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Abstract—This paper investigates a novel solution for the 
recognition of objects of interest in aerial images. The solution 
builds on a combination of algorithms inspired from the 
human visual system with classical and modern algorithms. 
The goal is to achieve intelligent and powerful approaches that 
allow for fast and automatic treatment of complex images.  The 
methodology that is proposed innovatively combines a 
variation of the classical watershed segmentation algorithm 
with a series of feature descriptors derived from a 
computational model of visual attention. The feature 
descriptors are tuned with a machine learning approach for 
the task of detecting buildings in aerial images. The 
experimental evaluation that is conducted demonstrates that 
objects recognition with features derived from human visual 
attention performs better than when only traditional features, 
such as statistical texture descriptors and shape descriptors, 
are used. As well, the proposed solution obtains better 
classification rates than those reported on image processing-
based recognition of buildings in the remote sensing literature. 

 
Keywords-aerial images; feature descriptors; visual 

attention; object recognition; segmentation; remote sensing. 

I.  INTRODUCTION 
Computer vision algorithms are continuously being 

improved for visual categorization and recognition tasks. 
The research on this topic has advanced over the years, 
resulting in more powerful algorithms that achieve better 
performance and increased processing speed. On the other 
hand, humans still show a significantly superior 
performance in extracting and interpreting visual 
information to any state-of-the-art artificial vision model. 
The exploitation of biological and psychological knowledge 
derived from human visual mechanisms was shown to 
contribute to the improvement of computational vision 
systems [1]. Early vision-inspired algorithms for object 
recognition, in spite of their relative novelty, have already 
reached performance comparable to the best computer 
vision systems [2] for certain domains of application and 
biologically-inspired visual features have been successfully 
applied for various tasks in image processing [1-6]. Based 
on the recent achievements in these two different areas of 
research, it is realistic to anticipate that an efficient 
combination of algorithms inspired from human visual 
system with algorithms developed in the computer vision 
research community will lead to the implementation of more 

powerful solutions for the identification of objects of 
interest in complex images, such as aerial and satellite data.  

This paper explores an innovative combination of 
features extracted from a visual attention model, the 
classical watershed segmentation algorithm, and a machine 
learning approach for the detection of buildings in aerial 
images. The latter inherently contain a complex array of 
features. Multiple objects of interest with different visual 
properties are generally situated against a cluttered 
background and affected by lighting conditions and strong 
shadowing effects. Moreover the objects of interest often 
share similar characteristics with other objects that are not 
of interest: e.g. trees or roads often share similar color with 
building roofs. While the recognition of these features by a 
human operator can be quite efficient provided a given 
amount of training, the most advanced computational 
solutions primarily rely on atmospheric and 
photogrammetric models. Moreover, most of the 
computational techniques currently used for image feature 
extraction and classification are generalizations of 
algorithms which are neither specifically designed for 
remote sensing applications nor fully automated. As a result, 
the false positive rate of decision is very high and several 
features of interest remain undetected. The low accuracy of 
such algorithms when running on large collections of aerial 
images leaves a substantial opportunity for new approaches 
to improve upon the current state-of-the-art techniques in 
terms of performance, as those aimed in this paper. 

II. LITERATURE REVIEW 
An element that has a significant impact on the detection 

and recognition of objects is the determination of an 
appropriate set of features for a certain object or region of 
interest to be non-ambiguously identified, in spite of changes 
in its posture, scale, illumination, and background that often 
occur in practical applications. Several feature extraction 
algorithms have been proposed in the literature for the 
purpose of object detection and recognition including: 
statistical texture descriptors, such as the mean of average 
intensity, the smoothness of intensity, the uniformity or the 
skewness of the histogram [7], local-binary patterns (LBP), 
shape descriptors based on moment invariants [8, 9], 
elliptical Fourier descriptors for shape boundary description 
[8, 10], and other general-purpose features such as SIFT key 
points, Harris corners, Gabor features, Difference-of-
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Gaussian features, just to mention a few. The related 
detectors are capable to various extents to deal with changes 
in the object shape, characteristics and environment. 

In terms of algorithms inspired from the human visual 
system, computational models of visual attention have been 
shown to ameliorate the speed of scene understanding and 
object recognition [4, 5, 11] by attending only the regions of 
interest in an image. They were identified to be capable to 
detect more repeatable discriminative features than other 
feature detectors such as corners or SIFT key points [4]. 
Previous work of the authors [12] showed as well that 
features derived from a computational model of visual 
attention achieve better performance for pattern recognition 
than Harris corners, Gabor features, and Difference-of-
Gaussian features. 

In terms of approaches proposed in the remote sensing 
literature for building identification based on computer 
vision, Persson et al. [13] train an ensemble of self-
organizing maps to recognize red, copper, light and dark 
building roofs. Their experimentation is limited, with results 
being reported on 17 buildings only. In [14], buildings are 
detected based on color invariants and shadow information, 
but the illumination angle is calculated based on the 
assumption that the roofs have a red-brown color, which is 
not always the case. The approach of Liu and Prinet [15] 
uses a set of features, such as shadow ratio, shape feature, 
distance to straight lines and entropy, and a probability 
function to identify buildings in high resolution satellite 
images. Their shadow model however is limited since it 
cannot be generalized from one image to another. In [16], 
vegetation, building and non-building objects are identified 
based on the assumption that buildings have convex rooftop 
sections. The solution is based on color segmentation and 
color invariants for the identification of shadow and 
vegetation areas.  

III. PROPOSED APPROACH FOR BUILDING DETECTION IN 
AERIAL IMAGES 

 
The proposed approach for building versus non-building 

categorization in aerial images, illustrated in Fig. 1, can be 
summarized as follows: a reduced dataset of aerial images is 
initially presented to the system for training. A watershed 
algorithm is used for the initial segmentation of each image. 
Areas corresponding to vegetation and shadow are then 
eliminated based on color invariants, using an approach 
similar to [14, 16]. This procedure is further described in 
section III. A. The remaining watershed segments and parts 
of watershed segments are then classified as buildings, 
streets or distractors, based on manually segmented masks 
for buildings and streets, as those illustrated in the second 
row of images of Fig. 1, which are made available to the 
training stage. However, aerial images of residential areas 
contain multiple distractors that are neither streets, nor 
buildings, nor shadows or vegetation that can be eliminated 
based on color invariants. Such distractors can include 
pools, vegetation of different color, driveways, etc. Such 
distractors are included in the training of the system to 
improve the identification of buildings. In order to identify 

distractors in images, after the removal of vegetation and 
shadow is performed in a given watershed segment, the 
latter is masked with both the building and the street masks 
used together, as shown in the first row of images in Fig. 1. 
All what remains after this operation is considered a 
distractor.  

 

 
Figure 1.  (a) Proposed approach using watershed segmentation and a 
binary SVM for building versus non-building (street and/or distractor) 
identification in aerial images. 

A bounding box is built around each remaining 
watershed segment and/or fragment of a watershed segment 
(that can result after the removal of vegetation and shadow 
areas) from the building, street and distractor category 
respectively. The corresponding area (sub-image) of each of 
these bounding boxes is recuperated from the initial image. 
The sub-images are therefore rectangular areas of the initial 
color image defined by the coordinates of the bounding 
boxes surrounding the watershed segments and/or 
fragments. This allows for the computation of a feature 
descriptor that characterizes the content of each sub-image, 
which actually represents one of the different categories of 
objects of interest: building, street or distractor. Descriptors 
derived from visual attention, but also a series of statistical 
texture descriptors and shape descriptors are calculated on 
each sub-image as further detailed in section III.B, to enable 
a comparison with the proposed descriptors. Such a 
descriptor is assembled in a vector. A support vector 
machine, detailed in section III.C, is finally used to classify 
each feature descriptor vector as describing a building or a 
non-building. 

 

A. Segmentation Based on the Watershed Algorithm 
The marker-controlled watershed segmentation algorithm 

is adapted from [7]. Local regional maxima are used as 
internal markers, along with a series of morphological 
opening and closing operations to remove small 
disconnected areas. The use of the local intensity standard 
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deviation of the image, a measure of average contrast, as an 
external marker allows a better definition of contours around 
the objects. This marker-controlled algorithm is used for the 
initial segmentation of the grayscale equivalent image of 
each aerial image.  

To further improve the detection of building areas, 
domain-specific knowledge is introduced by means of two 
color invariants for the detection of vegetation areas and of 
shadowed areas in aerial images, as proposed in [14, 16]. 
The color invariant, v, which defines vegetation areas, 
builds upon the green (G) and blue (B) channels of the color 
aerial image and is defined as: 
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The resulting images of these invariants are then Otsu 

thresholded to decide what pixels belong to vegetation and 
shadow areas respectively. The resulting pixels representing 
vegetation and shadows are used to mask the watershed 
segments, as detailed below, for each of building, street and 
distractor category.  Fig. 2b shows an example of watershed 
segments resulting after the application of the watershed 
segmentation, over the grayscale transformed initial color 
image. Fig. 2d shows the segments after the vegetation and 
shadow removal.  

If the result of this masking operation results in 
bounding box areas larger than a certain threshold, it means 
that the watershed segment could contain objects of interest 
and is further processed. For example, for buildings and 
streets, for each resulting watershed segment and fragment, 
from the independent components that results after the 
vegetation and shadow removal, only the ones that have the 
area of the bounding box between 150 and 3000 pixels are 
retained. The two values correspond to the minimum and 
maximum areas of the bounding boxes of buildings, as 
computed from the manually segmented masks, and they 
would have to be adjusted for another dataset. This is 
nevertheless a very simple operation once the masks are 
available. In Fig. 2, all the independent components 
remaining after the removal of vegetation and shadow areas, 
marked by green bounding boxes in Fig. 2e have an area 
between 150 and 3000 pixels, and are therefore further 
processed. To identify building areas, these components are 
masked with the building mask, shown in Fig. 2f. If more 
than 35 pixels (experimentally determined value) remain in 
the newly masked image, it means that the component 
contains a building and its bounding box coordinates are 
retained. The building areas are marked by red rectangles in 
Fig. 2h. A similar approach is used for the streets as for the 
buildings, by using instead a manually segmented mask for 
streets. The street mask for the image in Fig. 2a is illustrated 

in Fig. 2g and the area corresponding to streets in Fig. 2 is 
marked by a blue rectangle in Fig. 2h. The other larger part 
of the street is not marked in the image because its area is 
larger than the 3000 pixels threshold.  

In order to identify the distractors in images, after the 
removal of vegetation and shadow in a given watershed 
segment, the segment is masked with both the building and 
the street masks used together. All the remaining 
components are considered distractors. These are marked by 
yellow bounding boxes in Fig. 2h and the coordinates of 
their bounding boxes are retained as well.  

  

 
(a) (b)

 
(c) (d)

 
(e) (f)

 
(g) (h)

Figure 2.  (a) Initial image (b) watershed segments, (c) image after the 
removal of vegetation and shadow, (d) watershed segments with vegetation 
and shadows masked, (e) resulting areas to be used in training, (f) building 
mask, (g) street mask and (h) resulting areas to be used in training and their 
corresponding class (red=building, blue=streets, yellow=distractors) based 
on masking with the building and street masks. 
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B. Descriptors for Watershed Segments 
Visual attention-inspired descriptors and also descriptors 

based on texture and shape information are used to encode 
the properties of the extracted rectangular regions in section 
III.A that represent different objects of interest in aerial 
images.   

1) Descriptors Derived from Visual Attention: The 
descriptors derived from visual attention are built based on 
the local saliency map obtained by the classical 
computational attention model of Itti et al. [17]. Such a 
saliency map is computed on each of the defined sub-images 
of objects extracted from an aerial image as explained in 
section III.A. The main idea behind all the bottom-up 
computational systems proposed in the literature in general, 
and for Itti et al.’s system in particular, is to compute 
several features derived from a color image provided as 
input and fuse their saliencies into a representation called 
saliency map [17]. Initially, one or several image pyramids 
are created from the input image to enable the computation 
at different scales. Several features are then computed in 
parallel and feature-dependent saliencies are computed for 
each channel. Itti’s computational attention model considers 
as features the intensity I = (R+G+B)/3 where R, G and B 
are the red, green and blue color channels respectively; 
color (color maps are represented by the RG and BY color 
opponency); and orientation (local orientation information is 
obtained from the intensity image I using oriented Gabor 
pyramids of different scales and different preferred 
orientations, e.g. 0o, 45o, 90o and 135o in the current work). 
Center-surround operations, modeled as a difference 
between fine and coarse scales, are applied on all features. 
Each set of features is stored in feature dependent saliency 
maps, called conspicuity maps, in form of grayscale images 
where the intensity of each pixel is proportional to its 
saliency. After normalization, these maps are summed up 
linearly in the final saliency map. The full implementation 
details are available in [17].  

Due to the fact that buildings are usually much smaller 
than the size of an entire aerial image, the sub-images are 
forced to higher resolution (e.g. 128×128) prior to the 
application of computational visual attention model to 
ensure that their characteristics are properly encoded. The 
resulting saliency map is then Otsu thresholded, and 
downsampled to a map of size 16×16 to ensure better 
classification rates. The size of 16×16 is chosen based on 
trial-and-error. The effect of alternative downsampling sizes 
is reported along with the results of the classification in 
section IV. Finally, the downsampled map is transformed 
into a feature vector that contains, for each image, 16×16 = 
256 binary values.  

2) Statistical Texture Descriptors: A set of 6 descriptors 
of texture based on the intensity histogram of local regions 
[7] are examined, namely the mean of average intensity, the 
standard deviation, the relative smoothness of the intensity 
in a region, the third moment, which a measure of the 
skewness of the histogram, the uniformity, and the entropy, 
a measure of randomness. The mean of average intensity is 
computed as: 
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where zi is a random variable indicating intensity, p(z) is the 
histogram of the intensity levels in a region, L is the number 
of possible intensity levels. The standard deviation is used 
as a measure of average contrast: 
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The relative smoothness is 0 for constant intensity and 
approaches 1 for a region with large variations in the values 
of its intensity level, and is computed as: 
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The third moment measures the skewness of a 
histogram: 
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The measure is 0 for symmetric histograms, positive for 
histograms skewed to the right (about the mean) and 
negative for histograms skewed to the left. The previous two 
measures in eq. (5) and (6) are both divided by (L-1)2 in 
order to be brought into a range of values comparable to the 
other five measures. 

The uniformity measure, computed as: 
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is maximum when all gray levels are equal. 

The final measure of randomness is the local entropy 
value, e, computed in a 9-by-9 neighborhood around the 
corresponding pixel in the input image as in [4].  
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where )( iIp is the histogram of the intensity levels in the 
region and L the number of possible intensity levels (e.g. 
L=256 for experimentation). 

The six measures are concatenated in a texture 
descriptor vector. 

3) Shape Descriptors: The shape can be encoded in the 
arrangement of its pixels and captured by moment invariants 
or in its boundary description by means of elliptical Fourier 
descriptors. Both types of descriptors are considered. 

a) Region descriptors based on moment invariants: 
Moments describe the shape’s layout or the arrangement of 
its pixels and are global descriptors of a shape. Legendre 
moments [9] and the Hu moment invariants [10] are tested 
as pattern descriptors for each sub-image. The Legendre 
moment invariants are uniform contrast invariant. They are 
not rotation invariant, but they can be made affine invariant. 
A value of 45 Legendre moments was identified during 
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experimentation to provide the best results in term of rates 
of precision, recall, specificity and accuracy. Hu invariants 
are invariant to rotation, translation and uniform scaling. A 
number of 7 Hu moments are used in the experimentation. 
Each sub-image is therefore encoded in a 45 value vector by 
Legendre moments and in a 7 value vector by the Hu 
moments. 

b) Elliptical Fourier descriptors for boundary 
description: Fourier descriptors allow for the 
characterization of the contour of a shape by a set of 
numbers that represent the frequency content of the whole 
shape [8]. Due to their ability to map arbitrary shaped 
contours, elliptical Fourier descriptors are chosen in the 
context of this application to represent the shape of objects 
in aerial images. For the computation of elliptical Fourier 
shape descriptors, a more elaborate procedure is followed, 
because they require the contour of the corresponding object 
in each sub-image extracted from the initial image. After the 
substraction of the vegetation and shadow areas, the sub-
image is binarized and from the components, if more than 
one exists (e.g. when a building is close to other buildings 
whose parts are included in the same bounding box), the one 
with the largest area is retained only. The boundary of this 
largest area is then used as an input contour for the elliptical 
Fourier descriptors. A number of 7 harmonics are used to 
describe this contour and the results are concatenated in a 
vector of 28 (7×4) values.       

C. Training of a SVM for Building versus Non-building 
Recognition  

The set of input vectors is assembled by concatenating all 
the building, street and distractor vectors for each type of 
descriptor separately and for all the images in the training 
dataset.  The inputs are then classified using a least-squares 
support vector machine (LSSVM) [18]. A LSSVM classifier 
with a Gaussian RBF kernel, the regularization parameter 
�=10 and the squared bandwidth �2=0.4 is used. One binary 
SVM is trained for each type of descriptor: visual attention 
based, texture descriptors, Legendre moments, Hu moments, 
and Elliptical Fourier, to classify between buildings on one 
side (the corresponding output is 1) and streets and 
distractors on the other side (the corresponding output is -1). 
The input and output datasets are shuffled in random order 
to improve the training. The training for buildings, running 
on Matlab, takes about 0.09s per image.  

A five fold cross-validation procedure is used train and to 
compute the performance measures. 80% of the dataset in 
each fold is used for training and 20% for testing. The 
performance is reported in terms of precision (completeness, 
TP/(TP+FN)), recall (correctness, TP/(TP+FP)), specificity 
TN/(TP+TN) and accuracy (TP+TN)/(TP+TN+FP+FN), 
where TP = true positives are buildings identified as 
buildings, FP = false positives are distractors or streets 
identified as buildings, TN = true negatives are distractor 
and street identified as such and FN = false negatives are 
buildings that are erroneously identified as street or 
distractor. 

 

 

 

 

 

 
Figure 3.  Detected buildings (in red) for images in the test set. 
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IV. EXPERIMENTAL  RESULTS AND EVALUATION 
The proposed approach is tested on a dataset of 50 aerial 

images [19]. Each has a resolution of 256×256 pixels and 
contains residential areas with different topologies and 
complexities. Overall, the dataset contains 845 buildings. 
Fig. 3 shows samples from the test set with the recognized 
buildings shown in red and the streets and distractors in 
blue, when visual-attention descriptors of 256 values 
(resulting from a saliency map of 16×16) are used to encode 
the object information. One can notice that the approach 
provides good results in most of the cases. A limited 
number of buildings are not separated by the watershed 
segmentation algorithm and therefore fail to be identified, as 
it can be observed in the last row of Fig. 3. 

Table I reports the average performance over the five 
folds for different sizes of the saliency map. 

TABLE I.  PERFORMANCE FOR DIFFERENT SALIENCY MAP SIZES 

Descriptors Recall Precision  Specificity Accuracy 

Visual Attention 
4×4 86.5% 83.45% 89.43% 88.32% 

Visual Attention 
8×8 97.18% 91.37% 94.33% 95.41% 

Visual Attention   
16×16 97.37% 93.90% 95.80% 95.99% 

Visual Attention 
32×32 97.20% 93.62% 95.84% 96.35% 

Visual Attention 
64×64 97.02% 94.03% 96.17% 96.5% 

 
It can be observed that overall the performance does not 

significantly increase with larger saliency maps after the 
size of 16×16 for the downsampled saliency map. Until that 
value there is an increase of more than 2% in at least one 
measure of performance (e.g. the precision). For larger sizes 
than 16×16 a very slight decrease in the recall can be 
noticed, due to larger sizes of input vectors while no 
significant improvement occurs in the other measures. Table 
II and Fig. 4 illustrate the comparative performance when 
different descriptors are used. 

TABLE II.  PERFORMANCE OF DIFFERENT DESCRIPTORS 

Descriptors Recall Precision  Specificity Accuracy 

Statistical 
texture 71.51% 85.24% 91.48% 83.3% 

45 Legendre 
Moments 73.06% 91.02% 95.16% 86.07% 

Hu Moments 60.99% 78.53% 88.61% 77.4% 

Elliptical 
Fourier  99.36% 90.85% 90.85% 94% 

Visual 
Attention 
16×16 

97.37% 93.9% 95.8% 95.99% 

 
It can be noticed that the elliptical Fourier descriptors 

and the visual attention descriptors provide the best results, 

reflected by the high percentages for recall, precision, 
specificity and accuracy.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.  Detected buildings, shown in red, and detected streets and 
distractors, shown in blue, using different descriptors:  (a) statistical texture 
descriptors, (b) Legendre moments, (c) Hu moments,  (d) elliptical Fourier 

descriptors and (e) visual attention-based descriptors. 
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At the same time, the elliptical Fourier descriptors tend 
to provide more false positives, a fact demonstrated both by 
the lower percentage in the specificity column of Table II 
and by comparing visually the results illustrated in Fig. 4d 
and Fig. 4e. In Fig. 4d, many bounding boxes belonging to 
streets are classified as buildings.  

Overall, for all sample images considered in this work, 
the best performance is achieved by the visual attention-
based descriptors. It is nevertheless worth mentioning that 
the values shown in Table I and Table II report on the 
performance on the training and testing dataset derived from 
the watershed segments, and are therefore biased by the 
effectiveness of the segmentation stage. Additional testing is 
performed to further study the average performance of 
building detection with visual attention descriptors when the 
number of detected buildings is not computed solely from 
the segments of the watershed algorithm. Instead, the 
number of buildings is first computed for each image in the 
test set, based on the corresponding and manually extracted 
building mask. The number of streets and distractors is 
computed as well, based on the street, and the building and 
street masks, respectively. These numbers that take into 
account finer definitions of the buildings are compared with 
the results in terms of buildings versus streets and 
distractors obtained by the LSSVM. The performance is 
estimated and reported in Table III as an average over the 
five folds. 

Table III shows that the average performance is only 
slightly altered by the watershed segmentation procedure, 
when it is considered for providing the reference number of 
buildings detected. This is reflected by the slightly lower 
percentages in Table III as compared to the last row of 
Table II. To further evaluate the proposed approach, Table 
IV compares the performance for building detection of the 
proposed approach with other results reported in the remote 
sensing literature for building detection based on computer 
vision solutions. While it is quite difficult to perform a 
comparison as no standard dataset for remote sensing data 
exists and the aerial images on which these solutions are 
tested are different, one can notice that the results obtained 
with the proposed visual-attention descriptors are very 
promising. 

TABLE III.  PERFORMANCE FOR BUILDING DETECTION WITH VISUAL 
ATTENTION DESCRIPTORS 

 Recall Precision  Specificity Accuracy 

Proposed 
approach with 
visual attention 

descriptors 
16×16 

92.62% 96.43% 92.26% 92.09% 

 

 
Additional testing is performed to check if a recursively 

applied watershed segmentation could further improve the 
performance of the proposed system in an attempt to address 
the issue where some buildings are not separated in 
individual entities, as illustrated in the last row of Fig. 3. In 
this case, all resulting watershed segments are considered, 

even those larger than 3000 pixels that are not treated in 
section III.C. 
 

TABLE IV.  PERFORMANCE COMPARISON FOR BUILDING DETECTION 
FROM OTHER APPROACHES IN THE LITERATURE 

Building detection 
average performance 

reported 
Recall Precision  Number of 

buildings 

Persson et al. [13] 82.0% N/A 17 

Sirmacek and Unsalan  
[14] 86.6% N/A 177 

Liu and Prinet [15] 94.5% 83.4% 277 

Shorter and Kasparis 
[16]: all buildings 55.4% 48.2% 2643 

Shorter and Kasparis 
[16]: buildings of area 
50sq.m or more 

77.3% 64.4% 1414 

Shorter  and Kasparis 
[16] : buildings of area 
210sq.m or more 

91.8% 44.5% 306 

Proposed approach 
with visual attention 
descriptors 

92.6% 96.4% 845 

 

 

 

 
(a) (b) 

Figure 5.  Detected buildings, shown in red, and detected streets and 
distractors, shown in blue for (a) simple watershed, (b) recursive 

watershed. 
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These larger segments are further examined by a 
recursive watershed algorithm, applied within the limited 
bounding box of the segment. While more computationally 
expensive, due to the testing of a larger number of boxes, 
the recursive application of the algorithm does not 
necessarily bring an improved performance for building 
detection. No previously missed buildings are identified as 
shown in Fig. 5 that compares on different images the 
results obtained using simple watershed (Fig. 5a) and 
recursive watershed (Fig. 5b). Moreover some buildings are 
identified in multiple boxes and some false positives appear 
as well, as illustrated in Fig. 5b. Therefore the recursive 
watershed is not a viable alternative for performance 
improvement. 

CONCLUSION 

This paper proposed an original combination of features 
extracted from a visual attention model with the classical 
watershed segmentation algorithm, and a support vector 
machine for the detection of buildings in aerial images. The 
experimental results showed that descriptors based on visual 
attention encode an appropriate set of features for the 
objects of interest to be non-ambiguously identified, in spite 
of changes in posture, scale, illumination, and background 
that occur in the dataset. These descriptors were also shown 
to lead to higher classification rates than other descriptors 
such as statistical texture descriptors,  moment invariants 
and elliptical Fourier descriptors. Furthermore, a better 
performance was achieved when compared to reported 
solutions based on computer vision for remote sensing 
applications.  
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