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Abstract 
 

As an extension to classical structured lighting 
techniques, the use of bi-dimensional pseudo-random 
color codes is explored to perform range sensing with 
variable density from a stereo calibrated rig and a 
projector. Pseudo-random codes are used to create 
artificial textures on a scene which are extracted and 
grouped in a confidence map to ensure reliable feature 
matching between pairs of images taken from two 
cameras. Depth estimation is performed on 
corresponding points with progressive refinement as 
the pseudo-random pattern projection is marched over 
the scene to increase the density of matched features, 
and achieve dense 3D reconstruction. The potential of 
bi-dimensional pseudo-random color patterns for 
structured lighting is demonstrated in terms of patterns 
computation, ease of extraction, matching confidence 
level, as well as density of depth estimation for 3D 
reconstruction. 
 
 

1. Introduction 
 

The collection of 3D data on free-form objects has 
been achieved in several ways. The most accurate 
acquisition method still remains the use of laser range 
sensors. This, however, entails buying highly-priced 
specialized equipment which most of the time allows 
for the coverage of only a limited field of view. A 
second popular method relies on a calibrated 
stereovision setup to perform triangulation on matched 
pairs of feature points. When not relying on a 
complementary structured lighting device, matching 
can only occur on sharp edges and unique textures, 
which results in sparse 3D data about the scene. 
Similarly, dense stereo disparity estimation schemes 
that have been proposed to augment the resolution of 
3D reconstruction from stereo vision without extra 
features projection demonstrated limited performance 
[1, 2]. 

Artificial textures created by structured lighting 
reveal to be an excellent solution for complete surface 
3D imaging with affordable equipment given that 
camera calibration and epipolar geometry now offer 
accurate and reliable techniques for 3D reconstruction. 
Numerous types of patterns have been proposed to 
create virtual textures on a scene for active vision, 
achieving variable resolution, speed of acquisition and 
robustness to ambient lighting as well as surface color 
and reflectance characteristics [5, 6, 12, 15]. Among 
those, pseudo-random codes, which represent a subset 
of perfect maps [3], have not yet been fully evaluated 
and exploited for 3D imaging. 

This paper develops a procedure for collecting 3D 
data using active stereovision. Bi-dimensional pseudo-
random color patterns are projected to create virtual 
features that can be matched with high confidence 
while their density is adaptively controlled in the 
context of progressive refinement exploration and 3D 
reconstruction of free-form surfaces. A review of 
classical structured lighting patterns is presented 
before pseudo-random color codes are described. 
Image processing and confidence map creation 
approaches used to extract and validate pseudo-random 
codes between pairs of images are detailed. Finally, 
our experimental setup is presented along with a 
description of the selected calibration and 
reconstruction techniques before experimental results 
are evaluated. 

 
2. Patterns for structured lighting 

 

Different kinds of artificial textures, usually called 
“patterns” can be projected on a scene. Most of them 
have been introduced for use with a single camera, 
implying a calibration between the projector and the 
camera. Four main classes of patterns are found in the 
literature and are summarized in this section: gray 
codes, continuous patterns, direct codification and 
pseudo-random codes. 
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2.1. Gray codes 
 

Gray codes belong to the category of time-
multiplexing patterns. They are created by sequences 
of binary values in which two consecutive numbers 
only differ by one bit [4]. By correctly deriving the 
Gray code for a given resolution, each row results in a 
grayscale pattern made of white and black stripes to be 
projected successively. Images are saved after the 
projection of every row and the grayscale value of 
every pixel is determined throughout all images. Gray 
code projections are repeated vertically to identify the 
vertical position. The Gray code identifies the position 
of a certain point from the projector’s side, since the 
pattern is known, and matches this point accurately on 
the image side. This provides the necessary 
correspondence between the projector and the camera 
epipoles for triangulation to be performed. 

 

2.2. Continuous patterns 
 

Unlike Gray codes that only utilize two colors, 
black and white, continuous patterns take advantage of 
the entire range of intensities available from the 
projector [5]. As a result, continuous patterns can 
theoretically label positions with fewer images or with 
a higher precision with the same number of images 
since a single pattern can contain more information. It 
results in the projection of different periodic patterns, 
such as sinusoidal or trapezoidal functions, known as 
fringe projections, from which depth can be recovered 
via the phase signature of the pattern on the surface 
[6]. Though high density and accuracy can be 
achieved, pattern extraction requires sophisticated 
image processing approaches and tend to remain 
sensitive to surface shading since sharp color 
variations are absent from the projected pattern. 
 

2.3. Direct codification 
 

These patterns encode each location uniquely over 
the projection area. They are either based on grey 
levels or on color. Carrihill and Hummel developed a 
system called intensity ratio depth sensor to find the 
correspondence between pixels [7]. The pattern 
projected consists of a linear wedge spread along the 
vertical columns containing varying grey levels. A 
ratio is then calculated between the intensity values of 
every pixel under the linear wedge and under a pattern 
of constant illumination. This ratio determines the 
position of every pixel. However, this method remains 
sensitive to noise and to non-linearities of the devices. 

Codification based on color follows a similar 
strategy. Tajima and Iwakawa suggest a rainbow 
pattern [8]. A large set of vertical slits are encoded 
using different wavelengths such that a large sampling 

of the spectrum from red to blue is used. Two images 
of the scene are taken with different color filters. The 
unique code is found by calculating the ratio between 
the two images. This method shows robustness to 
illumination and to the colors present on the objects. 

 

2.4. Pseudo-random codes 
 

Pseudo-random codes are a class of spatial 
neighboring patterns. They can be defined as a series 
of pseudo-random arrays composed of different color 
intensity regions in a particular order [9]. Within a 
given pseudo-random pattern, each array appears only 
once, making the corresponding color code unique. 
The array can be of variable size. But a practical 
implementation of bi-dimensional pseudo-random 
codes that makes every point of interest being uniquely 
defined by its surrounding points, while limiting the 
spatial dimension of the code, consists of developing 
arrays of 3x3 color elements, C(x), where x represents 
the array number. Figure 1 illustrates such unique 3x3 
color codes, each being delimited here by a white 
bounding box. An interesting property resides in the 
fact that unique codes can partially overlap, therefore 
increasing the density of codes over a limited surface. 
For a given number of colors used to create the 
pseudo-random code, here 3 colors (r = red, g = green, 
b = blue), a code C(x) is defined as the color elements 
found by traversing the 3x3 array row by row from the 
top left corner. The codes in this example are: C(x1) = 
{b,g,r,r,r,r,r,r,g} and C(x2) = {g,g,r,r,r,b,g,b,b}. 
 

 
Figure 1. Two examples of 3x3 unique color codes. 

 
3. Bi-dimensional pseudo-random patterns 

 

Algorithms have been proposed to create one-
dimensional sequences in which a code covered by a 
window of a given length appears only once [3]. These 
have also been extended to create bi-dimensional maps 
of unique codes by orthogonally overlapping two such 
uniquely defined sequences with a progressive shift 
along one dimension [10]. Implementation of these bi-
dimensional grids has been proposed under the form of 
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color-coded intersecting lines projected on a surface to 
extract feature points from a single camera [11, 12]. 
But simultaneous overlapping projection of different 
colors can create interference that results in numerous 
color combinations, making code extraction and 
validation less reliable. Bi-dimensional pseudo-random 
codes are introduced here to avoid such overlap in 
order to ensure high confidence and possible error 
correction in matches between the stereo pair of 
images. This is ensured as only blobs of predefined 
colors are expected on the scene, under slight 
variations resulting from objects coloring or 
shadowing effects. Classical color image processing 
approaches are then sufficient to achieve highly 
confident dense disparity maps. 

In our prototype, bi-dimensional pseudo-random 
codes are projected under the form of a grid of square 
color regions such that color patches are easily created 
on the surface using a standard LCD projector.  The 
3x3 color codes are generated off-line for a selected 
number of colors, k, following a pseudo-random 
iterative approach. The goal is to obtain a complete 
grid of square color regions where every 3x3 sub-array 
appears at most once in the complete pattern of NxM 
color elements. Our pseudo-random grids use only a 
subset of perfect maps as every 3x3 color code is not 
guaranteed to appear once and only once, which would 
make the generation of the grids prohibitive. A perfect 
map of 3x3 independent color-coded regions 
composed of k possible color elements offers the 
possibility for defining k9 different color codes. 

The pseudo-random projection is built from a list, 
L, containing three color elements, respectively (red, 
green and blue) or (cyan, magenta and yellow). The 
projector used has a resolution of 1024x768 pixels and 
the size of each square color area is empirically set to 
9x9 pixels with a horizontal and a vertical black gap of 
9 pixels in between adjacent color areas to facilitate 
segmentation, as shown in Figure 1. It results in a 
maximum pseudo-random grid size of 56 columns 
(1024/18) and 42 rows (768/18). To avoid using the 
exterior part of the optics, pseudo-random grids of 55 
columns and 40 lines of color elements are defined, 
which contain 53x38 different color codes. Each code 
being composed of a 3x3 color region, a total of 2014 
different color codes can be projected simultaneously, 
for k=3 colors. This represents 10% of all possible 
colors codes (39) that are available from the 
combination of 3 colors to form 3x3 color codes. 

To compute the pseudo-random pattern, color 
elements chosen from L are progressively added to an 
initially empty NxM array.  The array construction 
starts off by adding one 3x3 code in the upper left 
corner. Every element of this 3x3 code is chosen 

randomly from L. The next step is to fill out the first 
three rows and then the first three columns of the 
array. This is done by randomly adding three color 
elements in the current column until the width, M, of 
the array is reached or in the current row until the 
height, N, of the array is reached. Every time three new 
color elements are added, a new code is created and 
compared with all previously introduced codes to 
assure its uniqueness. Different possible permutations 
of color elements are tested until the new 3x3 code 
created is unique or until all k3 possible permutations 
have been exhausted. In the latter case, the procedure 
is reinitialized. 

After this step, a 3xM and a Nx3 borders of codes 
are defined on the top and left-hand side of the array. 
The remainder of the array is filled out one color 
element at a time to create a new 3x3 code for every 
entry. The new code is compared to all existing codes 
in the array to be validated. In this case, the number of 
permutations that can be tried is reduced to k. This 
iterative process continues until a full array of unique 
3x3 codes is created for a given number, k, of 
candidate color elements. It takes about 10 sec to 
randomly generate a grid of 53x38 color codes given 
that only 10% of all possible permutations is used 
when k=3. This computation time drops drastically 
when k>3 as the number of necessary permutations is 
further reduced as summarized in Table 1. Once 
generated for a given value of k, the pseudo-random 
array definition remains constant and colors can easily 
be interchanged without compromising the uniqueness 
of color codes. 

 

Table 1. Permutations and time required to 
compute a 53x38 pseudo-random pattern with k colors. 

 

Number of 
colors (k) 

Percentage of possible 
permutations required 

Generation
time (sec) 

3 10% 10 
4 0.8% 0.44 
5 0.1% 0.34 
6 0.02% 0.33 

 
4. Color codes extraction and matching 
 

Once a pseudo-random pattern is projected on the 
scene and a calibrated stereo pair of images of the 
scene is taken, color regions are segmented and the 
corresponding pseudo-random codes are recovered. 
Color image segmentation is performed and a 
confidence map is computed to provide only valid 
matches for 3D reconstruction. 

 
4.1. Color regions segmentation 

 

Segmentation of the HSV-mapped color regions is 
performed in three steps separately over the left and 
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the right images. First, the color regions are segmented 
from the black areas created by the 9-pixel gaps left 
between every colored area. The hue intensity 
histogram is computed resulting in k peaks, taking 
advantage of the sharp color set contained in the 
pseudo-random pattern,. Thresholding on local minima 
creates k binary images, one for each different color 
element. These are used are as initial masks to locate 
the color regions of interest.  

Second, a labeling algorithm locates the different 
regions on each of the k binary images and groups 
pixels in closed color regions. Labeling is performed 
by scanning the image following a raster-scan pattern. 
When a pixel of interest is detected, a new label is 
assigned only if none of the left, top left, top and top 
right pixels already has a label. Otherwise, the current 
pixel takes on their label. In some cases, relabeling is 
required, as shown in Figure 2. Here the top left and 
top right pixels have different values. Therefore, the 
pixels labeled as region 2 are relabeled as region 1. 

Finally, in order to reinforce the location of color 
regions, a statistical evaluation is performed on 
labelled regions. The average size and standard 
deviation of every labelled region is calculated for 
each color image. A threshold related to the original 
size of color regions, here 9x9 pixels, is applied on the 
average size of the regions. Regions that are larger 
than the average size plus one standard deviation are 
further segmented into multiple smaller regions. Those 
that are under 5 pixels in size are removed. 

 

 
Figure 2. Labelling color regions. 

 

In some circumstances, two or more distinct regions 
are labelled as a single one, as shown in Figure 3. This 
occurs mainly when the normal to the surface of some 
parts of the scene is close to the orientation of the 
image plane, as well as on shiny surfaces. But given 
the uniform projection of square blobs permitted by the 
pseudo-random pattern projection, all color regions 
should be approximately the same size over a given 
area of the image. Any regions that are significantly 
larger are refined based on the fact that the intensity 
tends to be greater at the center of a region compared 
to its border. The average intensity (extracted from the 
V channel) and its standard deviation are calculated 
over the entire area of merged color blobs and a 
threshold is locally applied to eliminate lower intensity 
pixels, as shown in Figure 4a, which leaves the desired 
disconnected regions.  The center point of each region 
is finally extracted as a feature point, as shown in 
Figure 4b with white dots. 

 

  
Figure 3. Overlapping color blobs. 

 

    
a)                                      b) 

Figure 4. Results from color regions segmentation. 
 

4.2. Code validation and confidence map 
 

Once the color regions are properly segmented, 3x3 
color codes can be recovered from separate color 
blobs. However, in spite of a clear projection of the bi-
dimensional pseudo-random pattern and robust image 
segmentation, some erroneous codes can still be 
detected. To alleviate this problem and minimize the 
number of false stereoscopic matches, a confidence 
map is computed for every detected code. 

A code, C(x), is composed of nine elements, that is 
a central color region and its eight neighbor color 
regions. A search for the eight spatially closest color 
regions is performed over the set of k segmented 
images. Every element in a 3x3 color code, besides the 
middle element, will be part of another 3x3 code. This 
means that a given code will also have eight 
neighboring codes containing one of its elements, as 
shown in Figure 5, except on the borders of the 
pseudo-random pattern. These neighboring codes are 
extracted from the captured image and compared to the 
original pattern, which is known a priori. 

 

 
Figure 5. Code validation with confidence map. 

 

The number of neighboring codes that can be 
matched between the image and the original map 
defines the confidence, S(x), attributed to the given 
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code, C(x). Mathematically, the level of confidence for 
a code is defined as follows: 
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Ideally, all of the nine codes should match and the 
maximum confidence level of S(C(x)) = 9 would be 
reached for the central color code, C(x). But due to 
occlusions, changes in depth, borders, errors in 
acquisition and segmentation, a perfect confidence 
level is not always achieved even if the matches 
between C(x) and C’(x) from the left and right images 
are in fact correct. Code correction is then applied for 
codes that have a high confidence level, while codes 
that receive a low confidence level are removed from 
the list of matching points. Experimentation with the 
confidence map demonstrated a major reduction of 
outliers in the 3D reconstruction while the high density 
of points is preserved, as shown in Figure 6. 

 

  
a)                                        b) 

Figure 6. 3D reconstruction a) without confidence map 
validation, and b) with confidence map. 

 
5. Setup calibration and triangulation 
 

The stereo rig used for experimentation consists of 
two Lumenera LU135C color CCD cameras with a 
1392x1040 resolution and one Electrohome EPS1024 
projector with a resolution of 1024x768, as shown in 
Figure 7. Cameras are selected to have a resolution at 
least slightly higher than that of the projector to 
provide a capture of sharp colored regions. Focal 
length of the optics, here 6 mm, is preferably selected 
to cover a field of view only slightly larger than the 
projection to ensure that the pseudo-random pattern 
covers most part of the image plane. 
 

  
Figure 7. 3D imaging setup. 

 

 

One advantage of using a stereoscopic approach 
rather than a classical structured light system with only 
one camera is that no calibration is required between 
the projector and the cameras. Given that projectors 
are more cumbersome than CCD sensors, preserving 
the registration between the cameras over a long period 
of time is easier than with the projector, especially 
when the sensor is to be mounted on a mobile 
platform, as is the purpose of this setup. It also gives 
access to focusing, zooming and brighness adjustment 
functionalities of the projector to adapt to various 
operating conditions without influencing the 
calibration of the system, opening the door to 
operation out of the laboratory. Moreover, very 
accurate inter-camera calibration schemes are 
available, while calibrating a projector with a camera 
still remains more challenging.  
 
 5.1. Calibration 
 

Intrinsic and extrinsic calibration between the two 
CCD cameras is performed. First, a series of images of 
a checkerboard calibration pattern are taken for each 
camera. The classical Tsai’s algorithm is implemented 
to estimate intrinsic parameters, including radial 
distortion, individually for each camera. 

Second, extrinsic calibration is performed between 
the two cameras using a second set of checkerboard 
images captured simultaneously by both sensors at 
different positions over the workspace. Tsai’s 
algorithm is also used to estimate the relative rotation 
and translation between the stereo pair. In the resulting 
setup, both cameras are tilted about 20o with respect to 
the main axis of the projector and separated by a 
baseline distance of about 50 cm.  
 
5.2. 3D reconstruction 
 

3D reconstruction is performed on matching center 
points of the central color blob extracted for every 3x3 
color code in the left and right images, as shown in 
Figure 4b. Only pairs of points that received a high 
confidence level are processed. Triangulation is 
applied with respect to a reference frame attached to 
the left camera. The matched center point from the 
right camera is converted to the left camera’s reference 
frame along with the focal points of both cameras 
using the stereo calibration parameters. Combining the 
image plane matches and the two focal points, an 
optimal triangulation technique proposed by Hartley 
and Sturm [13] is used. In our experimentation, this 
approach demonstrated a clear superiority to the 
classical midpoint method [14] that was initially 
considered. 
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6. Marching pseudo-random patterns 
 

The number of color codes that can be projected on 
the scene is limited by the resolution of the projector 
and of the cameras as color areas must be wide and 
separated enough from each other to be reliably 
extracted and achieve a high confidence on the stereo 
matches. This introduces a limitation on the density of 
3D points that can be estimated over a given surface of 
the scene. While the default spatial density of artificial 
feature points created with a 40x55 color grid 
projection is usually much higher than the density of 
actual features required to perform stereoscopic vision 
without structured lighting, it still cannot provide high 
resolution surface maps of large objects. 

In order to overcome this limitation, we extend the 
approach with marching bi-dimensional pseudo-
random patterns. The principle consists of collecting a 
sequence of pairs of images while the same pseudo-
random color pattern is progressively shifted over the 
scene by realignment of the color grid over the 
projector LCD array. The fact that the projector is not 
calibrated with respect to the cameras provides a 
maximum of flexibility to manipulate the projection. 
Moving the same pattern over many positions in space 
also preserves the ease and reliability of the 
segmentation and confidence map computation as the 
size of colored regions remains constant. The number 
of different possible positions for the entire pseudo-
random pattern to be shifted horizontally, Gh, and 
vertically, Gv, is given by: 

 

dcGG vh +==  (2) 
where d is the width in pixels of the black separation 
zone between color regions, and c is the number of 
pixels defining the width of a color region. 

As shown in Figure 8 for the case where each color 
region is 9 pixels wide and 9 pixels high, and where a 
separation area of 9 black pixels (here depicted in 
white) is preserved in between color squares, the entire 
pseudo-random pattern can be shifted horizontally in 
18 different positions, and vertically in 18 different 
positions before becoming redundant. This leads to 
324 possible projections of the pseudo-random pattern 
on the scene, each projection providing a separate set 
of feature points. The projections being performed 
successively, there is no interference created in 
between the patterns but requires the scene to be static 
over the entire duration of the acquisition. 

Given that the pseudo-random pattern used in our 
implementation contains 40 rows and 55 columns, 
each projection offers 38x53 unique color codes, and 
therefore 2014 potential point matches. When the full 
range of shifting values is exploited, a maximum of 
652536 feature points can be extracted and 

reconstructed. For a projection over a scene covering a 
1x1 meter surface, the spatial resolution of the 3D 
points distribution can reach up to 1.24 mm. This 
spatial resolution varies inversely proportionally with 
the size of the surface that is covered by the pseudo-
random pattern. Unlike structured lighting systems that 
use time-space analysis to achieve sub-pixel resolution 
[15] but require synchronization with the projector, the 
sequential marching pseudo-random pattern projection 
remains independent from projector’s calibration and 
can still achieve dense 3D reconstruction. 

This approach also provides the opportunity to 
operate sub-sampling to create on-demand selective 
acquisition in which spatial resolution of the artificial 
features distribution on the scene can be increased only 
over regions of interest. The latter can be identified 
previously from a coarse resolution scan using a single 
pattern projection, which takes about 15 sec to process. 
Scanning can also be scaled to scenes of various 
dimensions using the same projector and cameras 
equipped with motorized optical lenses and dynamic 
intrinsic calibration. 

 

 
Figure 8. Marching pseudo-random patterns. 

 
7. Experimental results 
 

3D imaging and reconstruction was performed over 
various objects to evaluate the performance of the 
proposed range sensor using a 3-color pseudo-random 
pattern projection. Figure 9a shows a piece of foam 
shaped like a small chair which offers many planar 
surfaces with very different orientations. Due to its 
geometrical characteristics, this object has served has a 
benchmark for the evaluation of various range sensing 
approaches in our research group [2]. 

Figures 10 presents the left and right images after 
application of thresholds on the hue histogram to 
highlight the colored pixels as projected on the object. 
Figure 11a presents the reconstruction of 3D points 
obtained with one projection of the 40x55 pseudo-
random pattern. Only points belonging to the object 
are kept here while background points are removed for 
clarity. Figure 11b shows a higher density 3D 
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reconstruction when 16 shifted patterns (a distribution 
over 4 horizontal shifts x 4 vertical shifts) are 
projected. On the lower resolution representation, we 
observe the regular distribution of reconstructed 3D 
points as well as the absence of outliers, which 
confirms an accurate extraction of matching points 
from colored regions. Figure 12 presents a mesh 
mapped on the cloud of 3D points.  

As expected, we notice that the proposed 3D 
imaging system performs better on surfaces with a 
normal direction close to the projector’s main axis as 
color regions receive a higher confidence level after 
image segmentation. Missing points on the inside part 
of the right-hand side arm of the chair are due to the 
absence of valid matches between the left and the right 
images given the impossibility to extract complete 3x3 
color codes in this area from the right image. But these 
are extreme cases where the object’s surfaces are 
nearly parallel to the direction of projection and to the 
optical axis of the cameras. 

The operation of the range sensing system has also 
been validated on objects with smoother surface 
transitions and different textures or levels of 
reflectance. The kettle shown in Figure 9b is one of 
those objects which exhibits a shiny plastic surface that 
results in reflectance characteristics totally different 
from the matt surface of the foam chair. Figure 13 
presents the set of 3D points reconstructed from the 
surface of the kettle after the pseudo-random pattern 
was shifted 16 times. We observe the high density of 
points, which is sufficient to correctly map the small 
bump all around the base of the kettle. This 
deformation is about 5 mm deep, which provides a 
good illustration of the accuracy of the sensor on depth 
estimation, which is estimated to be within 2 mm for 
an object located about 1.5 m from the sensor. 

On the other hand, the need for a 3x3 color code to 
be extracted for every 3D point to be reconstructed 
preempts the sensor from perceiving small surfaces, 
such as the side of the handle of the kettle. But the 
field of view being scalable with this system, the issue 
can be overcome by reducing the distance between the 
object and the sensor, resulting in smaller color blobs 
on the scene. In the scenarios presented here, the 
objects were located at about 1.5 m in front of the 
sensor, making each color blob to cover a surface of 
about 2 mm x 2 mm on the object. 

Moreover, the example of the kettle demonstrates 
that performance is neither affected by the change of 
shade between the upper and the lower part of the 
object, nor by the higher reflectivity of the upper white 
plastic surface, except for those few regions where 
ambient light originating from the room’s fluorescent 
tubes creates a strong glare. 

  
a)                                        b) 

Figure 9. Benchmark objects a) foam chair, b) kettle. 
 

  
Figure 10. Left  and right images of the pseudo-random 

pattern projected on the object. 

  
a)                                        b) 

Figure 11. 3D reconstruction with a) only one, and 
b) 16 shifted pseudo-random pattern  

projections on the foam chair. 
 

  
Figure 12. Surface mesh mapped on 

the foam chair 3D reconstruction. 
 

  
Figure 13. 3D reconstruction with 16 shifted pseudo-

random pattern projections on the kettle. 
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8. Conclusion 
 

This experimental evaluation of the use of bi-
dimensional pseudo-random pattern projection to assist 
in imaging of 3D objects from a stereoscopic pair 
demonstrated the flexibility of the approach and the 
accuracy that can be reached to compute dense 3D 
maps. The definition of an explicit bi-dimensional 
pseudo-random pattern of unique color codes has been 
presented, as well as a straightforward image 
segmentation and code extraction procedure that relies 
on a confidence map to eliminate outliers that usually 
result from erroneous matches in passive stereoscopic 
vision. The use of marching patterns provides an 
efficient way to increase scanning resolution on-
demand, in accordance with the accuracy and 
computation time requirements of a specific 
application. 

Refinements to the proposed 3D imaging system 
that are currently under development include the 
dynamic selection of the number of colors, k, and of 
the hue value of each color present in the pseudo-
random pattern to further improve robustness to 
lighting and chromatic conditions found in various 
environments. Advantage is also to be taken of the fact 
that two color CCD cameras are used to collect not 
only matching features for depth estimation but also 
the color/texture characteristics of all points on which 
a valid match can be extracted by collecting a 
supplementary image with the projector turned off. 
This extension aims at providing simultaneously a 
dense 3D reconstruction with the corresponding 
texture information reliably mapped on every point. 
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