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Abstract 

 
The paper discusses a novel unsupervised learning 

approach for tracking deformable objects manipulated 
by a robotic hand in a series of images collected by a 
video camera. The object of interest is automatically 
segmented from the initial frame in the sequence. The 
segmentation is treated as clustering based on color 
information and spatial features and an unsupervised 
network is employed to cluster each pixel of the initial 
frame. Each pixel from the clustering results is then 
classified as either object of interest or background 
and the contour of the object is identified based on this 
classification. Using static (color) and dynamic 
(motion between frames) information, the contour is 
then tracked with an algorithm based on neural gas 
networks in the sequence of images. Experiments 
performed under different conditions reveal that the 
method tracks accurately the test objects even for 
severe contour deformations, is fast and insensitive to 
smooth changes in lighting, contrast and background.  
 

1. Introduction 
 

The analysis of image sequences is a basic task in 
many computer vision applications. The increasing 
need for fully automated video analysis algorithms and 
the availability of good quality and relatively cheap 
video cameras has generated lately a lot of interest in 
the topic of object tracking. Object tracking involves in 
general three steps: the segmentation of moving 
objects in an image, the tracking of such objects from 
frame to frame and the analysis of object tracks in 
order to evaluate their behavior. Many approaches 
have been explored for both color image segmentation 
and object tracking. Among them, neural network 
based solutions have received considerable attention 
due to the fact that these methods are usually more 
effective and efficient than traditional ones [1]. The 
object segmentation problem can be viewed as a 
clustering problem in a feature space derived from the 
color and motion information and therefore is well 

suited for unsupervised modeling approaches. 
Unsupervised learning is in general preferred to 
supervised learning because the latter requires a set of 
training samples, which may not be available, 
especially when the image features are unknown or 
when a certain degree of automation is desired.  

There are various neural network-inspired solutions 
proposed for the segmentation of objects based on 
color from images. One approach is to classify image 
pixels into object of interest (or foreground) and 
background. Maddalena and Petrosino [2] use a self- 
organizing network for background and foreground 
modeling from video sequences in which for each 
image pixel a neuron map is built based on its color 
components and the information stored in each pixel is 
updated only if its best matching weight vector is close 
enough to the background model based on a 
predefined distance; otherwise the pixel is considered 
as belonging to a moving object. A similar idea is 
employed by Luque et al. [3], who design an 
unsupervised competitive neural network to serve as a 
classifier of pixels as background or foreground in a 
video sequence of traffic surveillance. Both of these 
procedures are costly in computation time as they 
require a pixel-by-pixel processing of each frame.  

Another approach for object segmentation from 
images uses color information. A hierarchical two-
stage self-organizing network is employed in [4] to 
segment images based on color, where the first stage 
deals with the unsupervised grouping of input color 
image pixel values in order to identify groups of 
typical colors and the second stage determines the 
dominant colors from the group of typical colors. Jiang 
et al. [5] perform image segmentation based on a self-
organizing map having as input five-dimensional 
feature vectors (representing the x, y coordinates of a 
pixel and its RGB values). The result is further refined 
with a gliding window; if an isolated pixel is detected 
in the gliding window, its associated class is 
substituted by the most frequent class that occurred in 
that window. Blocks with the least number of pixels 
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are incorporated into their largest neighboring block 
and also blocks with the least mean of RGB values are 
merged into their nearest neighboring block. Dong and 
Xie [6] propose a system for color image segmentation 
that employs both unsupervised and supervised 
segmentation. For the unsupervised segmentation, the 
LUV color components of an image are projected into 
a small set of prototypes using a self-organizing map 
from which optimal clusters are found using simulated 
annealing. The supervised segmentation includes color 
learning and pixel classification. All of these solutions 
are limited because the network parameters (most 
importantly the network size) are determined 
heuristically, the number of clusters in which the 
image is divided is set a priori and it is not obvious 
how to select these parameters for a certain image and 
color. 

After the identification of the object of interest, the 
aim of an object tracker is to generate the trajectory of 
the object in time by locating its position in every 
frame of the video [7]. Several neural network 
solutions have been proposed for tracking of rigid 
objects in image sequences. Luque et al. [8] track rigid 
objects (e.g. cars in traffic sequences) with a growing 
competitive network. Each object in a scene is 
assigned to a neuron, and that neuron represents and 
identifies that particular object. Neurons are added or 
deleted when new objects enter or exit the scene. In 
[9], the authors apply a variation of growing neural 
gas, to track basic circular computer-generated rigid 
objects in video sequences. Rodriguez et al. [10] use 
the topology of a growing neural gas network to 
determine the posture of a hand in an image sequence, 
and the adaptation dynamics of the same neural 
network in time to determine the gesture performed by 
the hand. Angelopoulou et al. [11] describe contours 
of hands by an active growing neural gas network 
where each node of the network is described by its 
geometrical position, the underlying local feature 
structure of the image, and the distance vector between 
the reference image and any successive images. An 
unsupervised solution for tracking of the outer 
boundary of the lips in an image sequence is proposed 
in [12]. The mouth contour is determined based on 
skin color and spatial knowledge (location in the lower 
half of the detected face). The lip motion is tracked by 
a time adaptive self-organizing map [13], a modified 
self-organizing map network where each neuron has an 
individual learning rate and neighborhood. Apart from 
the last solution, all the other ones refer to rigid object 
tracking and cannot be adapted to deformable object 
tracking. Some are limited by factors such as uniform 
uncluttered backgrounds and some by their ability to 
handle grey level images only.  

In order to enable the automatic recuperation of 
elastic parameters and/or the learning of elastic 
behavior of deformable objects that would allow for 
their manipulation using robotic hands, research can 
greatly benefit from the development of automated 
segmentation and tracking procedures for such objects. 
The work proposed in this paper is a continuation of 
our research on the topic of 3D deformable object 
sensing and modeling. In [14] we have successfully 
modeled the elastic behavior of a deformable object as 
a complex relationship from measured forces to 
deformation profiles (captured by a laser range finder) 
using neural networks. The work in this paper aims at 
improving the accuracy of the elastic behavior 
modeling by capturing the full contour of the object 
during deformation, not only a single deformation 
profile. While the paper addresses the problem of 
automatic deformable object segmentation and 
tracking in image sequences, it aims further than the 
classical segmentation/tracking solutions. The neural-
network solution proposed does not only segment and 
track, but also models the elasticity of the object, by 
correlating measured forces at the level of the robotic 
fingers with the deformation. As such, it generates 
maps toward the learning and recognition of the nature 
of an object’s elastic behavior. Such a description will 
be useful to control the hand during manipulation of 
deformable objects. It is also important to mention that 
the experimentation takes place in a relatively 
controlled environment. The accent is on a fast 
algorithm that is insensitive to smooth changes in 
lighting, contrast and background. The solution does 
not have to deal with multiple moving objects and 
severe changes in the environment, but rather with 
accurately tracking severe contour deformations. 

The proposed solution for color-based segmentation 
relies on an unsupervised ontogenic network that is a 
network that builds by itself, by incrementally adding 
node by node to a neural map. In this way the 
constraint imposed by the fixed map size of standard 
unsupervised networks (e.g. self-organizing maps) is 
eliminated. Moreover, the adaptation parameters of the 
network are constant, therefore eliminating the need 
for selecting them heuristically. The tracking is also 
based on a neuro-inspired algorithm that models the 
contour of a deformable object. In other words, the 
model predicts the new position of its neurons and 
readjusts their position to map this contour. This 
adaptation is executed automatically as well. The 
solution proves to be fast and robust against severe 
contour deformations, smooth changes in lighting, 
contrast and background. 
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2. Proposed framework 
 

The proposed approach for deformable object 
segmentation and tracking can be summarized as 
follows: the object of interest is automatically 
segmented from the initial frame in a sequence of 
images. The segmentation is treated as clustering based 
on color information (HSV color components) and 
spatial features (x, y coordinates of each pixel). The 
HSV color space is chosen because it represents better 
the color similarities and is able to better identify 
pixels on the same surface in spite of some differences 
between their colors due to non-uniform illumination 
or shading effects. An unsupervised ontogenic 
network, namely a growing neural gas [15], is 
employed to cluster each pixel of the initial frame. The 
clustering results are then classified as one of two 
categories: object of interest or background based on 
the mean HSV value. The contour of the object is 
identified based on this classification and a second 
growing neural gas is applied this time to represent the 
position of each point over the contour. This compact 
growing neural gas description of the contour is then 
used as an initial configuration for a sequence of 
neural gas networks that will track the contour in the 
image sequence. To speed up the procedure, the 
training takes place only for those frames where a 
motion occurs with respect to the previous frame. 
 
2.1. Deformable object segmentation 
 

A growing neural gas (GNG) is employed to cluster 
each pixel of an HSV coded image. The growing 
neural gas algorithm can be described as follows [15]: 
For each input vector presented to the network, two 
best matching nodes are selected, whose weights are 
the closest to the input, based on their Euclidean 
distance. A neighborhood connection is created 
between them if the connection does not already exist 
and its age is set to 0. The position of these nodes and 
the ones of the topological neighbors of the winner 
unit are updated such that they better fit the input. All 
edges that are not used increase in age and if the age 
exceeds a threshold, the corresponding edges are 
deleted. Any node that has no edge connection is 
removed as well. After a defined number of iterations, 
a new node is added to support the node that has 
accumulated the highest error in the previous steps. 
The new node is placed between the node with the 
highest error and one of its neighbors that has the next 
highest error. A global decrease of errors is then 
performed. The algorithm continues until some 
stopping criterion is met. The full mathematical 
formulation is presented in [15]. 

 In the context of this work, the growing neural gas 
network receives as input a vector of the form X = 
{x1,…,xn}, with xi being a five-dimensional vector of 
the form [Hi, Si, Vi, Xi, Yi], with i = 1…n, where n 
represents the number of pixels in the image.  The 
input vector X is therefore a set of given HSV color 
coded pixels together with their coordinates in an 
image. The inclusion of the coordinates of the pixels in 
the image aside from the color information improves 
the clustering results by providing spatial information 
on the position of the pixel without adding 
computational burden. The computation time is 
proportional to the number of adaptation steps and not 
to the size of the input vector. However, it is worth 
mentioning that generally the clustering results depend 
more on the first components of the input vector. The 
addition of too many inputs will not bring 
improvements in the learning procedure on the 
contrary it might lead to larger errors in the clusters. 
The growing neural gas maps the X input on a smaller 
array of nodes M such that pixels with similar color 
and position in X are projected to nearby nodes in M. 
Initially M is empty. The growing gas algorithm adds 
supplementary nodes into the network structure at the 
position where the accumulated error is the highest, 
and when the number of learning iterations performed 
is an integer multiple of some predefined value. The 
growth of the network is terminated when a predefined 
stopping criterion is met (e.g. a minimum error is 
reached). M has the same form as X, M = {m1,…, mr}, 
mj = [Hj, Sj, Vj, Xj, Yj], with j = 1...r, with r < n. 
 

a) 

b) 
Figure 1: a) Example of distribution of HSV 
color values in the HSV color space, b) the 
corresponding growing neural gas map, M. 
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 Figure 1a shows an example of an initial 
distribution of HSV color values in the HSV color 
space, while Figure 1b shows the corresponding map 
M obtained when the color coded HSV values in 
Figure 1a and the spatial coordinates of the 
corresponding pixels are presented to a growing neural 
gas network. The X and Y dimensions are also taken 
into account during clustering, but are not displayed 
explicitly due to the limitation of graphical display in 
five dimensions.  

In order to segment an object or multiple objects 
with similar color in a selected image, M is split into 
two clusters: foreground (object(s) of interest) denoted 
Cf  = {m1,...,mrf}, where mf belong to M with f = 1...rf, 
and background, denoted Cb = {m1,..,mrb}, where mb 
belongs to M, with b = 1...rb and rb + rf = r. The 
classification is based on the knowledge that generally 
the background is darker in color than the object of 
interest (the distinction can be made based on the mean 
HSV value). If this assumption doesn’t stand up, a 
swap of the two clusters can be performed to ensure 
that the algorithm works correctly. Figure 2 presents 
the foreground (denoted by circles) and background 
(denoted by dots) for the growing neural gas map M in 
Figure 1b. In order to select the color of interest, which 
is the color of the object to be segmented, the mean is 
computed for all HSV values in the foreground cluster 
Cf, Oc = mean (Hk,Sk,Vk), with k = 1…rf. The mean 
HSV value, Oc, for the object in the presented example 
is marked with a larger square in Figure 2.  

 

Figure 2: Identified background (dots) and 
object (circles) clusters in the HSV space,  

and mean HSV color (larger square). 

The procedure is applied only on the first frame of 
the sequence. The identified HSV color code Oc is then 
searched in the initial image and over all images in the 
sequence where movement occurs. All pixels with the 
mean HSV color code or a very similar code (within a 
tolerance level) are replaced with 1 and the rest with 0 
to segment the object of interest. The tolerance level 
allows for the fine tuning of areas on the object surface 
with different lighting conditions and around the object 
edges that are usually perceived darker because of the 

shadow effect. A median filter is finally applied on the 
result to reduce isolated patches of color. 

2.2.  Deformable object tracking 

2.2.1. Contour identification in the initial frame.   
The initial image is down-sampled in order to speed up 
the color identification procedure and is transformed to 
HSV color coding. The procedure in Section 2.1 is 
applied to obtain the color of interest and this color is 
replaced with 1s and the background with 0s in the 
initial frame. The contour of the object is then 
identified in this resulting binary image with the Sobel 
edge detector and a second growing neural gas is 
applied this time on the two-dimensional vector that 
represents the position of each point in the contour, Xc 
= {xc1,…,xcn}, with xci = [Xi, Yi], i = 1…cn. The main 
purpose of this network is to detect the optimum 
number of points (stored in MGNG) on the contour that 
accurately represent its geometry. Based on the 
identified HSV value and on the dynamic information 
in form of motion between frames in the sequence, this 
compact representation of the contour of the object 
obtained by the second growing neural gas is tracked 
with an algorithm based on a third neural architecture, 
namely the neural gas, in the sequence of images. 
 
2.2.2. Contour tracking with neural gas. The main 
purpose of neural gas (NG) networks [16] is to cluster 
multi-dimensional vectors. It consists of nodes which 
independently move over the input data space while 
learning. The algorithm starts by initializing the set of 
network nodes with a predefined number of units 
whose corresponding reference vectors are chosen 
randomly according to a probability density function 
or from a finite set. Each unit has an associated 
reference vector that indicates its position in the input 
space. At each training step, the winning neuron that 
best matches an input vector is identified using the 
minimum Euclidean distance criterion. The neurons to 
be adapted in the learning procedure are selected 
according to their rank in an ordered list of distances 
between their weights and the input vector. A full 
description of the algorithm is available in [16].  

In the context of the present work, the neural gas is 
employed to track the contour of an object from a 
sequence of images by predicting and readjusting the 
position of its neurons to follow the contour. Similar to 
the second growing neural gas described above, it 
receives as input vectors xci of the form [Xi, Yi], i = 
1…cn. It starts with an initial configuration of nodes, 
in this case set to the initial contour points obtained 
using the growing neural gas (from MGNG). These 
nodes move over the data space during adaptation and 
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the model contracts asymptotically towards the points 
in the input space, taking the shape of the contour.  

While somewhat similar to growing neural gas, the 
main difference is the fact that the number of nodes in 
the output map MNG of the neural gas is predefined. In 
this case they are set equal to the number of points in 
MGNG. In the context of this application, as the 
optimum number of points to represent the contour is 
known (from the initial frame analyzed with the 
growing neural gas) the proposed algorithm will use 
this number of nodes to track the contour over the 
image sequence. The use of a fixed size network, with 
a predefined number of nodes ensures a unified 
representation of the contour in all frames and makes 
easier the study of the trajectory of points in the 
contour as each point can be referred to its previous 
position. As well, the capability of the network to start 
with a set of predefined positions allows the tracking 
algorithm to always continue from the shape of the 
contour in the previous frame. Therefore it increases 
the speed of the training procedure as the movement is 
in most cases smooth from one frame to the other.  
 
2.2.3. Tracking over a sequence of images.  At the 
time a new frame is presented to the algorithm, an 
intensity difference is computed between the gray-
scale representation of the new frame and the previous 
one. The purpose is to identify if motion occurred in 
the scene. This motion can be either the result of the 
manipulation of the object which leads to its 
deformation, or the result of some external factors, 
such as a change in the background. To capture 
deformations of the object of interest, the frame is 
transformed to HSV color coding and the object of 
interest and its contour are identified based on the 
mean HSV color as identified from the first frame. A 
neural gas network (initialized with the contour of the 
object in the previous frame) is used to predict the new 
position of its neurons and to readjust them to fit the 
new contour. This new contour will be used to 
initialize the next neural gas network in the sequence 
when a new frame in which motion occurs is presented 
again to the algorithm. The procedure is repeated until 
the last frame of the sequence.  

By computing intensity differences between 
frames, the proposed solution can handle smooth 
changes in the contrast and lighting conditions. 
Moreover, due to the fact that the algorithm searches 
for the color of interest in the frame each time a motion 
occurs, the proposed solution can also handle cluttered 
and moving backgrounds as long as it does not 
interfere with the mean HSV color of the object.   

3. Experimental Results 
 
In order to validate the proposed modeling 

framework, experimentation was conducted on a set of 
deformable objects with different shapes and made 
from different materials (namely a round foam ball, a 
oval rubber ball and a rectangular foam sponge and a 
long foam sponge) manipulated with a 3-fingered 
Barrett robotic hand, as shown in Figure 3a-d. The 
deformations of the object as a result of the interaction 
with the robotic hand’s fingers are recorded in a series 
of image sequences collected with a camera located 
perpendicularly over the object. 

 

a) b) 

c) d) 

Figure 3: a) Round foam ball, b) oval  
rubber ball, c) rectangular foam  

sponge, and d) long foam sponge. 

The color-based segmentation steps for the initial 
frame in case of the round foam ball in Figure 3a are 
illustrated in Figure 4. The distribution of HSV values 
in the HSV color space, the growing neural gas map, 
its division into foreground and background and the 
mean HSV value of the object’s color are shown in 
Figures 1 and 2. Figure 4a shows the down-sampled 
image of the round foam ball by 50%, from 160×160 
pixels to 80×80 pixels in the window of interest. 
Figure 4b shows that by only replacing the color of 
interest with 1 and the rest of the image with 0, the 
result is rather rough and sensitive to non-uniform 
lighting conditions and shadow effects. Several parts 
of the object that are slightly darker are erroneously 
classified as background. The inclusion of a tolerance 
brings an improvement in the results obtained, as 
illustrated in Figure 4c. The tolerance is the maximum 
distance for each component of the HSV coding from 
the mean HSV code that identifies the color of interest. 
Overall, for all the examples presented, the level of 
tolerance is set to low values (less than 0.09 for H and 
S values and less than 0.02 for the V values). Its role is 
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to compensate for slight shading and color variations 
resulting from the lighting conditions and/or shadow 
effects. A median filter is finally applied to reduce 
isolated patches and smooth the edges. The filtered 
image is shown in Figure 4d.   

 

 
a) b) 

 
c) d) 

Figure 4: a) Down-sampled image of round 
foam ball and results obtained b) when 

replacing the color of interest with 1 and 
background with 0, c) when a tolerance level 

of 0.07 for H and S and 0.01 for V value is 
accepted, and d) after median filtering. 

In order show the benefit of using an unsupervised 
neural network to segment an image, the proposed 
method is compared for all the objects under study 
with a standard color-based segmentation. The latter is 
based on mean HSV values computed in a user 
selected frame that samples the object color. The same 
tolerance level and median filtering are applied as in 
the case of the proposed solution. The ground truth is 
obtained by a manual segmentation of the object of 
interest and the average error rate is computed using: 
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where i
owN is the number of pixels that belong to the 

foreground but are wrongly classified as background in 
the i-th frame, i

bwN  is the number of pixels that belong 
to the background but are wrongly classified as 
foreground at the i-th frame, N is the total number of 
pixels in a frame and f is the number of frames in the 
image sequences. The results are presented in Figure 5. 
Apart from being automated, the proposed solution 
shown in blue reaches slightly lower errors than the 
standard color-based segmentation shown in red. 

 

Figure 5: Average error rate for segmentation. 

The image obtained after median filtering (as in 
Figure 4d) is then used to detect the contour of the 
object of interest, as shown in Figure 6a. As seen in 
Figure 6b where the contour is overlapped over the 
initial frame, the contour is accurately identified. The 
growing neural gas model, MGNG, trained to capture 
the contour is shown with red dots in Figure 6c. 

a) b) c) 

Figure 6: a) Contour detection, b) contour 
displayed over the initial frame, and c) 

growing neural gas model marked with red. 

Starting from this model, a series of neural gas 
networks is employed to track the contour of the object 
as it changes under the action of the robotic hand. Each 
neural gas network starts with the configuration of 
nodes from the previous frame in order to minimize the 
movement of nodes during adaptation. This 
assumption is valid as the movement is usually smooth 
from one frame to the other.  

Figures 7 to 10 illustrate different frames and the 
corresponding configuration of tracking points (points 
in MNG, shown with red dots) for each the four test 
objects. It can be seen that the tracker follows 
accurately the contour of each deformed object. As a 
pilot study, the algorithm is tested on the Matlab 
platform running on a Pentium 1.3GHz machine with 
512MB memory. It achieves a speed of between 2 and 
5 fps depending on the speed at which the 
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deformations of the object occur, which impacts the 
frequency of the updates for the neural gas nodes. 
 

  
 

 
Figure 7: Contour tracking on the foam ball. 

  
 

 
Figure 8: Contour tracking on the rubber ball. 

 
2 

 

 

 

Figure 9: Contour tracking on the  
rectangular foam sponge. 

The choice of a fixed size neural gas network 
allows for an easy and fast study of the trajectory of 
the points on the contour between successive frames 
during adaptation. The knowledge of these trajectories 
enables the description of the deformation behavior 
under the force exercised with the robotic fingers. This 
representation provides a solid basis for the 

anticipation of the deformation of the object under 
manipulation. 

 

2

  

  

Figure 10: Contour tracking on the  
long sponge. 

Figure 11 shows a part of the complex trajectory 
that the nodes of the long sponge in Figure 10 follow 
from the first image to the last image in the sequence 
(the sponge is squeezed and released after). The 
movement of nodes occurs from the exterior towards 
the interior contours. The trajectory is marked with 
arrows for only a few nodes not to overload the figure. 
One can observe that the nodes retain their 
correspondence throughout the deformation due to the 
choice of a fixed number of nodes used in the neural 
gas network and that a one-to-one correspondence of 
the points in the trajectory avoids the mismatch of the 
points during the deformation. It also allows for the 
tracking of the lateral motion along the sides of the 
object (that occurs beyond its compression), as 
depicted in the enlarged Figures 11b and c.  

It can be noted that the proposed solution, by 
imposing continuity in the displacement of shape 
points, brings an additional geometrical constraint over 
the object deformation. As such, the technique goes 
beyond a standard color-based approach for tracking. 
Given that contour tracking is dedicated here to 
deformable objects, one cannot rely on other 
information, such as shape constraints for example, 
that could be otherwise used as a basis for tracking. All 
these properties contribute to the advantages of the 
proposed solution over classical and neural-network 
based solutions for segmentation and tracking, and 
provide an approach to estimate the elasticity 
characteristics of an object based on its contour 
deformation when submitted to external forces. 
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a) 

 
 

b) c) 
 
Figure 11: Long sponge: a) trajectory of nodes 
between successive configurations, b) and c) 

parts of enlarged trajectory from a). 
 
4. Conclusion 
 

The paper demonstrates the benefit of using 
unsupervised neural networks for the purpose of 
deformable object segmentation and contour tracking 
in image sequences. It is relatively fast, robust and 
eliminates the constraints of standard unsupervised 
networks with respect to the choice of parameters and 
the predetermined size of the network. As a future 
development, the trajectory of the deformation 
contours obtained by the proposed algorithm will be 
correlated with force data measured at the robotic 
hand’s fingers in order to allow for the description and 
prediction of elastic behavior of objects. Such 
knowledge will enable safe robotic hand manipulation 
of deformable objects. 
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