to initially guide the robot in close proximity of the 
object’s contour, which avoids any human intervention or use 
of fixture to constrain the location of the object. This provides 
additional flexibility for operation in dynamic or 
unconstrained environments, as the robotic system is able to 
self-locate objects of interest. Once the approach phase is 
completed, the contour is detected and mapped with higher 
accuracy within the eye-in-hand camera field of view. The 
path planning and control of the robot is passed to visual 
servoing while the previously acquired overall model of the 
object remains as a validation level to assist with the global 
navigation of the manipulator.  

In our experiments, the lower left edge point of the panel is 
automatically selected as the starting point. For this purpose 
the closest point to the corner point with Ymin and Zmin 
coordinates is searched in the border edges list previously 
established, as shown in Fig. 4a (Eq. 4).    

For (k=0:Enum)                                                                      
 ���� � �� ����� � 
 ����� 
	 �	����� � 
 ����� 

 

(4) 

where Enum is the number of edge points, and E[k] is the list of 
edge points. 

The edge point which generates the minimum distance is 
considered as start point. As shown in Fig. 5, the point initially 
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selected on the contour of the object using the Kinect based 
information is typically not precisely aligned with the actual 
object contours due to the RGB-D sensor inaccuracies. But the 
robot reaches in close enough proximity to that contour to 
support an initialization phase, that is for the eye-in-hand 
camera to closely capture the actual location of the contour 
and compensate for the gap. 

  
(a)                                           (b) 

Fig. 5: Misalignment of the initially detected contour from Kinect data only: 
a) eye-in-hand camera view at start point, b) third camera view showing the 
compensated end effector position with input from the eye-in-hand camera.   

b) Image processing 

After the contours of the objects are defined at low resolution 
via the Kinect data and the robot end effector has reached in 
proximity of the starting edge point, higher resolution images 
of the contour are captured by the eye-in-hand camera and 
processed in real time to finely locate the contour of the object 
in immediate proximity to the end effector. For this purpose, a 
Canny contour detection [16] is performed. The Canny 
detector generates a binary image which represents segments 
of the dominant edges with a bright line over a black 
background. Contours are obtained from these edges and 
represented by the sequence of neighbor pixels in the binary 
image that are connected using the chain code technique [17]. 
As the robot moves, the local information about the object 
contour is updated step-by-step. The contours detected at each 
step are then processed and used to compute the next end 
effector’s position. 

c)  Pruning 

Results from image processing define the local contours 
detected within the field of view of the eye-in-hand camera. 
However, among the contours that appear in the resulting 
binary image, there can be contour components originating 
from various objects present in the scene, beyond the object of 
interest. These extra contours tend to distract the robot from 
accurately following the contours of interest. To remedy this 
situation, the edge point coordinates of the desired object, 
previously identified from RGB-D sensor data, as described in 
section III.2, are used to prune the undesirable contours and 
noises in the local contour edge map provided by processing 
the eye-in-hand camera images. The estimated object’s edge 
coordinates in the depth map are compared with the local 
contour coordinates.  

However, since the local object contour coordinates are 
defined with respect to the eye-in-hand image frame, it is first 

required to transform these coordinates with respect to the 
robot base reference frame. The eye-in-hand camera being 
mounted on the robot end-effector, its transformation with 
respect to the 3end effector reference frame is physically 
measured and corresponds to a shift of 50mm along the Y 
axis. Since the distance between the end-effector and the 
object is kept constant during the contour following, a fixed 
scaling factor which converts pixels to metric units is used to 
estimate the local contour’s coordinates with respect to the 
robot base frame, in combination with the known kinematic 
model of the manipulator. The image resolution captured by 
the eye-in-hand camera is 640x480 pixels which corresponds 
to a 100x75 mm field of view over the object. Therefore, a 
scaling factor of S=0.156 is used to convert the pixels in 
metric units.  

The eye-in-hand camera visual feedback operates with 2D 
edges. The edge coordinates with respect to the robot base 
frame are calculated in order to support path planning and 
robot control with respect to the base of the robot. Since the 
camera is mounted on top of the end-effector with a shift 
along the Y axis from the end-effector centre, the binary edge 
map center is assumed as a reference frame origin to calculate 
the edges distance from the origin and the end-effector.  First 
the edge point’s coordinates with respect to the image centre 
are calculated. Then they are transformed to the end-effector 
frame (Eq. 6). Eventually, the point coordinates with respect 
to the robot base frame are obtained using Eq. 7. 

 

IPI = ����� !,   BPE = �"#�$�$! ,  QCE = %�     �  &   �      ��&'( 
 

 
(5) 

EPI = QCE IPI (6) 
BPI = BPE + EPI (7) 

 

where IPI represents the edge coordinates with respect to the 
image center, BPE is the end-effector position with respect to 
the base frame, BPI is the edge coordinates with respect to the 
base frame, and QCE is the homogenous transformation 
between the eye-in-hand camera and the end-effector. 

The local contours (edge points) detected in the binary image 
that are not in close proximity to the estimated object contours 
(list of edge points) extracted from the Kinect sensor data are 
discarded and not considered for the robot path planning. As 
shown in Fig. 6, where it is desired to follow the gray 
rectangular object contour, other components of the scene 
(e.g. the vertical wooden post) create extra edge points and 
corresponding sections of contour in the local eye-in-hand 
image. Using the proposed pruning technique these edge 
points are efficiently removed from the edge list and ignored 
for path planning.  
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(a)                                                 (b) 

Fig. 6: a) Object original eye-in-hand image, b) local detected contours before 
pruning. 

d) Contour following 

After pruning of the contours and defining the start point, the 
object’s contour is followed by a pointing tip mounted on the 
end effector’s plate. The motion direction is user defined as 
clockwise or counter-clockwise. It is assumed here that the 
motion direction does not change during the contour following 
operation around the entire piece or segment of contour to be 
tracked.  

For each motion step, the distance to every detected edge pixel 
in the processed eye-in-hand camera image, representing a 
valid contour, from the end-effector center is calculated. For 
each step of the manipulator movement, the closest edge point 
with a minimum distance of r=30mm from the end-effector in 
the desired direction of motion is selected as the next end-
effector position. The distance, r, can be adjusted according to 
the contour characteristics. Larger values of r accelerate the 
contour following operation but do not adapt well to contour 
following of surfaces with significant curves.  

When contours are horizontal or vertical, the priority for 
choosing the next position is given to the edges on the same 
horizontal or vertical line with respect to the current position 
of the robot [18]. However, if a corner (on the surface to track) 
is detected in the eye-in-hand image, then this corner is 
selected as the next position for the end effector. Corners on 
the surface to follow the contours of are detected using a 
Harris corner detector applied on the image. For example, as 
shown in Fig. 7, although the distance of the end-effector to 
P1 is less than 30 mm, P1 is a detected as a corner on the 
same horizontal line with the current position of the end 
effector. Therefore, P1 is chosen as the next position to reach. 
This criterion results in following a contour in a continuous 
and smooth manner and prevents undesirable oscillations of 
the end effector in between candidate contour edge points.   

The end-effector and camera orientation do not change during 
the contour following and remain perpendicular to the surface. 
Since the eye-in-hand camera cannot provide depth 
information, the end-effector distance to the surface is 
adjusted using the edge’s depth provided by the Kinect sensor 
information. The closest edge’s depth, with respect to the 
robot base, among the border edges to the next end-effector 
position determines the depth in the X axis direction at every 
step along the contour following path.   

 
 
Fig. 7: Priority for the selection of the next tracking position according to the 
local edges detected from the eye-in-hand visual feedback. 

IV. EXPERIMENTAL RESULTS 

To validate the feasibility of the proposed path planning 
method, experiments are carried out with a 7-DOF CRS F3 
manipulator. In these experiments, a distance of 120 mm is 
imposed between the robot end effector and the object during 
the contour following to increase the eye-in-hand camera field 
of view. A pointing tip with 100 mm length is mounted to the 
end-effector to determine the accuracy of the robot during 
contour following at each step (20 mm safety distance from 
the pointer and object is considered). The eye-in-hand camera 
used is a 5 MP webcam with 680x480 pixels  image 
resolution. 

1) First Experiment: Following a planar rectangular 
close contour with sharp edges 

As shown in Fig. 5, a start point (lower left edge) on the 
contour of the object is automatically selected by the robot 
using the global information provided from the Kinect sensor, 
which is also used to locate the overall object and define the 
primary pose of the end-effector in close proximity of the 
object contour. The robot is driven to that location. However, 
at this stage the end effector is not accurately aligned with the 
contour because of the low accuracy of data collected with the 
Kinect sensor. The contour definition is then refined from the 
eye-in-hand camera to guide the robot and more precisely 
align the pointing tip with the contour (Fig. 8a). As shown in 
Fig. 8b, although other contours are detected, they are 
successfully pruned from the map of edge points of interest 
and the robot continues to follow the correct contours 
(rectangular gray object). In Fig. 8c, the robot pointing tip 
reaches the rightmost object corner. In the next step it changes 
its direction of movement to closely follow the vertical 
contour on the right side of the object, as shown in Fig. 8d. 
The smooth transition is made possible given that no further 
edge is detected on the same horizontal line in the selected 
direction of movement (here counter-clockwise). This process 
continues until the robot reaches back to a point close to the 
start point (lower left edge). In a more general case where the 
contour is not be a closed contour, the process ends when no 
contour points are detected from the Kinect sensor and the 
eye-in-hand camera in the selection direction of displacement.   
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(a) 

 

  
(b) 

 

   
(c) 

 

   
(d) 

Fig. 8: First experiment: contour following on a planar rectangular object with 
sharp transitions. 

2) Second Experiment: Following a contour with 
variable orientations 

In the second experiment, a more generic object, shaped like 
an automotive door panel, is considered as it offers several 
contours with variable orientations, as shown in Fig. 9a-c. The 
robot successfully follows the contours on this car door model, 
but exhibits a slightly lower accuracy in some regions. In the 
upper part of the panel, surrounding the glass window area, 
two parallel contours (outer and inner) are detected (Fig. 9c). 
The detected local contours (from the eye-in-hand camera) are 
first compared with the detected global contours (from the 
Kinect sensors) to validate the presence of the two contours 
that are in proximity one to each other and prune away any 

less significant contour components. Moreover, the priority of 
selection for the next position to reach to be located over the 
same line (horizontal or vertical contour) with the current 
position forces the robot to continue following the contour 
over which is already lies, in the present case the outer contour 
of the door window area (Fig. 10b-c). This prevents the robot 
from transitioning in between the contours located in close 
proximity and ensures the smoothness of the trajectory. 

  
  (a) 

 

  
    (b) 

 

  
        

      (c) 
Fig. 9: Second experiment: contour following on an object with complex 
shape and variable orientations. 

Fig. 10 shows the estimated border edge map (blue contour) 
extracted from the Kinect data along with the superimposed 
robot trajectory (red points) when the robot navigates without 
the assistance of the eye-in-hand camera visual feedback. The 
robot properly follows the edges detected from the Kinect 
RGB-D information. However, the detected contour points 
reveal not to be accurately located over the actual object’s 
contours, mainly because of the Kinect’s intrinsic low 
resolution and of some residual error in Kinect/robot 
calibration process. Fig. 11 shows the Cartesian distance 
deviation that appears in between the pointed location and the 
closest actual location of the contour, manually measured at 
each step over the contour following operation based solely on 
Kinect sensor. The average residual error is about 2 cm in 
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absolute value, and varies in sign depending on the section of 
the contour that is tracked. This level or error is expectable as 
it corresponds to the typical error characteristics of the Kinect 
sensors [10,11]. We also observe a tendency for the end 
effector to oscillate around the contour as it progresses around 
the object. 

When additional feedback is provided to the system as visual 
servoing with the eye-in-hand camera, the path of the robot 
pointer (red points) gets considerably refined, as shown in Fig. 
12. It follows the locally detected contour (red contour), which 
offers a more accurate match with the actual contour of the 
object than the contour detected from Kinect data (blue 
contour). We also observe the increased stability and 
smoothness of the performed path in comparison with that 
shown in Fig. 11. The gap in between the blue and the red 
contour locus results from a more accurate localization of the 
actual with the eye-in-hand camera, which compensates for 
the limitations in the accuracy of the RGB-D sensor 
measurements, which tend to slightly distort and expand the 
object shape and size. 

The results demonstrate that the proposed method overcomes 
the limitation of the previous works on contour following 
while relying on very affordable sensors for the far view. The 
robot autonomously detects the unknown object contours 
using the Kinect sensor information. The end effector is 
automatically located in proximity of the object to start with. 
Then the eye-in-hand camera refines the detected contours and 
further aligns the end-effector with them. Furthermore, the 
Kinect data is used for the robot to vary its depth in case of 
non-planar objects, such that the contour is accurately 
followed in 3D, and not only in 2D. 

 
Fig. 10: Estimated border edges (blue edge map) vs robot trajectory without 
eye-in-hand camera (red dots) 

 
Fig. 11: Cartesian distance in between pointed and actual contour without eye-
in-hand camera. 

 
Fig. 12: Robot contour following using Kinect information (blue edge map) vs 
robot trajectory using visual servoing with eye-in- hand camera (red dots). 

V. CONCLUSION 

This work presents an adaptive contour following method 
based on low accuracy RGB-D surface profiling and visual 
servoing. The vision system consists of a fixed Kinect sensor 
and an eye-in-hand camera mounted on a robotic manipulator 
end-effector. The proposed approach builds upon the 
cooperation between a low-cost Kinect sensor and a standard 
color camera in order to lead to an accurate and efficient 
contour following operation with a robot manipulator. The 
Kinect sensor rapidly collects color images and depth 
information on the object which provides global knowledge to 
the robot about the object position, orientation and 
approximate contours location. This estimated contour 
provides the primary pose for the robot end-effector to ensure 
that the contours is positioned and remains within the eye-in-
hand camera’s field of view while also maintaining close 
proximity to the object. The eye-in-hand camera mounted on 
the end-effector provides local information with higher 
resolution about the actual contour location. A strategy is 
proposed to use edge points extracted from the eye-in-hand 
camera, which is looking ahead of the robot pointing tip in the 
current configuration, to generate feedforward signals to the 
robot controller under the form of the next contour edge point 
to reach. The proposed method is experimentally validated on 
a 7-DOF CRS F3 manipulator. The experimental results 
demonstrate that the robot successfully detects and follows 
object contours of various shapes and complexity. 
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