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Abstract—This paper examines the complex problem of robotic 
interaction with moving panels exhibiting few distinctive visual 
features, in the context of marking surface deformation defects 
for quality control in the automotive industry. In order to 
integrate a defects detection station and a robotic tracking and 
marking system within a unified framework, an original inter-
calibration technique is developed, which allows for the 
distribution of these systems in two different stations along the 
assembly line. A robotic prototype for performing the marking 
operation on a moving panel, using a spraying gun, is built and 
its operation validated under realistic industrial scenarios. The 
marking accuracy that is achieved demonstrates the suitability 
of the proposed robotic solution to perform fully automated 
region marking of deformations over large surfaces and for 
substantial volumes of production, while relying only on 
passive stereoscopy. 

Keywords- stereoscopic vision; calibration; visual servoing; 
motion prediction. 

I.  INTRODUCTION 
Quality control in the automotive industry is essential in 

order to ensure that the products meet specific standards. 
Identifying deformation defects, such as dings and dents over 
the surface of body panels, and fixing them before the panels 
are assembled on a vehicle is crucial. In current industrial 
settings, the identification of small deformations usually 
requires a lengthy manual surface rubbing operation during 
which the deformations are marked by workers. The 
proposed research aims at automating this process with the 
use of vision sensors and a manipulator robot. 

For the robot to perform defects marking operations on a 
moving part, vision and range sensors must provide accurate 
and real-time data regarding the pose and motion of the 
panel. Additionally, precise inter-calibration procedures are 
needed to properly integrate the data provided by the defects 
detection stage with the pose and motion estimations used to 
guide the robotic marking operation. Le and Ng [1] 
investigated the calibration of multiple sensing devices in a 
large system and proposed an approach relying on maximum 
likelihood estimation in order to calibrate at once a 
manipulator robot, a stereoscopic sensor and a laser 
projector. However, one of the requirements of this 
technique, which makes use of checkerboards and planar 

surfaces, is that all subsystems must coexist within the same 
location. A more general framework therefore needs to be 
developed for the 3D vision-based defects detection and 
robotic marking stations to be distributed along the assembly 
line, to better accommodate space constraints and for 
improved pipeline scheduling and production rates. 

Kak et al. [2, 3] and Chang et al. [4] identified the 
limitations that impeded existing approaches, developed for 
robotic interaction with moving objects [2, 3, 5], from being 
turned into commercial products. While the lack of robust 
and objective methods to evaluate the empirical performance 
remains an issue, the difficulty of tracking industrial panels, 
which often suffer from a lack of distinctive features over 
their surfaces is even more challenging [2]. As a result, the 
most popular feature extraction and tracking algorithms [6, 
7] still experience important limitations [8, 9] when dealing 
with weakly textured surfaces, as exemplified with 
unfinished automotive panels at the stage of inspection. 

Apart from the general appearance of the automotive 
panels, the pose and motion estimator (PME) needs to be 
robust to the complexity of industrial settings. Specifically, 
the vision-based PME needs to keep track of the moving 
target panel even though the manipulator robot moves within 
its field of view, while marking the deformations. Also, the 
sporadic appearance of factory associates in the view of the 
vision sensors must not compromise the visual servoing data 
sent to the robotic arm for the solution to be adequate for 
industrial assembly processes. 

While the detection of tiny deformations over the panels 
[10] is beyond the scope of this work, the paper has a dual 
objective. Extending the initial integration between a vision-
based defects detection stage and the robotic tracking and 
marking station [9], this paper introduces an innovative inter-
calibration technique between the two stages. The latter is 
executed on-line, supports the physical separation of the two 
stations, and does not require a calibration target. The 
development of a robotic defects marking system over 
moving panels, relying on passive stereoscopy, is also 
detailed and experimentally validated. 

II. EXPERIMENTAL VISION-ROBOTIC PLATFORM 
The complete framework designed for the surface 

deformation defects detection and marking is shown in Fig. 
1, where the functional block for the robotic tracking and 
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marking station is highlighted in gray. The other major block 
of this integrated solution is responsible for automatically 
detecting 3D surface defects [10]. A 3D imaging module for 
data acquisition, which consists of a structured light sensor 
(SLS) generates a dense colored 3D reconstruction of the 
surface profile of the panel under inspection. The 3D surface 
model is analyzed by the surface deformations detection 
system which extracts 3D features at various resolutions, 
groups and classifies them. Finally, the 3D locations of the 
surface deformations, expressed with respect to the left 
camera of the SLS sensor, CamLSL, are encoded to drive the 
robotic marking system toward the points where a washable 
paint must be sprayed. A complete view of the integrated 
surface deformations detection and marking system is 
presented in Fig. 2. 

 
Figure 1.  Deformations detection and robotic marking framework. 

In this configuration, the SLS is integrated in the same 
work cell as the stereo-vision sensor used for the pose and 
motion estimation (SSPME) of the automotive panel. 
However, the proposed integration permits the transition to a 
dual station implementation where the marking operation can 
be performed at a subsequent stage along the assembly line, 
after the defects detection procedure. Such a separated 
structure also offers the advantage of permitting the 
deformations detection system to process data about the 
following panel while the marking is executed over a 
previously inspected panel. The SSPME relies on two Point 
Grey Flea2 IEEE-1394b CCD cameras with 8.5mm lenses 
and 640x480 pixels of resolution. A 44.5cm baseline is used 
between the cameras, as it provides improved accuracy in 
reconstructing the sparse structure of the panel. The 
automotive part is located at approximately 310cm from the 
acquisition system. The assembly line consists of a 54cm 
sled system driven by a separate motor at variable speeds, 
and the actual interaction with the automotive panel is 
performed by an F3 7DOF CRS manipulator. 

 
Figure 2.  Experimental integrated vision-robotic platform for 

deformations detection and marking. 

As shown in Fig. 1, the robotic marking system relies on 
the PME of the panel and performs the path planning to 
guide the marking operation of all detected deformations. 
The developed PME embeds a supervisory layer [8] whose 
objective is to provide accurate, time-efficient and fault-
tolerant visual servoing data to the robotic station. The only 
knowledge provided to the supervisory layer is related to a 
limited number of macro-features (MFs), which are pre-
selected over the structure of the automotive panels by the 
installation engineer when configuring the robotic tracking 
and marking station. These MFs are shown in Fig. 3a and 3b 
for two typical rigid panels used in the experimentation, 
respectively a car door and a fender. The MFs are pre-
selected only once and the PME has the internal ability to 
autonomously re-initialize the set of MFs as soon as a new 
automotive panel of the same type enters the view of the 
SSPME for the defects marking operation.  

The developed PME embeds classical feature extraction 
and tracking algorithms [6, 7]. The well-known limitations 
of these approaches when applied on weakly textured 
automotive panels moving in a complex environment [8] are 
addressed from a software perspective, without complicating 
the passive vision sensing architecture. In order to guarantee 
consistent movements between the inspected panel and the 
robot end-effector, two inter-calibration procedures need to 
be performed. The first one involves the computation of the 
rigid transformation between the SSPME, whose reference 
frame is assigned to the right camera, CamR, and the robotic 
base, whose reference frame OB, is shown in Fig. 4a. The 
second inter-calibration relates CamR with the reference 
frame of the SLS, CamLSL, and provides the extra capability 
to physically separate the defects detection and robot 
marking systems in two different and successive stations. 

 
                                                            (a) 

 
                                                     (b) 

Figure 3.  Initally selected MFs over the surface of: (a) a car door, (b) a 
fender. 
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(b)

Different tools were mounted on the robot at various 
phases of testing, as seen in Fig. 4b and 4c. The first end-
effector, shown in Fig. 4b, is a compliant stamping tool that 
was used to mark the defects by contacts over the automotive 
panels. It uses a spring-loaded plate as its tip, which allows a 
compliant deflection of about 1.5cm. For the second 
alternative, aiming at reproducing in the laboratory the on-
line defects marking process that would be performed by a 
spraying gun, an LED pointing tool, shown in Fig. 4c, was 
designed. This LED pointer highlights the deformation area 
and allows for a visual estimation of the accuracy of the 
marking process while avoiding the dirt and single time 
marking of actual paint spraying. 

Since the detected deformations require to be repaired by 
factory associates at a later stage of the assembly process, the 
on-line robotic marking system does not command for 
extreme accuracy. The goal is rather to efficiently spot the 
regions within which the deformations appear. As a result, 
regions of a few (2-3) centimeters diameter are marked, 
which must contain the actual deformation locations for the 
process to be validated. When marked with paint, these 
regions later on, serve as visual guides for the factory 
associates who perform the repairs. 

 
                           (a)                                                          (c) 
Figure 4.  (a) Manipulator robot with different tools: (b) compliant stamp, 

(c) LED pointer/sprayer 

III. SYSTEMS INTEGRATION 
For the robot to properly follow the moving panel, an 

inter-calibration between the SSPME and the robot base is 
required. It is achieved with the help of a checkerboard 
pattern that can be attached to the robotic gripper. While the 
robot is driven to 15 predefined configurations, the 
checkerboard corners are simultaneously acquired in the 
reference frames of the robot base and of the SSPME. The 
resulting sets of 3D coordinates are used to compute the rigid 
transformation QCamR/Base, using the procedure proposed by 
Arun et al. [11]. An explicit description of this 
implementation is presented in [9]. 

A. SLS/SSPME Inter-calibration 
For transferring the 3D locations of the defects from the 

SLS reference frame, where the deformations are identified, 
to that of the SSPME, which tracks the panel and guides the 

robot, a second inter-calibration procedure is performed. In 
the simplified case where the SLS is installed in the same 
work cell as the SSPME, the inter-calibration based on the 
manipulated checkerboard that is described above can be 
applied. 

In order to design a flexible solution that can be adapted 
to a wide variety of industrial configurations, a calibration 
technique is proposed for the more general scenario where 
the deformations detection and the robotic marking stages do 
not share the same workspace, which preempts the 
acquisition of the same feature points by the two different 
vision systems at the same time. Furthermore, the pose of the 
automotive part with respect to the SLS is likely to exhibit 
considerable variations when compared to its attitude relative 
to the SSPME. The differences mainly originate from the 3D 
surface imager performing the scanning operation from a 
shorter distance to the object, in order to optimize the 
accuracy of the model, which is critical for identifying tiny 
deformations. Conversely, the SSPME is positioned 
approximately 3m away from the panel in order to maximize 
the section of the assembly line over which the moving panel 
appears in both stereo views. 

In order to accommodate these constraints, an original 
solution is proposed that makes use of the few MFs pre-
selected over the structure of the automotive parts. The MFs 
pre-selection and refinement process, performed in the 
robotic tracking and marking station, is extrapolated to the 
3D scanning and deformations detection stage, as the SLS 
also relies on a higher resolution and calibrated stereoscopic 
sensor. Under this framework, the installation engineer also 
selects the location of the MFs, only once, in the left view of 
the SLS, when configuring the system to inspect a specific 
type of automotive panels. Then, as the inspection cycle is 
reiterated on a subsequent panel, the set of MFs is 
automatically re-initialized [8]. Subsequently, the feature 
correspondence between the two stereo-views is guided by 
the pyramidal LK tracker [7], and refined with the Shi and 
Tomasi corner detector [6]. Based on the computed 
correspondences and the full calibration of the SLS, a linear 
triangulation [12] is used to recover the 3D position of the 
MFs at re-initialization. Nevertheless, the subsequent panels 
can exhibit slight variations in their pose with respect to the 
SLS without compromising the detection of the MFs. The 
refined MFs in the image acquired by CamLSL during the re-
initialization procedure for the car door are illustrated in Fig. 
5a.  Figure 5b shows the MFs refined in the frame acquired 
by CamRSL and the epipolar lines corresponding to the MFs 
extracted in CamLSL’s frame. 

Unlike the inter-calibration performed between the 
SSPME and the robot base, the inter-calibration between 
CamLSL and CamR is executed on-line, for every inspected 
object, once the MFs set is re-initialized in the views of the 
SSPME, after the completion of the deformations detection 
cycle for that specific automotive part. The choice of a 
recurrent inter-calibration is supported by two factors. First, 
a higher flexibility is provided to the defects detection 
station, in that the SLS can modify its pose during the 
inspection phase. Second, the inter-calibration only relies on 
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a limited number of MFs (NMF=10 in the case of the car door 
and fender), and takes only a few milliseconds. 

 
                                                          (a) 

 
                                                          (b)  
Figure 5.  (a) MFs in CamLSL, (b) MFs and their associated epipolar lines 

in CamRSL.  

The 3D MFs point cloud reconstructed in the SLS 
reference frame (CamLSL), together with the 3D MFs set 
recovered at re-initialization with respect to CamR, are used 
as inputs to the least-squares motion estimation approach 
proposed by Arun et al. [11]. Thus, the transformation 
matrix 

SLCamL /CamRQ is computed and the 3D MFs, recovered 
in the SLS reference frame, are transferred in the SSPME 
reference frame. 

With the purpose of evaluating the performance of the 
inter-calibration procedure, an analysis of the estimation 
error is performed on a set of 30 running scenarios involving 
various attitudes of the two automotive panels, used in the 
experimentation, with respect to the SLS, and the SSPME, 
respectively. The proposed analysis examines the maximum 
of the absolute error, | |M ε , and the RMS error, RMSε  , 
between the reconstructed and estimated 3D MFs region. 
The reconstructed MFs, 

CamR
iMF , i=0, ···,NMF-1, are 

recovered by employing the linear triangulation technique 
[12] on the feature correspondences computed in the views 
of the SSPME [8]. Conversely, a MF defined in CamLSL 
reference frame, SLCamL

iMF , i=0,···,NMF-1, can be estimated in 
CamR reference frame, according to the equation: 

            
SL

est SL

CamR CamL~ ~

i iCamL /CamRMF Q MF= ⋅                 (1) 

in which 
SL

est

CamL CamR~ ~

i iMF ,MF are expressed in homogenous 
coordinates. Then, the estimation error, ε , is an NMF-
dimensional array of coordinates, whose tri-dimensional 
elements are given by: 

                       est

CamR CamR
i ii MF MF .ε = −                          (2) 

Then, the maximum and RMS errors are: 
                               

MF
| | ii 0, ,N

M maxε ε
=

=                            (3) 

                                 2
RMS E( )ε ε=                               (4) 

with 2E( )ε being the mean value of the squared estimation 
error vector. Fig. 6 compares the 3D MFs area, reconstructed 
in CamR reference frame, with the estimated MFs region, 
computed with (1) at the end of the inter-calibration 
procedure, under a scenario involving the car door model. 
Also, Table I shows the results obtained for the two error 
metrics, | |M ε and RMSε , averaged over the 30 tested 
scenarios. 

 
Figure 6.  Reconstructed (continuous line)/estimated (discontinuous line) 

3D MFs area. 

One can observe that the maximum magnitude of the two 
averaged error measures, computed in the reference frame of 
CamR, shown in Fig. 2, is obtained along the Z component, 
followed by a slightly lower error on the X component. The 
cause of these deviations is three-fold. First, the 3D positions 
of the MFs are not extremely accurate, as they are affected 
by the precision of the calibration data, the stereo 
correspondence and the triangulation process [12]. Second, 
the considerable difference in the resolution of the cameras 
used by the SLS (1392x1040 pixels) and that of the SSPME 
cameras (640x480 pixels) also introduces a drift between the 
exact location of the MFs within the inner and outer frame of 
the door’s opening. Finally, the procedure used for 
estimating the rigid transformation, 

SLCamL /CamRQ builds upon 
a least-squares approach, thus actively contributing to the 
error measures shown in Table I.  

However, the accuracy provided by the proposed MFs-
based inter-calibration is acceptable for the integration of the 
3D deformations detection block with the autonomous 
robotic marking station, as the computed displacement errors 
in Table I are within 2cm, that is the precision needed for the 
marking operation. As a result, the developed inter-
calibration meets the requirements of the industrial 
application considered, whose final objective is for the robot 
to mark the deformation area, and not necessarily its 
centroid. 

The averaged errors reported in Table I could be reduced 
by means of a higher accuracy calibration apparatus, such as 
a coordinate measuring machine (CMM), but at the price of 
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reducing the speed and flexibility of the inspection station 
and the ease of configuration for non-expert factory 
engineers. 

TABLE I.  ERROR ANALYSIS OF THE SLS/SSPME INTER-
CALIBRATION. 

Averaged maximum 

absolute error | |M ε (cm) 
Averaged root mean squared 

error RMSε (cm) 

X
| |M ε  Y

| |M ε  Z
| |M ε  X

RMSε  Y
RMSε  Z

RMSε  

1.63 0.89 2.01 0.86 0.45 1.16 
 
The proposed inter-calibration procedure can also be 

extended to cases where the 3D scanning over the panels is 
performed with higher accuracy laser metrology range 
sensors. The same feature extraction approach can be 
extrapolated to the corresponding 3D images, and upon the 
detection of the MFs in 2D image generated from the 3D 
model, their associated 3D points can be easily detected. As 
a result, the proposed MFs-based inter-calibration represents 
a general and viable alternative, which supports both the 
division of the two components of the inspection station, as 
well as the selection of different technologies for the 3D 
scanning of the panel. 

B. Robotic Marking Tool’s Pose Calculation 
The robotic manipulator is directly guided toward the 

detected locations of the deformations while relying on the 
two inter-calibration estimations. For the identified defects, 
which are represented by three dings on the car door model 
in one of the conducted experiments, as shown in Fig. 7, the 
3D contact point with the smallest depth with respect to 
CamR is extracted. 

 
Figure 7.  3D mesh of Ding2 along with the interpolated plane translated 

on the contact point. 

Apart from the location of each detected deformation, the 
orientation of the marking tool, with respect to the panel’s 
surface in the area that the robot needs to mark, is also 
estimated. A least-squares interpolation of a plane is 
computed from the set of all 3D points belonging to the 
detected deformation, after applying the inter-calibration 
discussed in Section III.A. The resulting interpolated plane 
for Ding2, which is translated on the contact point of this 
defect, is illustrated in Fig. 7. A supplementary reference 
frame, OV, is attached to the computed plane, whose origin is 
defined by the contact point of the deformation area, with the 

XV and YV axes parallel to the interpolated plane vectors and 
the ZV axis pointing out of the plane, perpendicularly to the 
local surface patch. 

The 3D vectors forming the axes of OV are normalized to 
form a rotation matrix which defines the rigid transformation 
from CamR to the robot’s tool, QTool/CamR. The translation 
component of QTool/CamR is defined by the position of the 
contact point with respect to CamR. Finally, the 
transformation defining the pointing pose of the tool with 
respect to the base of the robot, QTool/Base, such that the 
marking operation can be performed, is defined by: 
                Tool/Base CamR /Base Tool/CamRQ Q Q .= ⋅                  (5) 

IV. EXPERIMENTAL VALIDATION ON MOVING PANELS 
This section expands the proposed framework for 

operation on moving panels and presents the results of the 
experimental validation of the on-line marking of defects 
using motion prediction and a paint spraying methodology. 

Preliminary tests which preceded the marking operation 
relying on a spraying gun methodology were conducted with 
a contact-based marking approach. However, the accuracy of 
the complete system, originating from the limited resolution 
of the SLS (which causes a slight bias in the exact location of 
the defects) [9, 10] and the precision of the PME coupled 
with the two inter-calibrations, demonstrated the difficulties 
associated with a contact-based marking strategy, due to 
variations in the attitude of the tool center point (TCP) with 
respect to the deformation areas during the motion cycles of 
the panel [8]. The variations in the depth component of the 
TCP, programmed to stamp the contact points of the defects, 
and measured with respect to OB, had an average magnitude 
of 2.25cm, which could not be accommodated by the 
implementation of the spring loaded stamping tool. Such a 
performance was expectable given that the passive 
stereoscopic sensor located approximately 3m away from the 
panel is the only source of information available for the 
PME. However, the current stereo-vision sensor can be 
complemented with an additional proximity sensing device 
that can be mounted on the robotic gripper in order to 
supervise the close interaction with the moving panel, when 
performing the contact-based defects marking operation. 

On the other hand, the limited ranges over which the 
depth components vary throughout the motion cycles still 
support the use of inexpensive passive stereoscopic sensing 
within an on-line robotic marking architecture that relies on a 
spraying gun marking methodology. With the latter, the 
robot does not need to physically touch the moving object 
since a minimal distance needs to be preserved between the 
spray gun and the deformation area. This strategy, which 
appears to be more adequate and fault-tolerant, also satisfies 
the objective of the proposed robotic application, which is to 
mark the region that contains the deformation within a few 
centimeters accuracy, without requiring complex sensing 
architectures. 

A. Robotic Interaction with Motion Prediction 
In order to ensure sufficient accuracy for on-line robotic 

marking, a motion predictor is embedded in the PME. Apart 
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from the trivial situation where the assembly line is straight 
and operates at constant speed, the design of the motion 
prediction system also provides robustness to speed 
fluctuations and curved sections of the assembly line. The 
latter result in rotations around the Yo axis of the panel, as 
represented in Fig. 2. To provide this level of flexibility, the 
prediction system builds upon a one-step motion 
extrapolation methodology. Therefore, the prediction process 
monitors the rigid transformation characterizing the motion 
exhibited by the panel between two extracted frames, for 
instance at time ti and ti+1, assuming piecewise continuous 
displacement. This motion estimate is applied on the 3D 
points corresponding to the detected deformations in order to 
update their location at time ti+1. This rigid transformation is 
actually applied twice, in order to also predict the position of 
the deformation points at time ti+2, when the spraying 
operation will happen. 

The precision of the prediction method was tested with 
respect to the robotic station, in order to evaluate the effects 
of the complete PME, coupled with the two inter-
calibrations, on the prediction error. For these tests, a 
scenario in which the sled system was positioned 
approximately perpendicular to the principal axis of the 
SSPME was considered. A frame extraction rate of 
fextr=0.5Hz was set for the PME, and the velocity of the PC-
operated sled system fluctuated in the interval [1.2cm/s, 1.6 
cm/s]. The total duration of the motion cycle was texp=36s, 
whereas the prediction module was triggered after the 
estimation of the first rigid transformation characterizing the 
motion exhibited by the panel between the first two 
subsequent frames. The predicted and estimated locations of 
Ding2, formed the trajectories shown in Fig. 8a, expressed 
with respect to OB. Fig. 8b illustrates the X, Y and Z 
components of the prediction error, computed as the 
difference between the estimated and predicted 3D positions 
of Ding2. As it can be noticed from Fig. 8b, the Y and Z 
components of the prediction error are inferior to ±2mm, 
whereas the maximum absolute value of the X components 
of the displacement error is 9.67mm. This deviation on the 
predicted depth component can easily be accommodated by 
the robotic marking system when an LED-pointer or paint 
spraying gun is used rather than an actual contact-based 
stamping operation. 

Fig. 9 illustrates the block diagram of the on-line robotic 
operation for spraying deformation defects. Starting from the 
“home” position, the robot is guided to the pre-contact point 
of the first defect, which shares the same Y and Z 
components of the contact point (with respect to OB), while a 
reserve of 20cm is extracted from the X component in order 
to maintain the necessary distance between the spray gun and 
the surface to be marked. At each frame extraction of the 
PME, the transformation QTool/Base, for the current defect, is 
computed and appended to a data buffer. Once the prediction 
procedure is triggered, the manipulator robot is driven to the 
predicted location of the pre-contact point of the first defect. 
In the situation in which the robot reaches the imposed 
location before the next frame extraction, it remains in that 
position in order to perform the spraying operation.  

 
                                               (a) 

                        
(b) 

Figure 8.  (a) Estimated/predicted trajectory of Ding2, (b) X, Y, Z 
components of the prediction error. 

 
Figure 9.  On-line defects spraying operation. 

Thus, the triggering of the next frame extraction 
coincides with the moment at which the spraying occurs, and 
the index of the defects, i, is incremented. Conversely, if in 
the interval over which the robot reaches the predicted 
location, a new set of frames is grabbed by the SSPME, the 
robot waits for the next prediction data and the same course 
of action is performed, as illustrated in Fig. 9. This procedure 
is executed until all the detected deformation defects have 
been marked. Then, the manipulator robot is driven back to 
its “home” position and the PME is stopped.  

61



Some samples of images acquired during various testing 
scenarios, associated with different attitudes of the car door 
with respect to the SSPME, are shown in Fig. 10. One can 
see that the projected light falls over the deformation regions 
in all cases, although the stereo-views are affected by the 
occlusions caused by the manipulator robot, or the sporadic 
appearance of a person. Moreover, the results illustrated in 
Fig. 10c and 10d, which are extracted from two scenarios in 
which the sled system was slightly rotated around the Yo 
axis, as shown in Fig. 2, demonstrate the capability of the 
proposed solution to handle usual situations where the 
assembly line contains a curved section, as imposed by space 
limitation in factory environments. In the circumstances 
depicted in Fig. 10, with three detected deformations, the 
total duration of the robotic spraying procedure, as measured 
from the beginning of the prediction cycle, took 
tmark_door=10s.  

 

 
                                                            (a) 

 
                                                (b)  

 
(c) 

 
                                                     (d)  

Figure 10.  On-line robotic spraying operation on car door with robot 
occlusion and personnel movement. 

In order to validate the generality of the proposed on-line 
robotic spraying operation, the procedure illustrated in Fig. 9 
was also applied on a car fender, shown in Fig. 3b, for which 
the MFs need to be defined differently from those of the car 
door. Without loss of generality, the experiments with the 
fender were only conducted relative to the robotic tracking 
and marking station. Fig. 11a displays the deformation 
regions, which were identified from a visual inspection of the 
fender. Moreover, the relative distances between the 
locations of these deformations and the closest MF, were 
measures off-line, according to the reference frame of the 
SSPME, CamR. 

 
(a) 

 
                                                    (b) 

 
                                               (c) 

 
                                                           (d) 

Figure 11.  (a) Detected defects over the fender, and results of the on-line 
robotic spraying operation on: (b) Defect2, (c) Defect3, (d) Defect4. 
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Subsequently, during the first 3D reconstruction 
procedure, performed by the PME, the locations of the 
corresponding 3D points were determined, using the relative 
measurements. These 3D points constitute the replica of the 
data provided by the defects detection station, coupled with 
the SLS/SSPME inter-calibration. Fig. 11b-d show some 
samples acquired during the on-line robotic spraying 
operation, from which, one can see that the projected light 
falls over the defect regions. In this case, the total marking 
operation took tmark_fender=15s for four deformations.  

The maximum number of deformations that can be 
marked is inversely proportional to the relative distance 
between the defects over the surface of the automotive panel. 
For example, in cases where the defects share a similar 
relative distance as for the dings on the car door model (i.e. 
around 30cm), a maximum number of 9 deformation regions 
can be sprayed, with the current prototype. 

Defining the maximum number of defects that can be 
marked must take into account several factors, such as the 
field of view of the SSPME, the computational complexity 
of the PME and the SLS/SSPME inter-calibration, the 
maximum velocity of the manipulator robot, the distance 
between the robot’s home position and the first defect, and 
finally, the relative distances between the defects. Therefore, 
as soon as an upper bound is defined for the maximum 
number of possibly detectable deformations over a single 
panel, a trade-off is to be performed between all the above 
mentioned factors, in order to obtain the most efficient 
solution. 

V. CONCLUSIONS AND FUTURE WORK 
This paper described an autonomous robotic system for 

marking undesired surface deformation defects over moving 
automotive panels characterized by very few apparent visual 
features. In order to integrate two separate stations for 
defects detection and robotic marking within a unified 
platform, an original inter-calibration technique has been 
proposed. The latter is performed on-line, supports the 
duality of the two stations and does not require a calibration 
target as it uses a low number of structural features already 
embedded in the inspected object. In order to perform the 
defects marking operation on moving panels, a robotic 
prototype relying on a spraying gun end-effector has been 
designed. Extensive experimental validation demonstrated 
that satisfactory accuracy and generality can be achieved 
with this solution, while relying only on visual servoing data 
provided by passive stereoscopy. 

For future work, a more robust kinematic module can be 
embedded in the motion prediction system. The latter can 
incorporate a Kalman filter leading to a higher level of 

generality for the robotic marking station, which will allow 
for a wider range of motion patterns exhibited by the 
automotive panel. 
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