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Abstract—It is well established that acquiring large amount of
range data with vision sensors can quickly lead to important
data management challenges where processing capabilities
become saturated and preempt full usage of the information
available for autonomous systems to make educated decisions.
While sub-sampling offers a naive solution for reducing dataset
dimension after acquisition, it does not capitalize on the
knowledge available in already acquired data to selectively and
dynamically drive the acquisition process over the most
significant regions in a scene, the latter being generally
characterized by variations in depth and surface shape. This
paper discusses the development of a formal improvement
measure and a method to automatically establish which regions
within the field of view of a range sensor would provide the
most improvement to a model of the scene if further
acquisitions were concentrated in priority over those regions.
The proposed algorithm mainly targets applications using
random access range sensors, defined as sensors that can
acquire depth measurements at specified azimuth and elevation
within their field of view. However, the framework is developed
to be independent of the range sensing technology used, and is
validated with range data acquired from the popular Kinect
multi-modal imaging sensor, as well as Neptec’s LMS laser
random access range sensor.

Keywords— improvement map, range measurement, 3D
imaging, random access range sensors, smart sensing, selective
sensing, Kinect

L. INTRODUCTION

With the continuous improvement of range imaging
technologies, the overall quality and the amount of data they
produce has increased tremendously. This resulted in a larger
number of range sensors being used in numerous
applications, from entertainments systems with low
requirements, to reliable security applications, efficient
robotic platforms, and up to high-end ultra-fine artifacts
virtual representations. Acquiring, coding, interpreting and
transmitting all of this rich and dense information from a
wide variety of sensors is a complex task, which contribute to
current challenges involved in what is known as the 'Big Data
Challenge' [1].

While this work does not deal with the related issues of
handling and combining data across multiple sensors and
sharing of that data, it addresses the specific issue of efficient
3D data acquisition. One way to tackle the Big Data
Challenge for range imaging consists of minimizing the
actual amount of data points acquired in a range image. This
strategy simultaneously permits to expedite the acquisition
process, which proves important with slower imaging
technologies, while also resulting in more compact datasets.
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A promising approach to achieve this goal aims at
identifying regions within the field of view of the sensor
which need a higher density of points for a model of the
scene to be represented and interpreted accurately, and other
areas which do not. In the context of this work, range
acquisition is restrained to a single point of view of the sensor
in order to ensure a proper experimental evaluation of the
performance of the proposed method without dependency on
accurate data registration considerations between various
viewpoints and related 3D point samples. By performing this
analysis, the data can be effectively compressed at
acquisition time, while ensuring both an appropriate level of
coverage of the overall scene and the quality of the 3D model
created. By effectively reducing the quantity of data acquired
via data driven approaches, a robotic system can achieve
savings by reducing transmission bandwidth requirements,
reducing the computational burden of 3D vision processing,
especially for embedded decision and navigation systems,
and in the case of active sensors such as laser range finders,
reducing power consumption, while at the same time
maintaining a sufficient level of quality in the acquired
representation of the scene.

Firstly, a review is presented about relevant techniques
for determining where to scan next in the generic case of a
multi-view acquisition approach. As a counterpart,
techniques for determining optimal scanning patterns, and
approaches for intelligent adaptive sensing from a single
point of view are also examined. An introduction to ordinary
Kriging technique, which the proposed method is based upon,
is then presented. Next, the proposed method is developed
for estimating the level of improvement to a 3D
representation of a scene that an acquisition made at an
unmeasured location provides. Finally, the formal
improvement measure and related algorithm are verified
experimentally and results are presented before concluding
remarks are formulated.

II.

Other works in the past have dealt with the issue of
identifying to which location a sensor should be moved in
order to improve the coverage and quality of the model of a
scene, while minimizing the amount of separate acquisitions
required. These approaches are well known as next best view
(NBV) algorithms.

Connolly [2], through his previous usage of octrees
generated from multiple views [3], realized that determining
optimal viewing vectors based on the current knowledge of
the scene would improve the overall time required to model a
scene. He describes two different methods for determining
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the NBV: by determining the view which would reveal the
most 'unseen' nodes in the octree (the planetarium algorithm),
and by summing together the normals of the faces of nodes
that are common to both 'unseen' and 'empty' nodes in order
to produce a viewing vector which sees the greatest amount
of potentially visible 'unseen' nodes (the normal algorithm).

The goal of eliminating occlusions to drive the NBV
process was investigated by several researchers [4-7].
Morooka et al. [8] define a discretized shell around a region
to be modeled in order to limit the number of possible
viewing vectors, which allows the use of lookup tables to
optimize the entire process. Mackinnon ef al. [9] use a
specialized laser range sensor which provides several
additional fields of data in order to derive quality metrics,
such as resolvability, planarity, orientation, reflectivity, and
spot size, for each acquisition point in order to drive the NBV
process to optimize the quality of the overall 3D model.

There has also been works that have looked into optimal
fixed scanning patterns for several scenarios. Ho and
Saripalli [10] have investigated scanning patterns for
autonomous underwater vehicles (AUV) which attempt to
maximize coverage and quality, while minimizing energy use
from the AUV propulsion system. English ef al. [11] use
three different patterns, a Lissajous, a rosette, and a spiral
scanning pattern, along with an adaptive algorithm to swap
between them depending on the characteristics and objects
detected in the scene, with the goal of optimizing the
estimation of position and orientation.

Adaptive and intelligent sensing for range acquisition was
previously investigated by Cretu ef al. [12] who determine
regions which require higher resolution acquisition based
upon an initial coarse scan, from within a single point of
view. Their method uses a neural gas network to determine
where features and edges are located by training the network
over a short period, which produces clusters of points in
regions where there are depth features. The resulting clusters
are then analyzed, and regions with higher density of clusters,
which correspond to regions in space where there are more
potential depth features to finely measure, are re-acquired at a
higher resolution.

Shih et al. [13] develop three different techniques to
guide a non-uniform data acquisition process from a single
point of view. In the first two approaches, an initial scan of
the object is made. This object is then subdivided in a
hierarchal tree-type fashion, with error between actual values
at the leaf nodes and the estimated values at those points,
calculated from the next layer up, being used to determine if
new points within each sub-division need to be acquired.
The difference between the first two approaches is that the
first one uses plane fitting over regularly shaped sections,
such as rectangles and triangles, while the second approach
uses curve fitting. The third approach determines the optimal
non-uniform scanning pattern for a particular object based
upon a CAD model, by first performing a virtual acquisition,
and then using a local adjustment algorithm to move points
around until an optimal placement occurs where the points
cease to move. The resulting point locations correspond to
the optimal scanning pattern for that particular object.
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In order to predict the optimal location over the scene
where to acquire a future range point, estimates of the range
at certain locations which have not yet been acquired are
needed, as well as a reasonable estimate of the error expected
on the estimation. Ordinary Kriging is one such estimation
technique that provides both an estimate of a value at a
location, and an estimate of the variance on that estimate.
Kriging in general is an estimation technique that uses the
stochastic properties of the current measurements to estimate
the measurements at other locations, while minimizing the
estimation variance. Ordinary Kriging is a version of the
Kriging technique which assumes that the mean of the
measured value follows a trend, but essentially remains
unchanged in a local neighborhood. The Kriging family of
estimation techniques has been used extensively in
geosciences [14-17], as well as to perform crop yield
estimations [18] and range image filtering [19], but has not
yet been fully exploited and adapted to the context of
dynamically selective range acquisition.

Ordinary Kriging relies on the estimation of a
semivariogram model, which is a graph that relates how
much variation to expect over a given distance. A
semivariogram model has three properties which must be met
in order for the semivariogram to be permissible, or valid, for
use in Kriging [15], namely that the semivariogram must be
non-negative, the semivariogram at zero is equal to zero, and
that the semivariogram is conditionally negative definite. In
order to have the semivariogram be related to measured data,
and as a result to the Kriging system, the semivariogram
model is fit to the empirical semivariance of the measured
data [15, 20, 21].

Ordinary Kriging is represented by the system of
equations shown in eq. (1)-(6), where h(pi,pj) is the 2D
Euclidean distance between measured points p; and p;, y(h)
is the semivariance from the semivariogram model, n is the
number of known measured points, z(p;) is the depth at the
i measured point p;, /1(13]-) is the vector containing the

i
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II1.

In order to determine the optimal location to acquire the
next point in a range image, a measure of improvement that
any particular point can contribute to the overall 3D
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representation of the scene must be derived. In order to
perform this action it is desired to have an estimation of how
the error in the estimation is reduced, when a previously
unknown point is acquired. The measure of error that is used
as the basis in determining the estimation of improvement
measure is the variance to mean ratio (VMR), vmr (ﬁ j). This
selection is inspired from the fact that ordinary Kriging
provides both the estimated depth, 2(ﬁj), as well as the
estimated variance of the estimation, 62(13 j) , for an
unmeasured pointp;. The VMR also appropriately reflects
the fact that typically, and for most range sensors, as a depth
measurement is located further from the sensor, the error on
the measurement increases, and is inherently normalized in
the formulation of the VMR in eq. (7).
5*(#;)
2(p;)
Now, if in the future, an acquisition is made at point py, it
will result in a depth measurement z(pg). In order to predict
the effects of this acquisition before it occurs, the assumption
is made that the estimated depth value for that point is the
actual value, namely that p; = ps and z(P; ) = 2(P;). This
assumption results in the formulation of eq. (8), which
represents the new VMR at unmeasured point, p;, given the
previous assumption on point p;. The difference between
these two values results in eq. (9), which contributes a novel
formulation for a measure of conditional improvement
indicating how much the knowledge acquired on p via a
future range acquisition will improve the estimate of p;.

vmr(ﬁ ,-) = 7

PN &Z(ﬁjlﬁs)
jlWPs) = "Srx 12\ 8
vmr(p,lp ) Z(Pj|Ps) (8)
imp(ﬁj|ﬁs) = vmr(ﬁj) — vmr(ﬁj|ﬁs) )

Since any additional information about the depth of a
given point contributes to the improvement of knowledge
about the scene over a certain area, it is not sufficient to only
calculate the improvement that ps imparts on the estimate of
a particular point, p;, but rather to the total improvement over
the entire set of points which pg affects. This must be
calculated in order to determine the improvement in VMR
that the acquisition of pg makes over the entire acquisition
space. Therefore the total estimated improvement due to
acquiring point P is defined in eq. (10), where m is the
number of points that p influences.

imp() = ) imp(p,|p.)
j=1

In order to determine the optimal point to acquire next in
a range image, all unmeasured points must have this
improvement value calculated. As these calculations are
fairly computationally expensive by themselves, reuse of
calculated values is preferred. After some manipulation, eq.
(10) can be reformulated in terms of the previously defined

ordinary Kriging system, as shown in eq. (11).

2
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Since eq. (11) must be calculated for m different points in
the regions of influence, and for each possible unmeasured
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location, that means that the 2D Euclidean distance between
unmeasured points, ps and p;, must be calculated many
times. As the square root operation has a high computational
cost associated with it, a semivariogram model that will allow
fewer calculations is desired. The ideal scenario would use
the distance squared within the semivariogram model, as this
allows for the separation of terms belonging to ps and p;.
Unfortunately, the power model with the exponent equal to 2
produces an impermissible semivariogram model, which may
yield a singular K matrix. To avoid this issue an exponent
which is close enough to 2 such that there will be little error
introduced in the approximation between the semivariogram
model and the squared distance function, as is illustrated in
Fig. 1, is chosen. This prevents a singular K matrix and will
allow the optimization of the calculations being performed
using the squared distance. Therefore, the final
semivariogram, y (h), that is being used is the combination of
the power and nugget permissible models (see eq. (12)).
Note that h is the 2D Euclidean distance, U(h) is the unit
step function as shown in eq. (13), and the parameters used
for fitting the semivariogram model to the empirically
calculated semivariances are a and b.

y(h) =ah” + bU(h) ,0 <w < 2 (12)
vw={1 130 a3
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Figure 1. Error between h? and h®® for e=107 and 107,

Combining the semivariogram model from eq. (12) using
the distance squared approximation (w=2), with the
improvement formulation in eq. (11), and the 2D Euclidean
distance function from eq. (14) where coordinates of P
(%5, 95) and p; = (J?]-, }7]-) , the final 'unrolled' estimated
improvement, eq. (15), is developed. Using this formulation,
the inner summations of j=1 to m can be calculated first, and
then those values can be reused for each of the m imp(p;)
calculations, thereby cutting down on the number of
computations to be linear with respect to m as opposed to
quadratic in the approach where squared distance is not used.

M) = JE~5) + (5.9’ (14
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IV.

This section describes the proposed algorithm for creating
a map which estimates the predicted improvement, by using
eg. (15), at locations that the range sensor can cover within its
field of view. The considered scenario of application consists
of first acquiring a coarse depth map of the scene by selecting
uniformly distributed acquisition azimuth and elevation
values from a fixed centric sensor point of view. The
dynamic selection process then uses the information available
from this limited number of measured samples to predict
improvement estimates. The highest improvement areas
become the targets for future acquisition with a random
access range sensors that can selectively acquire range
measurements at specified azimuth and elevation coordinates.
The newly acquired 3D points then refine the knowledge
about the scene which further drives the progressive
refinement of the 3D model of the scene while maximizing
the acquisition procedure efficiency in terms of rapid and
reliable acquisition of knowledge.

Since calculating the improvement for the whole map
after the addition of each future point is computationally
expensive, and generally not desired since features tend to
have unique local statistics, the algorithm first organizes the
available points into local neighborhoods, based on a
triangular mesh formed by the points readily available, and
then only updating the estimated improvement map in
regions where the triangular mesh changes after the addition

of a new measurement.
p

\/1 + tan?(0) + tan?(¢p)
x = z-tan(0)

y =z tan(p)

The first step in the proposed algorithm is to transform
already acquired points from Cartesian space to an angular
perspective projection space. This is performed since most
range sensors available, such as laser range finders, stereo
vision, and structured light systems, are projective based.
Consequently, these sensors have a focal point through which
their data is collected, allowing the modeling of the collected
data in a perspective based coordinate system, as defined by

0 = atan2(x,z)
@ = atan2(y,z)

p=+x>+y>+2?

JEA (16)

314

eq. (16), where z coincides with the principal axis of the
range sensor.

The next step is to add these points into a 2-D triangular
mesh using Delaunay triangulation [22, 23], where the
azimuth, 8, and elevation ¢, are used as the 2-D coordinate
pair instead of the usual Cartesian coordinates (x, y). The
use of Delaunay triangulation ensures that the linkages within
the mesh between acquired measurements are fairly local, as
it prevents long and skinny triangles. The points within the
local neighborhood used in the improvement process are
found by selecting the three vertices of any triangle, as well
as the two or three points which are opposite to the edges in
the triangle, as is shown in Fig. 2. By only using a few points
in the local neighborhood as opposed to many in a global
approach, the computational burden is reduced, and the
locality of the results is ensured, at the cost of potential
influence of noise.

6

5
Figure 2. Configuration using 6 points (left), and configuration using 5

points (right).

These five or six points are used to calculate empirical
semivariances, which are then used to calculate the
parameters a and b using least squares to best fit the
semivariogram model in eq. (12) with the points in the local
neighborhood. A map of estimated improvement is then
calculated, by the application of eq. (15), over the m
candidate sampling points that are within the main central
triangle. The map in an ideal situation would have a 1:1
mapping from possible sensor acquisition directions to pixels,
where the sensor field of view corresponds to the dimensions
of the map. For example, for one of the range sensors
considered for experimentation, the Microsoft Kinect sensor,
a field of view of 57° horizontally and 42° vertically [24]
with a depth image resolution of 640x480 is available. This
would yield an improvement map of a comparable size with
the same resolution covering the same field of view.

A dynamic selection process using this improvement map
is implemented by determining the location of the highest
improvement value in the map, which has not been yet been
visited. Furthermore, as more points are added selectively
and progressively into the triangular mesh, using an
incremental Delaunay triangulation algorithm, only the
triangles which have been modified or added through the
acquisition of supplementary points need to have their
estimated improvement values recalculated. This further
reduces the computational burden of the algorithm.
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Figure 3. Car door comparison of selective sensing methodologies: a) fully rendered point cloud, b) low resolution neural gas model highlighting features
[12], ¢) medium-low resolution neural gas model, d) extremely low resolution improvement map, ¢) low resolution improvement map, and f) medium-low
resolution improvement map.

V.

Firstly, a comparison of the improvement map is made
against the results obtained by Cretu et. al. [12], using the
same data which was acquired using a Neptec LMS laser
random access range scanner (see Fig. 3a). This is to ensure
that similar regions are highlighted. The Neptec LMS has a
maximal angular field of view of 30° x 50° [25] and the data
set of the car's door region was acquired at 1024x1024
resolution. Fig. 3b shows the neural-gas model from an
initial uniform subsampling of the data at 64x64 (low
resolution) and Fig. 3c shows the neural-gas model from an
initial subsampling of the data at 128x128 (medium-low
resolution). Fig. 3d-f show the results of applying the
improvement measure algorithm developed in section IV
with initial uniform subsamplings of 32x32 (extremely low
resolution), 64x64, and 128x128 respectively. The regions of
interest in the neural-gas model that highlight features on the
object in Fig. 3b and 3c are shown in black, while the regions
of interest where the most gain for an acquisition of data is
monitored in the improvement maps are shown in white (Fig.
3d-f).

Both methods indicate that the edges of the object, as well
as the door handle, and the seam where the door meets the
car side panel are the areas where the most improvement can
be added. Additionally, it can be qualitatively observed that
the results from the improvement map shown in Fig. 3d
match closely with that of Fig. 3b, even though only 1/4 of
the initial points were used. This trend also exhibits itself
when visually comparing Fig. 3e and Fig. 3c. Furthermore
the time to generate the results from the subsampled point
cloud on an Intel 17-2630 processor operating at a nominal
2.6 GHz was for Fig. 3d of 3.44 seconds, for Fig. 3e of 3.64
seconds, and for Fig. 3f of 4.69 seconds. The results from the
neural gas method took 4-5 min on an Intel Pentium IV at 1.3
GHz.

EXPERIMENTAL RESULTS
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Secondly, the algorithm was experimentally validated on
a series of data acquired with the Microsoft Kinect, with the
parameters mentioned in the previous section. The value of
w in the semivariogram model from eq. (12) was chosen to
be 1.99999 (that is €=107), as this provided a sufficient
tradeoff between the approximation error and numerical
precision for the resolution and field of view of the Kinect
Sensor. The results of selective sensing using the
improvement map are compared to the mean of the results
achieved from a random point insertion over 10 runs. Two
different scenes are presented, one containing some cones at
various depths from within a parking garage (Fig. 6a), and
the other containing a cluttered scene of objects acquired
within a lab (Fig. 7a). For each, the model was populated
with an initial sub-sampling of 10x10 points.

Fig. 4 illustrates the mean estimated improvement over
the entire improvement map for both scenes as each acquired
3D point sample is progressively added to the model. In both
cases, for each insertion methodology (selective or random),
the mean estimated improvement starts off large, and
generally decreases to a minimum. Note that when the
selection of points is driven using the maximum
improvement value within the map, the mean improvement
converges to the minimum value faster than what is achieved
using random insertion. Fig. 4a does not decay to zero due to
the occlusions caused by the stereo setup of the IR
projector/camera configuration in the Kinect sensor and the
limitations on the types of surfaces the Kinect itself can
perceive, and so not all points in the field of view can be
acquired. In Fig. 4a and b, the mean estimated improvement
decays to be close to its minimum at between 5000 and
10000 points, and does not change significantly beyond that.
As a result, the plots have been truncated to better illustrate
the earlier behavior.
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Figure 4. Mean estimated improvement for the scenes containing a) a parking garage with cones and b) a cluttered lab.
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Figure 5. Error of estimated improvement compared to actual improvement for the scenes containing a) a parking garage with cones and b) a cluttered lab.

Fig. 5 plots the error between the estimated
improvement, and the actual improvement per sample
inserted into the 3D model with both insertion

methodologies. The actual improvement was determined by
calculating the difference in VMR over the entire map before
a measurement was added, and after it was added. The plots
demonstrate a rapid decrease in error, as the local
semivariogram becomes more reflective of the actual
underlying statistics of the scene as new points are added.
The trend in the improvement error resulting from the
dynamic point selection process using the improvement map
reaches the minimum prior to that achieved using random
point insertion. The plots in Fig. 5 show that the
improvement errors for random insertion are less noisy than
that of the selection process; this is purely due to the fact that
the random insertion curves are calculated from the mean of
10 independent runs. Again, as seen in Fig. 4, curves in Fig.
5 approach a minimum error at between 5000 and 10000
points, and do not change significantly after that, and hence
the plots have been truncated to better illustrate the earlier
behavior.

Fig. 6b and 7b show the estimated improvement map for
both scenes after 2500 points have been inserted, while Fig.
6¢ and 7c show the estimated improvement map for both
scenes after 5000 points have been inserted using the point
selection process based on the improvement map. Fig. 6e
and 7e present the estimated depth map corresponding to
Fig. 6b and 7b, while Fig. 6f and 7f present the estimated
depth map corresponding to Fig. 6¢ and 7c. Fig. 6d and 7d
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illustrate the estimated depth map after all points have been
inserted into the respective model, as quality and
completeness comparatives of selective sensing to models
achieved from full acquisition.

Whiter colored regions in the improvement map
correspond to larger improvement values, and darker
correspond to lower improvement values. As can be seen in
the figures, regions of higher estimated potential
improvement correspond to transition regions, and larger
triangles where the sampling is more sparse. The sparse
sampling that created the larger triangles in Fig. 7b in the
region of the black car body panel are due to the operational
limitations of the Kinect sensor itself in acquiring depth
values over black surfaces. Notice that between Fig. 6b,e
and Fig. 6¢,f the selection process advantageously chooses
points at the edges of the cones, around where the blue
recycling box is located, and at the edges where the two
walls meet each other, as well as at the wall/ground interface.
This is reflected by the smaller whiter triangles in these
zones within the improvement map, in addition to the
sharper detail within the depth map. Fig. 7 demonstrates the
same enhancement behavior in the selection process around
the region of the gray car door, at the edge of the wooden
pallet, the blue recycling box, and the brown vertical
cardboard tube.

The estimated depth maps calculated from ordinary
Kriging in Fig. 6f and 7f for each scene after 5000 points are
selectively chosen using the improvement map, while Fig. 6d
and 7d show the estimated depth map after all points are



inserted. As can be seen, there is little difference in the  foundation for the development of the proposed estimated
completeness of the large scale features in the depth map improvement measure and dynamic selective process
achieved with only 5000 acquired points compared to full  detailed in section III, resulting in the formulation of eq.
acquisition of 307200 and 277753 points, respectively. This (15).

reinforces the argument that ordinary Kriging is a solid
8

d) D)
Figure 6. Scene of parking garage with cones: a) RGB image of the scene, b) estimated improvement map after insertion of 2500 points, ¢) estimated
improvement map after insertion of 5000 points, d) estimated depth map after all 307200 points are inserted, e) estimated depth map after selective insertion

d) e) f
Figure 7. Scene of cluttered lab: a) RGB image of the scene, b) estimated improvement map after insertion of 2500 points, ¢) estimated improvement map
after insertion of 5000 points, d) estimated depth map after all 277753 points are inserted, e) estimated depth map after selective insertion of 2500 points, and
f) estimated depth map after selective insertion of 5000 points.
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This research introduces an estimated improvement
measure on range data acquisitions that can be used to
dynamically select optimal locations where additional depth
measurements will provide significant improvement to the
knowledge of a scene, as well as determine when the
acquisition of more points ceases to provide such significant
improvement. The algorithm demonstrates stability, as both
the error in the improvement estimation, and the mean
estimated improvement level show convergence toward zero
as more measurements are progressively added to a 3D
representation. This corresponds well to the intuitive notion
that as more information about a scene is acquired, the less
effect that any one particular point will have on the overall
model of the scene. Additionally, ordinary Kriging, which
the improvement measure was built upon, is shown to
provide a good basis for estimation. The contribution of the
dynamic selection of depth measurements acquisition using
the improvement map has been demonstrated to effectively
reduce the number of points required to adequately represent
a scene. The selective sensing algorithm additionally was
shown to outperform random sampling in both the mean
improvement metric, as well as the improvement error
metric. Furthermore, with the reduction of acquired points
that is made possible by using the proposed algorithm, slow
random access sensors can acquire more scenes, while at the
same time reducing bandwidth and storage requirements of
the raw data, and reducing the power required for operating
active range sensors.

CONCLUSION
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