
Adaptive Robotic Contour Following from Low Accuracy
RGB-D Surface Profiling and Visual Servoing

Danial Nakhaeinia, Pierre Payeur, Robert Laganière

School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa, ON, Canada

[dnakhaei, ppayeur, laganier]@uottawa.ca

Abstract—This paper introduces an adaptive contour
following method for robot manipulators that originally
combines low accuracy RGB-D sensing with eye-in-hand
visual servoing. The main objective is to allow for the
detection and following of freely shaped 3D object contours
under visual guidance that is initially provided by a fixed
Kinect sensor and refined by a single eye-in-hand camera. A
path planning algorithm is developed that constrains the end
effector to maintain close proximity to the surface of the
object while following its contour. To achieve this goal, a
RGB-D sensing is used to rapidly acquire information about
the 3D location and profile of an object. However, because of
the low resolution and noisy information provided by such
sensors, accurate contour following is achieved with an extra
eye-in-hand camera that is mounted on the robot’s end-
effector to locally refine the contour definition and to plan an
accurate trajectory for the robot., Experiments carried out
with a 7-DOF manipulator and the dual sensory stage are
reported to validate the reliability of the proposed contour
following method.

Keywords— contour following; contour detection; visual
servoing; RGB-D sensors; eye-in-hand imaging; robotic control.

I. INTRODUCTION

Autonomous contour following in real time based on visual
information is a delicate task often involved in industrial robot
manipulation. Typically, the robot is holding a tool while
closely following the contour of an object, either using
previous knowledge about the shape and pose of the surface,
or in an adaptive way. Furthermore, contour following can be
accomplished with or without contact [1]. Contour following
applications include cleaning, inspection, sealing, painting,
part polishing, sewing, etc [2]. Previously reported approaches
on contour following can be divided into three categories:
contact-based, vision-based and hybrid.

In contact-based approaches [3, 4], a direct feedback, either
from a force/torque sensor or a position/force sensor, is used
to follow the object contours. An initial contact point between
the tool and the object must be prescribed and the force
controlled contact must be maintained. Therefore, due to the
limited bandwidth of the contact or force sensor, the execution

speed of the task is limited to prevent loss of contact and
information [5].

In visual servoing approaches [6, 7], a camera is mounted on
the end effector, in an eye-in-hand configuration, to find and
track an object contour using image processing techniques. In
contrast to contact-based approaches, visual servoing methods
do not impose delays due to the limited contact point.
However, they face latency due to computationally heavy
image processing and massive data transfer. The time delay
can be reduced by adding feedforward signals, but this may
result in following wrong contour or misalignment between
the tool center point (TCP) and the measured contour [8] when
no prior knowledge about the object is available.

To address these shortcomings, recent work proposed hybrid
control [5,8,9]. In these approaches a combination of vision
and force (position) feedback are used to track and follow the
object’s contours. These approaches demonstrate a good
performance in dealing with planar contour following but are
not very successful over 3D structures because the depth of
the object’s contour is also required for precise path planning.
Furthermore, without any global information about the object
shape, as it is lacking from an eye-in-hand configuration, it is
difficult to keep the contour in the camera field of view. The
lack of global information can cause the robot to follow the
wrong direction or contour, especially at corners and on
curved surfaces.

This work proposes an adaptive contour following
methodology without contact that operates in real time and is
based on visual servoing. During the process, the tool is
constrained to maintain close proximity to the surface while
following its contour. Unlike previously reported approaches,
this work combines visual cues from a fixed Kinect sensor,
located behind the robot at a distance from the object to
provide global shape and depth information, and an eye-in-
hand color camera mounted close to the end effector that
provides higher accuracy measurements on the contour
location. The main advantages of the proposed method reside
in the rapid localization and shape estimation of the surface
that efficiently bring the end effector in proximity to the
surface of the object, the precise control of the position of the
end-effector on 3D surface contours, and the reduction in
complexity and cost that result from the use of a multi-
dimensional force sensor.

2014 Canadian Conference on Computer and Robot Vision

978-1-4799-4337-1/14 $31.00 © 2014 IEEE

DOI 10.1109/CRV.2014.15

48

II. PROBLEM FORMULATION

The main goal of this work is to design a reliable path
planning method using visual servoing that ensures accurate
tracking with a robot manipulator of the contour of an object
that is not previously defined by CAD models but only
acquired at high speed by affordable off-the-shelf RGB-D
sensors, and therefore submitted to important inaccuracies. A
Kinect sensor is used as the primary vision stage to provide
full coverage and rapid 3D profiling of an object. The Kinect
device is a priori calibrated with the robot’s base reference
frame during the setup procedure. As a result, the 3D points
collected by the Kinect sensor are defined by Cartesian
coordinates with respect to the robot’s base reference frame.
This representation provides global 3D information about the
object to support the contour following path planning task, but
at low resolution [10,11]. Since data acquired with Kinect
sensors is not accurate enough to provide a high accuracy
definition of the contour, it is used only to support an initial
estimation of the depth of the object with respect to the
manipulator’s base and to approximately locate the contours. In
addition, an eye-in-hand camera mounted on the robot’s end
effector provides closer and higher accuracy feedback about
the object’s contours (Fig. 1). The robot controller is designed
such that the eye-in-hand vision system adds a feed forward
signal which provides real-time look-ahead information in
front of the tool center point (TCP) of the robot. Fig. 2 shows
the proposed control architecture for contour following using
the dual input vision stage combining Kinect sensor and eye-
in-hand camera.

Fig. 1: Kinect sensor and eye-in-hand camera configuration to locate and
follow the object contours.

Fig. 2: System control architecture with position feedback (inner loop) and
visual feedback (outer loop).

III. DESIGN OF THE CONTOUR FOLLOWER

In order to control the robot for it to accurately follow the
contours of an unknown object using the global information
from the Kinect sensor and the local information from an eye-
in-hand camera, three major processing steps are considered,
as detailed in the following sections.

1) Object Surface Localization and Shape Profiling

In this work the primary information about the object’s shape,
position and orientation is provided by a Kinect sensor. This
RGB-D sensing technology is selected because of the rapidity
with which it can provide a fair 3D reconstruction of an object
of relatively large dimension, as found in numerous industrial
applications. The Kinect sensor is used to capture color images
of the scene and the depth corresponding to each pixel within
the field of view. The data is processed to extract the 3D
information about the object, that is its location in the
workspace and an estimate of its surface shape. In order to
coordinate the movement of the manipulator with the depth
data collected by the Kinect sensor, the Cartesian coordinates
of the object are defined with respect to the robot’s base
reference frame. An extensive procedure was proposed in [12]
to estimate the internal and external calibration parameters of
Kinect sensors, as well as their correspondence with the
manipulator’s reference frame. The method takes advantage of
the depth and color information captured by the RGB-D sensor
and achieves complete calibration within a distributed network
of RGB-D sensors. To further reduce the shape profiling time,
the calibration procedure is performed offline. Therefore, the
calibration process does not impact the execution time in
production.

The depth information about the object is processed to
estimate its specific location, curvature, as well as extract the
edges and corners of the object that define, with relatively low
accuracy, the contours of the object. These locations are
primordial to navigate the robot end effector while keeping the
object boundary within the eye-in-hand camera field of view,
and to maintain it in close proximity to the object [13],
independently from the object’s shape. For this purpose, the
raw information from Kinect is stored in a textured 3D point
cloud. The point cloud represents the shape and visual
appearance of the surface (Fig. 3).

2) Border Edge Detection

In this work, we are focusing on following the outer contours
of a surface. Therefore, border edges should be extracted from
the 3D point cloud. Border edges can be extracted using the
angle criterion method [14], convex hull method and splitting
technique [15]. But these methods have some shortcomings in
dealing with 3D surfaces or tend to be very slow. This work
proposes an alternative efficient method to extract the border
edges from a 3D point cloud. For this purpose, the surface is
divided by N horizontal lines and M vertical lines separated by
a distance of 1 mm from each other, along the Y axis and Z
axis respectively (Fig. 5a). Horizontal lines go from Ymin to
Ymax and vertical lines from Zmin to Zmax. The Ymin, Ymax, Zmin

49

and Zmax correspond respectively to the minimum and
maximum values of the Y and Z coordinates in the point cloud
(Eq.1).

M = Ymax – Ymin
N = Zmax – Zmin

(1)

where M is the number of horizontal lines, and N is the number
of vertical lines.

After splitting the surface, the distance between the points
which lie on a same line and the line’s start point is calculated.
The points with the maximum and minimum distances are
selected respectively as the border edges. The points that have
equal Y or Z coordinates in the point cloud belong to the same
horizontal or vertical line respectively (Eq. 2). For example, if
P[j] contains the list of points on the first horizontal line, two
points which have a minimum and maximum distance from
Zmin correspond to the border edges (Eq. 3)

For (i = 0:Vnum)
If ������ �	
 ���� � 	�	��� then ���� 	� 	����

(2)

���� � 	 ������ �	� 	���� (3)

where Vnum is the number of vertices in the point cloud, V[i].y
represents the Y coordinates of points in the point clouds, P[j]
map points on the same horizontal line, and Dist is the distance
of each point P from Zmin.

The same procedure repeats for all M horizontal lines and N
vertical lines and provides the border edges on the Y-Z plane.
In the next step, the same process is performed for the Y-X and
Z-X planes. These steps result in extracting all border edges
with various depths. Since it is desired to follow the outer
contour of an object in the Y-Z plane, given the configuration
of the robot with respect to the object, as shown in Fig. 3, the
edge borders extracted in different planes regardless of their
depth value are compared and the edge borders with maximum
and minimum Y and Z coordinates in each row and column
represent the outer edge border of the object. These edge points
provide the initial estimate of the surface contour, as shown in
Fig. 4b. However, given the low resolution on depth
information provided by Kinect sensors, these edge points are
not accurate enough to precisely guide the robotic contour
following operation.

Fig. 3: Textured 3D point cloud captured by Kinect sensor.

(a) (b)

Fig. 4: a) Surface split by M horizontal and N vertical lines, and b) border
edges extracted from the point cloud.

3) Adaptive Contour Following

The objective of the robot path planning under dual visual
guidance is to allow the manipulator’s end effector to first
approach the surface using the initial RGB-D vision stage, and
then to efficiently and precisely follow the object’s contour,
under higher precision visual servoing provided by the local
eye-in-hand camera images. The proposed path planning
design is detailed in the following subsections:

a) Contour starting point

A start point over the object’s contour must first be defined.
The start point can be any of the edge points identified in the
edge map extracted from the Kinect sensor data. It provides
the primary position and orientation for the end effector of the
robot on any of those locations. These point coordinates are
sufficient to initially guide the robot in close proximity of the
object’s contour, which avoids any human intervention or use
of fixture to constrain the location of the object. This provides
additional flexibility for operation in dynamic or
unconstrained environments, as the robotic system is able to
self-locate objects of interest. Once the approach phase is
completed, the contour is detected and mapped with higher
accuracy within the eye-in-hand camera field of view. The
path planning and control of the robot is passed to visual
servoing while the previously acquired overall model of the
object remains as a validation level to assist with the global
navigation of the manipulator.

In our experiments, the lower left edge point of the panel is
automatically selected as the starting point. For this purpose
the closest point to the corner point with Ymin and Zmin
coordinates is searched in the border edges list previously
established, as shown in Fig. 4a (Eq. 4).

For (k=0:Enum)
 ���� � �� ����� �
 �����
	 �	����� �
 �����

(4)

where Enum is the number of edge points, and E[k] is the list of
edge points.

The edge point which generates the minimum distance is
considered as start point. As shown in Fig. 5, the point initially

50

selected on the contour of the object using the Kinect based
information is typically not precisely aligned with the actual
object contours due to the RGB-D sensor inaccuracies. But the
robot reaches in close enough proximity to that contour to
support an initialization phase, that is for the eye-in-hand
camera to closely capture the actual location of the contour
and compensate for the gap.

(a) (b)

Fig. 5: Misalignment of the initially detected contour from Kinect data only:
a) eye-in-hand camera view at start point, b) third camera view showing the
compensated end effector position with input from the eye-in-hand camera.

b) Image processing

After the contours of the objects are defined at low resolution
via the Kinect data and the robot end effector has reached in
proximity of the starting edge point, higher resolution images
of the contour are captured by the eye-in-hand camera and
processed in real time to finely locate the contour of the object
in immediate proximity to the end effector. For this purpose, a
Canny contour detection [16] is performed. The Canny
detector generates a binary image which represents segments
of the dominant edges with a bright line over a black
background. Contours are obtained from these edges and
represented by the sequence of neighbor pixels in the binary
image that are connected using the chain code technique [17].
As the robot moves, the local information about the object
contour is updated step-by-step. The contours detected at each
step are then processed and used to compute the next end
effector’s position.

c) Pruning

Results from image processing define the local contours
detected within the field of view of the eye-in-hand camera.
However, among the contours that appear in the resulting
binary image, there can be contour components originating
from various objects present in the scene, beyond the object of
interest. These extra contours tend to distract the robot from
accurately following the contours of interest. To remedy this
situation, the edge point coordinates of the desired object,
previously identified from RGB-D sensor data, as described in
section III.2, are used to prune the undesirable contours and
noises in the local contour edge map provided by processing
the eye-in-hand camera images. The estimated object’s edge
coordinates in the depth map are compared with the local
contour coordinates.

However, since the local object contour coordinates are
defined with respect to the eye-in-hand image frame, it is first

required to transform these coordinates with respect to the
robot base reference frame. The eye-in-hand camera being
mounted on the robot end-effector, its transformation with
respect to the 3end effector reference frame is physically
measured and corresponds to a shift of 50mm along the Y
axis. Since the distance between the end-effector and the
object is kept constant during the contour following, a fixed
scaling factor which converts pixels to metric units is used to
estimate the local contour’s coordinates with respect to the
robot base frame, in combination with the known kinematic
model of the manipulator. The image resolution captured by
the eye-in-hand camera is 640x480 pixels which corresponds
to a 100x75 mm field of view over the object. Therefore, a
scaling factor of S=0.156 is used to convert the pixels in
metric units.

The eye-in-hand camera visual feedback operates with 2D
edges. The edge coordinates with respect to the robot base
frame are calculated in order to support path planning and
robot control with respect to the base of the robot. Since the
camera is mounted on top of the end-effector with a shift
along the Y axis from the end-effector centre, the binary edge
map center is assumed as a reference frame origin to calculate
the edges distance from the origin and the end-effector. First
the edge point’s coordinates with respect to the image centre
are calculated. Then they are transformed to the end-effector
frame (Eq. 6). Eventually, the point coordinates with respect
to the robot base frame are obtained using Eq. 7.

IPI = ����� !, BPE = �"#�$�$! , QCE = %� � & � ��&'(

(5)

EPI = QCE IPI (6)
BPI = BPE + EPI (7)

where IPI represents the edge coordinates with respect to the
image center, BPE is the end-effector position with respect to
the base frame, BPI is the edge coordinates with respect to the
base frame, and QCE is the homogenous transformation
between the eye-in-hand camera and the end-effector.

The local contours (edge points) detected in the binary image
that are not in close proximity to the estimated object contours
(list of edge points) extracted from the Kinect sensor data are
discarded and not considered for the robot path planning. As
shown in Fig. 6, where it is desired to follow the gray
rectangular object contour, other components of the scene
(e.g. the vertical wooden post) create extra edge points and
corresponding sections of contour in the local eye-in-hand
image. Using the proposed pruning technique these edge
points are efficiently removed from the edge list and ignored
for path planning.

51

(a) (b)

Fig. 6: a) Object original eye-in-hand image, b) local detected contours before
pruning.

d) Contour following

After pruning of the contours and defining the start point, the
object’s contour is followed by a pointing tip mounted on the
end effector’s plate. The motion direction is user defined as
clockwise or counter-clockwise. It is assumed here that the
motion direction does not change during the contour following
operation around the entire piece or segment of contour to be
tracked.

For each motion step, the distance to every detected edge pixel
in the processed eye-in-hand camera image, representing a
valid contour, from the end-effector center is calculated. For
each step of the manipulator movement, the closest edge point
with a minimum distance of r=30mm from the end-effector in
the desired direction of motion is selected as the next end-
effector position. The distance, r, can be adjusted according to
the contour characteristics. Larger values of r accelerate the
contour following operation but do not adapt well to contour
following of surfaces with significant curves.

When contours are horizontal or vertical, the priority for
choosing the next position is given to the edges on the same
horizontal or vertical line with respect to the current position
of the robot [18]. However, if a corner (on the surface to track)
is detected in the eye-in-hand image, then this corner is
selected as the next position for the end effector. Corners on
the surface to follow the contours of are detected using a
Harris corner detector applied on the image. For example, as
shown in Fig. 7, although the distance of the end-effector to
P1 is less than 30 mm, P1 is a detected as a corner on the
same horizontal line with the current position of the end
effector. Therefore, P1 is chosen as the next position to reach.
This criterion results in following a contour in a continuous
and smooth manner and prevents undesirable oscillations of
the end effector in between candidate contour edge points.

The end-effector and camera orientation do not change during
the contour following and remain perpendicular to the surface.
Since the eye-in-hand camera cannot provide depth
information, the end-effector distance to the surface is
adjusted using the edge’s depth provided by the Kinect sensor
information. The closest edge’s depth, with respect to the
robot base, among the border edges to the next end-effector
position determines the depth in the X axis direction at every
step along the contour following path.

Fig. 7: Priority for the selection of the next tracking position according to the
local edges detected from the eye-in-hand visual feedback.

IV. EXPERIMENTAL RESULTS

To validate the feasibility of the proposed path planning
method, experiments are carried out with a 7-DOF CRS F3
manipulator. In these experiments, a distance of 120 mm is
imposed between the robot end effector and the object during
the contour following to increase the eye-in-hand camera field
of view. A pointing tip with 100 mm length is mounted to the
end-effector to determine the accuracy of the robot during
contour following at each step (20 mm safety distance from
the pointer and object is considered). The eye-in-hand camera
used is a 5 MP webcam with 680x480 pixels image
resolution.

1) First Experiment: Following a planar rectangular
close contour with sharp edges

As shown in Fig. 5, a start point (lower left edge) on the
contour of the object is automatically selected by the robot
using the global information provided from the Kinect sensor,
which is also used to locate the overall object and define the
primary pose of the end-effector in close proximity of the
object contour. The robot is driven to that location. However,
at this stage the end effector is not accurately aligned with the
contour because of the low accuracy of data collected with the
Kinect sensor. The contour definition is then refined from the
eye-in-hand camera to guide the robot and more precisely
align the pointing tip with the contour (Fig. 8a). As shown in
Fig. 8b, although other contours are detected, they are
successfully pruned from the map of edge points of interest
and the robot continues to follow the correct contours
(rectangular gray object). In Fig. 8c, the robot pointing tip
reaches the rightmost object corner. In the next step it changes
its direction of movement to closely follow the vertical
contour on the right side of the object, as shown in Fig. 8d.
The smooth transition is made possible given that no further
edge is detected on the same horizontal line in the selected
direction of movement (here counter-clockwise). This process
continues until the robot reaches back to a point close to the
start point (lower left edge). In a more general case where the
contour is not be a closed contour, the process ends when no
contour points are detected from the Kinect sensor and the
eye-in-hand camera in the selection direction of displacement.

52

(a)

(b)

(c)

(d)

Fig. 8: First experiment: contour following on a planar rectangular object with
sharp transitions.

2) Second Experiment: Following a contour with
variable orientations

In the second experiment, a more generic object, shaped like
an automotive door panel, is considered as it offers several
contours with variable orientations, as shown in Fig. 9a-c. The
robot successfully follows the contours on this car door model,
but exhibits a slightly lower accuracy in some regions. In the
upper part of the panel, surrounding the glass window area,
two parallel contours (outer and inner) are detected (Fig. 9c).
The detected local contours (from the eye-in-hand camera) are
first compared with the detected global contours (from the
Kinect sensors) to validate the presence of the two contours
that are in proximity one to each other and prune away any

less significant contour components. Moreover, the priority of
selection for the next position to reach to be located over the
same line (horizontal or vertical contour) with the current
position forces the robot to continue following the contour
over which is already lies, in the present case the outer contour
of the door window area (Fig. 10b-c). This prevents the robot
from transitioning in between the contours located in close
proximity and ensures the smoothness of the trajectory.

 (a)

 (b)

 (c)
Fig. 9: Second experiment: contour following on an object with complex
shape and variable orientations.

Fig. 10 shows the estimated border edge map (blue contour)
extracted from the Kinect data along with the superimposed
robot trajectory (red points) when the robot navigates without
the assistance of the eye-in-hand camera visual feedback. The
robot properly follows the edges detected from the Kinect
RGB-D information. However, the detected contour points
reveal not to be accurately located over the actual object’s
contours, mainly because of the Kinect’s intrinsic low
resolution and of some residual error in Kinect/robot
calibration process. Fig. 11 shows the Cartesian distance
deviation that appears in between the pointed location and the
closest actual location of the contour, manually measured at
each step over the contour following operation based solely on
Kinect sensor. The average residual error is about 2 cm in

53

absolute value, and varies in sign depending on the section of
the contour that is tracked. This level or error is expectable as
it corresponds to the typical error characteristics of the Kinect
sensors [10,11]. We also observe a tendency for the end
effector to oscillate around the contour as it progresses around
the object.

When additional feedback is provided to the system as visual
servoing with the eye-in-hand camera, the path of the robot
pointer (red points) gets considerably refined, as shown in Fig.
12. It follows the locally detected contour (red contour), which
offers a more accurate match with the actual contour of the
object than the contour detected from Kinect data (blue
contour). We also observe the increased stability and
smoothness of the performed path in comparison with that
shown in Fig. 11. The gap in between the blue and the red
contour locus results from a more accurate localization of the
actual with the eye-in-hand camera, which compensates for
the limitations in the accuracy of the RGB-D sensor
measurements, which tend to slightly distort and expand the
object shape and size.

The results demonstrate that the proposed method overcomes
the limitation of the previous works on contour following
while relying on very affordable sensors for the far view. The
robot autonomously detects the unknown object contours
using the Kinect sensor information. The end effector is
automatically located in proximity of the object to start with.
Then the eye-in-hand camera refines the detected contours and
further aligns the end-effector with them. Furthermore, the
Kinect data is used for the robot to vary its depth in case of
non-planar objects, such that the contour is accurately
followed in 3D, and not only in 2D.

Fig. 10: Estimated border edges (blue edge map) vs robot trajectory without
eye-in-hand camera (red dots)

Fig. 11: Cartesian distance in between pointed and actual contour without eye-
in-hand camera.

Fig. 12: Robot contour following using Kinect information (blue edge map) vs
robot trajectory using visual servoing with eye-in- hand camera (red dots).

V. CONCLUSION

This work presents an adaptive contour following method
based on low accuracy RGB-D surface profiling and visual
servoing. The vision system consists of a fixed Kinect sensor
and an eye-in-hand camera mounted on a robotic manipulator
end-effector. The proposed approach builds upon the
cooperation between a low-cost Kinect sensor and a standard
color camera in order to lead to an accurate and efficient
contour following operation with a robot manipulator. The
Kinect sensor rapidly collects color images and depth
information on the object which provides global knowledge to
the robot about the object position, orientation and
approximate contours location. This estimated contour
provides the primary pose for the robot end-effector to ensure
that the contours is positioned and remains within the eye-in-
hand camera’s field of view while also maintaining close
proximity to the object. The eye-in-hand camera mounted on
the end-effector provides local information with higher
resolution about the actual contour location. A strategy is
proposed to use edge points extracted from the eye-in-hand
camera, which is looking ahead of the robot pointing tip in the
current configuration, to generate feedforward signals to the
robot controller under the form of the next contour edge point
to reach. The proposed method is experimentally validated on
a 7-DOF CRS F3 manipulator. The experimental results
demonstrate that the robot successfully detects and follows
object contours of various shapes and complexity.

REFERENCES

[1] L. Mi and Y.B. Jia, “High Precision Contour Tracking
with Joystick Sensor”, IEEE/RSJ Intl Conf. on Intelligent
Robots and Systems, vol. 1, pp. 804-809, Sendai, Japan,
Oct. 2004.

[2] A.S. Prabuwono, S. Said, B. and R. Sulaiman,
“Performance Evaluation of Autonomous Contour
Following Algorithms for Industrial Robot”, Robot
Manipulators Trends and Development, A. Jimenez and
B.M. Al Hadithi (Ed.), InTech, Mar. 2010.

[3] F. Lange and G. Hirzinger, “Stability Preserving Sensor-
Based Control for Robots with Positional Interface”,

54

IEEE Intl Conf. on Robotics and Automation, pp. 1700-
1705, Barcelona, Spain, Apr. 2005.

[4] U. Martinez-Hernandez, T.J. Dodd, L. Natale, G. Metta,
T.J. Prescott, and N.F. Lepora, “Active Contour
Following To Explore Object Shape With Robot Touch”,
World Haptics Conference , pp. 341-346, Apr. 2013.

[5] J. Baeten and J. De Schutter, “Hybrid Vision/Force
Control at Corners in Planar Robotic-Contour
Following”, IEEE/ASME Transactions on Mechatronics,
vol. 7, no 2, pp. 143-151, June 2002.

[6] F. Lange, P.Wunsch, and G. Hirzinger, “Predictive
Vision Based Control of High Speed Industrial Robot
Paths,” IEEE Intl Conf. on Robotics and Automation,
vol. 3, pp. 2646–2651, Leuven, Belgium, 1998.

[7] C. Collewet and F. Chaumette, “A Contour Approach for
Image-based Control on Objects with Complex Shape,”
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems,
vol. 1, pp. 751-756, Takamatsu, Japan, 2000.

[8] H. Koch, A. König, A. Weigl-Seitz, K. Kleinmann, and J.
Suchý, “Multisensor Contour Following With Vision,
Force, and Acceleration Sensors for an Industrial Robot,”
IEEE Transactions on Instrumentation and
Measurement, vol. 62, no 2, pp. 268-280, 2013.

 [9] W.C. Chang, “Hybrid Force and Vision-Based Contour
Following of Planar Robots”, Journal of Intelligent and
Robotic Systems, vol. 47, issue 3, pp. 215-237, 2006.

[10] K. Khoshelham, “Accuracy of Kinect Depth Data”,
ISPRS Workshop on Laser Scanning, pp. 1437-1454,
2011.

[11] R. Macknojia, A. Chávez-Aragón, P. Payeur, R.
Laganière, “Experimental Characterization of Two
Generations of Kinect’s Depth Sensors”, IEEE Intl Symp.

on Robotic and Sensors Environments, pp. 150-155,
Magdeburg, Germany, Nov. 2012.

[12] R. Macknojia, A. Chávez-Aragón, P. Payeur, and R.
Laganière, "Calibration of a Network of Kinect Sensors
for Robotic Inspection over a Large Workspace," IEEE
Workshop on Robot Vision,pp. 184-190, Clearwater, FL,
Jan. 2013.

[13] R. Fareh, P. Payeur, D. Nakhaeinia, R. Macknojia, A.
Chávez-Aragón, A.-M. Cretu, P. Laferrière, R.
Laganière. R. Toledo, “An Integrated Vision-Guided
Robotic System for Rapid Vehicle Inspection,” IEEE Intl
Systems Conference, Ottawa, ON, Apr. 2014.

[14] L. Linsen. Point cloud representation. Technical report,
Faculty of Computer Science, University of Karlsruhe,
2001.

[15] G. Garai and B.B. Chaudhuri, “A Split and Merge
Procedure for Polygonal Border Detection of Dot
Pattern”, Image and Vision Computing, vol. 17, pp 75–
82, 1999.

[16] J. Canny, “A Computational Approach to Edge
Detection”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-8, no 6, pp. 679-698,
Nov. 1986.

[17] D.H. Ballard and C.M. Brown, Computer Vision,
Prentice-Hall Professional Technical Reference, 1982.

[18] D. Nakhaeinia, R. Fareh, P. Payeur, R.
Laganière, “Trajectory Planning for Surface Following
with a Manipulator under RGB-D Visual Guidance”,
IEEE Intl Symp. on Safety, Security, and Rescue
Robotics, pp. 1-6, Linkoping, Sweden, Oct. 2013.

55

