
  

  

Abstract—This paper presents a series of enhancements to a 

color-coded structured light range sensor that increases the 

adaptability to complex and unconstrained scenes. First, the 

projected pattern is made more visible on colored objects by 

replacing the unique colored pattern with time-multiplexed 

pseudo-color channels. Second, an exposure fusion algorithm is 

used when acquiring images to allow the detection of regions 

with low and high reflectance characteristics. Finally, the focus 

planes of the scene are automatically detected and imaged 

separately, enlarging the sensor’s depth of field. Each 

improvement is detailed and integrated into a custom 

acquisition procedure. Experimental results demonstrate the 

improved robustness of the structured light range sensor and 

validate the proposed design. 

Keywords—range imaging; structured lighting; intelligent 

measurement systems; object modeling; virtual reality. 

I. INTRODUCTION 

Active vision has been widely researched and is still the 

preferred method for dense 3D range sensing. Passive vision 

has a high dependence on the presence of features in the 

scene and, at best, can only generate sparse 3D range 

information. To achieve precise measurements with high 

resolution, an active vision method is required. Two such 

technologies have gathered much interest. Laser range 

sensors are accepted as the state-of-the-art standard for 3D 

measurement since they can achieve very high accuracy with 

very low computation time. However, they require 

specialized hardware that is usually expensive and not 

readily available. Structured light range sensors, on the other 

hand, remain an affordable solution for 3D range sensing 

since they can be assembled using common off-the-shelf 

digital cameras and LCD projectors. Although the precision 

and resolution of structured light sensors may not be as high 

as that of their laser-based counterparts, they can produce 

accurate and dense range scans that are not achievable with 

passive vision, and exceed what recent mass-market active 

depth sensors can offer. 

This paper builds on a previous version of a structured 

light range sensor [1] and aims to improve the acquisition 

module. The motivation is to make the system more robust 

while improving its ability to adapt to the scene before it. 

The goal is also to move away from conventional object-

 
 

centered to more general scene measurement. As a result, the 

number of parameters that must be adjusted is reduced and 

the range sensing system is easier to operate. 

Three enhancements that greatly improve the adaptability 

of the structured light range sensor are presented. First, 

colored objects and scenes with significant color variation 

are considered. Second, object brightness and scene 

reflectance characteristics are compensated for. Third, 

multiple focus planes of one or more objects are taken into 

account. These changes are motivated by the need to acquire 

as much information as possible about the scene during a 

single capture. Concrete examples are presented that validate 

the above enhancements and show that the system is robust 

and capable of dealing with arbitrary scenes in an 

unconstrained fashion. 

II. PREVIOUS WORK 

Before discussing the proposed improvements, the 

previously developed structured light range sensor [1] is 

briefly presented. The system is composed of two cameras 

mounted on a rigid bracket as a stereo pair above an LCD 

projector as shown in Fig. 1a. The only calibration required 

is of the intrinsic [2] and extrinsic [3] camera parameters, 

leaving the projector uncalibrated with the rest of the system. 

The sole purpose of the projector is to project a pseudo-

random (PR) pattern of colored squares [4], shown in Fig. 

1b, onto the scene, to generate artificial features. The pattern 

is defined such that each 3x3 neighbourhood of squares is a 

unique code and that all codes are separated by a minimum 

Hamming distance. 

(a) (b) 

Fig. 1.  (a) Stereoscopic structured light range sensor, and (b) bi-

dimensional pseudo-random pattern. 

This spatial-neighbouring pattern is combined with a time-

multiplexed [5] approach which iteratively marches the 

entire pattern horizontally and vertically to increase the 
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density of artificial features. During the marching phase, 

images are captured and stored for analysis. The image 

processing consists of adaptively segmenting the colored 

squares, labelling and grouping them to yield 3x3 codes. 

After a confidence level analysis, the accepted codes are 

used to solve the correspondence problem and the optimal 

triangulation [3] is applied to reconstruct a 3D point cloud. 

Since color images are captured in the process, a color is 

also assigned to each point, enhancing the richness of data. 

Although good results are achieved on single objects, the 

range sensor's limitations become evident as more complex 

scenes are introduced. Multicolored objects tend to distort 

the color of the projected pattern and cause the colored 

square segmentation algorithm to fail. This is compounded 

with the fact that objects with multiple brightness and 

reflectance characteristics produce images with areas that are 

under- and over-exposed, contributing to a loss of 3D data in 

those areas. These two common and related problems due to 

color and light properties must be addressed with parallel 

solutions. Moreover, the previous sensor can only acquire 

data from one focus plane and ignores objects or areas of a 

scene where the pattern is out of focus and unrecognizable 

by the segmentation algorithm. In some cases, this can 

greatly reduce the amount of 3D information collected from 

a scene with a large depth of field. Finally, the previous 

implementation requires that two major parameters are prior 

to the acquisition, namely the exposure time of the cameras 

and the focus of the projector. Manual calibration of the 

sensor is not acceptable since the goal is to create an easy-to-

operate system capable of working autonomously, with the 

potential to be mounted atop a mobile platform. 

The conventional approach of adaptive structured light is 

to dynamically adjust the projected pattern in response to the 

scene [6], [7]. This can be achieved by adapting the pixel 

color [6] and pixel intensity [7] of the pattern. However, 

extensive calibration between the cameras and projector is 

necessary, which is incompatible and undesirable with the 

current structured light system. Another more basic approach 

is to acquire multiple images while varying the global 

intensity of the projector and combining the images into a 

high dynamic range radiance map [8]. Although simple and 

effective, the problem of selecting a global exposure rate for 

the image acquisition still remains. This problem is further 

complicated when highly reflective objects lead to saturated 

areas in the image, regardless of the projector intensity. The 

proposed method is inspired by Skocaj and Leonardis [8] 

but, instead of working at the projector level, it operates at 

the camera level. The pattern is projected at full intensity and 

multiple images are acquired while varying the exposure 

rate. The images are then fused together using the concept of 

exposure fusion [9], [10], [11], ultimately producing an 

image with a local exposure rate that compensates for the 

different colors and reflectance characteristics in the scene. 

Most literature on structured light range sensors assumes 

that the scene is located at a relatively constant distance from 

the sensor, which assures that the cameras and projector are 

always in focus. When building a flexible sensor adaptable 

to any scene, this assumption cannot be made and the focus 

problem must be considered. This work is inspired by the 

concept of focus fusion [10], [12], [13] and presents a novel 

method that acquires data from different focus planes and 

fuses it to obtain range data from a workspace that exceeds 

the focus capabilities of most projectors. 

The fact that the projector does not require calibration 

with the stereoscopic camera system is considered an 

advantage over other similar range sensing systems. This not 

only increases the flexibility and ease of use of the 

acquisition system but also allows it to adapt more easily to 

the scene via zoom and focus. This allows for a more 

complex and robust acquisition stage which is the objective 

and main contribution of this work. 

III. ADAPTIVE ACQUISITION FRAMEWORK 

This section presents an acquisition framework that is 

flexible, customizable and improves the performance and 

robustness of the sensor. The major design concepts for the 

three areas of improvement are presented. 

A. Time-Multiplexed Pseudo-Color Code Projection 

After much experimentation with colored codes on multi-

colored objects, the use of a colored spatial-neighbourhood 

pattern was abandoned. Although not a novel solution, it 

proved to work reliably only on uniform and lightly colored 

objects that reflect light well. It did not work on dark objects 

that absorb most of the projected light, or on multicolored 

objects. With focus adaptation in mind, it was undesirable to 

impose a calibration between cameras and projector to 

perform conventional adaptive structured light. 

The proposed approach is to project the spatial-

neighbourhood pattern using only white light at full intensity. 

This not only ensures that the maximum possible amount of 

light is reflected from dark and colored areas but that it also 

reflects from areas of the scene that are farther away from the 

projector, therefore increasing the range of the sensor. Since 

the spatial-neighbourhood codes are composed of three bits 

that were encoded using three different color channels (red, 

green, blue), they are now encoded using a time-multiplexing 

approach. Assuming that a static scene is being imaged, the 

three individual code channels are successively projected as 

white patterns and three sets of images are respectively 

acquired, simulating simultaneous projection of the three 

colors. Fig. 2 shows the three individual pseudo-color 

channels that compose a single complete pattern. 

 

(a) (b) (c) 

Fig. 2. Three time-multiplexed projections of the pseudo-color: (a) red, (b) 

green and (c) blue channels on two objects located side-by-side. 
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The use of time-multiplexing does not introduce a 

significant increase in overhead since the colors do not 

represent unique codes but rather bits, used to construct 

unique codes. In this case, only two extra projections and 

acquisitions are needed to obtain a complete pattern. It 

should be noted that this is a separate time multiplexing, not 

to be confused with the time multiplexing at the entire 

pattern level, denoted as marching patterns, which increases 

the density of the acquired range data. 

B. Variable Exposure Fusion 

Since the pattern is projected using a maximum intensity, 

objects and areas with high reflectance properties lead to 

saturated regions in the acquired images. The previous 

implementation did not compensate for objects with multiple 

reflectance characteristics and naively used a global 

exposure that also had to be adjusted manually. Since the 

exposure time is the most important parameter to set when 

capturing digital images, it must be automatically selected. 

However, with most computer vision algorithms, a single 

global exposure is not sufficient to properly image the entire 

scene. 

In order to capture the pattern on objects of multiple 

colors and reflection properties, the proposed solution is to 

simulate a local exposure when acquiring images using the 

exposure fusion technique. The technique consists of 

acquiring several images of the same scene while varying the 

exposure time to obtain a set of images that contain properly 

exposed regions of the entire scene. This set of images is 

fused to produce a single image that has a dynamic range 

greater than what is possible to obtain from a single image. 

The exposure fusion technique proposed by Mertens et al. 

[11] consists of computing quality measures of contrast, 

saturation and well-exposedness at each pixel of each image 

in the set. These are then combined to produce weight maps 

for each image and are then normalized. The images are 

blended together by applying their respective weight maps in 

a multi-resolution technique using pyramid decomposition. 

Fig. 3 shows an example of an acquisition and its weight 

map along with a final exposure fused image. 

 

  

(a) (b) (c) 

Fig. 3. (a) Example of one acquisition at low exposure, (b) its 

corresponding weight map, and (c) the final composite locally-exposed 

image. 

The Mertens et al. technique is used as it operates at the 

pixel level as opposed to other techniques that process image 

blocks. The latter techniques were found to require large 

block sizes that reduced the resolution level of the sensor 

since it is difficult to retrieve accurate data from blocks, 

which contain two or more regions of different reflectance 

properties. 

The exposure fusion algorithm is applied every time the 

two cameras capture the scene. The fusion is performed 

using only the well-exposedness quality measure, as the 

other measures do not contribute significantly more 

information. The resulting composite image is properly 

exposed and the structured light pattern is uniformly visible 

regardless of color and reflectance properties. Moreover, the 

selection of an exposure time parameter disappears since it is 

inherently selected via the exposure fusion algorithm. 

C. Dynamic Focus Fusion 

The sensor can now acquire data from multiple surface 

colors and reflectance properties as long as they all lie within 

a focus plane and the projector is properly focused to that 

plane. Such assumptions cannot be made when designing a 

sensor capable of operating autonomously in unconstrained 

environments. The workspace of such a system is usually 

constrained by the focus and intensity of the projector. The 

minimum distance of the workspace is bound by the focal 

capabilities of the projector while the maximum distance is 

bound by the intensity of the projector. 

In most realistic applications, cameras and lenses can be 

configured such that the entire workspace is in focus and the 

only parameter that must be adapted is the focus of the 

projector as it varies considerably within the workspace. The 

proposed solution, which is inspired from the exposure 

fusion process, is to vary the focus of the projector from the 

closest to the furthest focus planes, while capturing images at 

each plane and merging them using a focus fusion algorithm. 

The focus fusion technique proposed by Hariharan et al. [13] 

consists of computing horizontal and vertical image 

gradients that are used to determine sharpness masks of the 

images at each focus plane. The sharpness masks are filtered 

to reduce noise and increase neighbourhood relevance. 

Partition masks, which correspond to regions of high focus, 

are generated for each focus plane by mapping maximum 

values in the sharpness masks. Finally, the partition masks 

are used to merge the set of images into a locally-focused 

composite image. 

The Hariharan et al. technique is used as it detects focally 

connected regions as opposed to focused pixels or focused 

image blocks. This technique is suitable for images where 

most of the scene is in focus and only the projected pattern 

squares are in or out of focus, which is the case with the 

structured light sensor. 

Due to the optics of the projector, the projected pattern 

shifts slightly as the focus is adjusted. Therefore, the focus 

fusion algorithm as described above is not used in its entirety 

since this would produce an image that contains a pattern 

that does not line up across focus regions. Instead, the fusion 

step is dropped and the partition masks are used to identify 

focally connected regions during a two-pass acquisition scan. 

The idea is to perform a first pass, which cycles through each 

focus plane in one direction and determines focally 

connected regions at each plane as shown in Fig. 4. A quick 
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analysis is performed and focus planes that have a small 

overall area in their sharpness mask are dropped. The second 

pass cycles through the subset of focus planes in the opposite 

direction, performing the pattern acquisition and processing 

only in properly focused regions as defined by the sharpness 

masks. The range data is independently computed for each 

focus plane and concatenated once all planes are processed. 

 

 

(a) (b) 

Fig. 4. (a) Example of an image collected from one focus plane where  

closer objects are in focus, and (b) its corresponding sharpness mask. 

IV. DETAILED ACQUISITION PROCEDURE 

The proposed sensing method operates in two stages. 

First, the acquisition stage controls the cameras and projector 

programmatically and saves images to the disk. The process 

is detailed in pseudo-code below. 

 

Acquisition Stage: 

 Iterate through all focus planes. 

 Adjust projector focus to current focus plane. 

 Project full pattern using maximum intensity and 

acquire images using exposure fusion. 

 Compute sharpness mask for current focus plane. 

 Drop focus planes that contain a proportionally small 

sharpness mask. 

 Re-compute sharpness masks for subset of focus planes. 

 Iterate through subset of focus planes. 

 Adjust projector focus to current focus plane. 

 Perform structured light data acquisition in region 

specified by current sharpness mask. 

 Project time-multiplexed pattern channels at 

maximum intensity and acquire images using 

exposure fusion. 

 Save images to disk for further processing. 

Processing Stage: 

 Process the saved images and extract 3D range data 

using previously developed algorithms [1] for each focus 

plane. 

 Concatenate 3D range data from all focus planes. 

 

Essentially, a first pass through the focus planes is 

performed to determine regions that are in focus. Next, a 

second pass is made that sequentially collects the projected 

pattern only from the regions in focus. The three pseudo-

color pattern channels are projected separately using a 

maximum intensity and for each channel, multiple images of 

increasing exposure are acquired and then fused. 

 

Second, the processing stage analyzes the captured 

images, identifies the pseudo-random code correspondences 

and performs a triangulation to extract 3D points. This stage 

remains mostly the same as in the original design [1]. 

However, the difference is that it is independently performed 

on the data at each focus plane and the resulting 3D points 

are concatenated to produce the final 3D point cloud. 

The acquisition procedure is more robust and powerful 

while remaining flexible. The parameters controlling the 

number of focus planes, the number of images for exposure 

fusion and the different exposure levels can all be manually 

adapted depending on the scene. However, they can also be 

set to their maximum settings, rendering the structured light 

sensor completely autonomous in its acquisition regardless 

of scene colors, reflectance characteristics and depth of field. 

It is also possible to keep marching the patterns 

horizontally and vertically, during the acquisition stage, to 

increase the range data density. This extra time-multiplexed 

acquisition is not shown in the pseudocode above to avoid 

confusion, but is integrated within the second pass of the 

acquisition. 

V. EXPERIMENTAL VALIDATION 

Several tests were performed to demonstrate the increased 

capabilities of the structured light sensor resulting from the 

enhancements brought forward with this work. The results of 

three evaluations that attempt to compare the 3D range data 

generated with and without the enhancements are presented 

here. It should be noted that the range data consist of 3D 

points. These are interpolated to generate a colored surface 

in the following examples to facilitate the visualization and 

interpretation of the results. 

The first case consists of modeling a brightly colored 

children’s dartboard and a textured wicker basket as shown 

in Fig. 5a. First, the colored pattern was projected and 

second, the time-multiplexed pseudo-color channels at 

maximum intensity were projected to compare performance. 

Both tests were performed using exposure fusion with the 

default of 10 images ranging from 5ms to 50ms of exposure 

time. To increase point density, the pattern was marched 3 

times horizontally and 3 times vertically. 

The results shown in Fig. 5b demonstrate that the original 

colored pattern performs poorly when highly colored objects 

are present such as the dartboard. The yellow and red areas 

are mostly impossible to detect. On the other hand, the 

basket contains several holes where shiny stripes appear on 

its surface. However, when using the proposed time-

multiplexed pseudo-color channels, a high percentage of the 

scene can be modeled, as seen in Fig. 5c, except for only a 

small number of areas on the basket where there is very high 

reflection. More importantly, the sensor is not affected by the 

black numbers and lines on the dartboard as it is when the 

original colored projection is used. 
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(a) (b) (c) 

Fig. 5. (a) Original image of children’s dartboard and wicker basket, (b) its reconstruction using the original colored  

pattern, and (c) its reconstruction using the time-multiplexed pseudo-color channels at maximum intensity. 

 
  

(a) (b) (c) 

Fig. 6. (a) Original image of a computer monitor and a robot controller, (b) its reconstruction  

without using exposure fusion, and (c) its reconstruction using exposure fusion. 

The second scenario demonstrates the advantage of using 

the exposure fusion algorithm when capturing 3D colored 

models of a computer monitor and a robot controller as 

shown in Fig. 6a. Two tests are performed using the time-

multiplexed pseudo-color channels and a 3x3 marching 

pattern. In the first attempt, the images are captured using a 

single exposure of 10ms that was found to be optimal by trial 

and error. In comparison, the exposure fusion of 10 images 

ranging from 5ms to 50ms was used during the second image 

acquisition. 

Both objects have bright and dark colored regions as well 

as surfaces with high reflectance characteristics such as glass 

and aluminum. When using a single global exposure, such as 

in Fig. 6b, it is impossible to detect the dark and reflective 

screen of the monitor as well as the dark grey section of the 

controller. Also, a specular highlight appears on the right 

half of the aluminum cross-section of the controller. The 

sensor has difficulty detecting the pattern in these regions 

and 3D information is lost. When the exposure fusion 

algorithm is applied, as in Fig. 6c, the glass screen is 

detected as well as all regions of the controller, including 

where the specular highlight appeared. It should be noted 

that the controller model still has some holes since its small 

features are below the resolution of the projected pattern’s 

squares. 

The third case exemplifies the increased depth of field of 

the sensor provided by the detection and processing of focus 

planes. A general scene consisting of an office desk and a 

robotic workcell, shown in Fig. 7a, is modeled. The depth of 

the scene from the front desk to the rear wall is roughly 7m. 

The sensor detected that 3 out of 6 possible focus planes 

were of interest. First, the front desk was processed, 

followed by the chair and closest computer monitor and 

finally the rest of the scene including the farther monitor, the 

robotic arm and the wall were processed. Again, a 3x3 

marching pattern was used and the exposure fusion acquired 

15 images from 5ms to 100ms for each retained focus plane.

 

(a) (b) 

Fig. 7. (a) Original image of office desk and robotic workcell, with (b) pattern projected on scene during acquisition. 
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(a) (b) 

Fig. 8. (a) Reconstructed scene from the sensor’s viewpoint, and (b) same reconstruction from a side view showing the depth of field. 

The results in Fig. 8 demonstrate that the sensor is capable 

of accurately imaging at several depths of field, with a 

maximum depth of field that well exceeds that of the popular 

Kinect sensor, which is limited to a maximum distance of 

about 3m. Objects that are close, such as the front desk, the 

chair and the closest computer monitor are modeled with 

great detail. However, as the distance increases, the 

projected squares of the pattern get larger, which results in a 

lower resolution. In addition, important occlusions of the 

projected pattern are created by the objects themselves, with 

respect to the projector’s location, as can be seen in Fig. 7b. 

These areas cannot be reconstructed due to the lack of a 

visible pattern. This explains the missing regions in the 

models, though these could be recovered by moving the 

sensor. 

VI. CONCLUSION 

The proposed range imaging method extends the 

capabilities of structured light range sensors by introducing 

several enhancements that allow such technologies to model 

complex arbitrary scenes, as required in autonomous robotics 

for exploratory applications. The separate channels of a 

spatial-neighbourhood colored pattern are projected 

individually using the maximum intensity of the projector 

and a time-multiplexing approach to achieve better results on 

colored objects. Also, an exposure fusion algorithm 

combines multiple images collected with increasing exposure 

time for each image acquisition in order to reliably capture 

regions with low and high reflectance characteristics. Finally, 

a large depth of field is achieved by automatically detecting 

several focus planes over the scene, processing the 

corresponding regions of the field of view independently, 

and finally concatenating the resulting 3D points. 

The enhancements are all strategically integrated into a 

custom acquisition procedure that remains flexible, easily 

configurable, and independent from the scene being imaged. 

When operating autonomously, the sensor is capable of 

capturing a maximum amount of 3D range data with no a 

priori knowledge of the scene and no parameter tweaking. 

Future work will aim to optimize the displacements of the 

sensor and register all acquired point clouds into an 

integrated 3D colored model. Leveraging the sensor's large 

depth of field and adaptive focal planes, the robot can grasp 

its environment with minimum displacement. Afterwards, it 

can concentrate on regions of interest and obtain high-

density range data from selected regions, regardless of object 

colors or reflectance characteristics. 
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