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Abstract - Autonomous robotic systems require a detailed model of

space occupancy to be built from sensory information in order to

navigate safely in their environment. Probabilistic occupancy

models have been proposed that use conditional probabilities

evaluation to merge redundant measurements. These approaches

provide meaningful representation of space but require important

approximations to remain computationally tractable for high

dimensionality. As a result, the strict definition of probability is

denatured. The present paper proposes an exploration of the fuzzy

logic paradigm as a modeling tool for occupancy mapping in the

context of workspace representation for robotic applications. A

computationally tractable fuzzy logic inference engine is introduced

that allows data fusion to construct a robot workspace

representation in a more intuitive way while preserving desirable

characteristics achieved by probabilistic modeling schemes.

I. INTRODUCTION

Modeling the workspace of an autonomous or semi-

autonomous robotic device for planning its actions is a critical

issue, especially when the robot has to operate in a cluttered

workspace whose structure is not known a priori. Assessing

the risk to make the robot to circulate through given regions of

space is mandatory in order to prevent damages to the device

as well as to the environment. Unfortunately, as sensors have a

limited field of view, building a complete model of a complex

scene usually requires that measurements are taken

successively from different viewpoints [7, 9]. Data fusion must

then be operated on the datasets in order to merge information

from all viewpoints in a coherent representation.

Many frameworks have been proposed for merging

information on the basis of a proper registration [3, 15]

between successive viewpoints [6, 8, 11, 16, 17]. However, not

all of these strategies allow to take advantage of the fact that

redundant information is often collected when measurements

are taken in a same region of space from different viewpoints

due to the overlap between the respective sensors’ field of

view. Basic approaches such as minimization or maximization

of the estimates corresponding to a same point in space have

been widely used in the computation of deterministic

occupancy representations that associate a limited set of tags

(empty, occupied or unknown) to each region of space.

Unfortunately, it is widely recognized that such schemes do not

ensure a proper classification of contradictory data and reamin

sensitive to perturbations.

A computational framework using the Bayes theorem has

been introduced to build probabilistic occupancy maps on

planar terrains for mobile robot guidance [4]. This approach

computes the conditional probability, normalized between 0.0

(empty) and 1.0 (occupied), that a region of space is cluttered

by obstacles. Unfortunately, under its formal definition, this

scheme reveals to be computationally untractable for 3-D

spaces. However, it demonstrates very attractive

characteristics as a controlled refinement process occurs when

numerous consistent and/or contradictory measurements are

presented to the data fusion engine.

Previous work has led to a tractable extension of the

bayesian data merging framework to 3-D space that relies on a

closed-form approximation of the original behavior of the

evolving occupancy probability [13]. The scheme has been

further extended to improve the refinement process and to

account for uncertainty originating from various sources [14].

However, this scheme remains a probabilistic one.

From the perspective of collision avoidance in robotics, the

term “probability” might be somewhat abusive in the context

where strict conditional probabilities are no longer computed

but rather replaced by a closed-form approximation

demonstrating a similar behavior in general. What is of interest

for the robot operation and the computerized path planner is to

assess the relative risk associated with the choice of making the

device to circulate in a given area of the workspace.

Pursing this goal and taking into account the new trends in

computer vision and robotics to represent uncertain

information using fuzzy descriptors [2] and to merge

multisensor data with help of fuzzy inference [5, 10], this paper

proposes a fuzzy inference engine that can advantageously be

used as a data fusion mechanism for consistent/contradictory

range measurements in the construction of occupancy models

in replacement of the previous probabilistic scheme. The

problem is examined in the context of volumetric scene

modeling for path planning and collision avoidance in robotic

applications.

Bi- and tridimensional fuzzy occupancy grids are

considered for the virtual representation of environment as

they allow to directly monitor the cluttering state of space.

These grids consists of a recursive subdivision of a bounded

region of space into square or cubic cells up to a given level of
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resolution. Each cell is tagged with a fuzzy descriptor of the

occupancy state of space. The main aspects that are considered

in the development of this fuzzy data fusion framework are: 1)

the behavior of the occupancy state as supplementary data

(consistent or contradictory) are merged with the current state

of space, 2) the capability to deal with uncertainty in the

measurement process (both from the sensor and the positioning

devices), and 3) the computational efficiency of the approach

as large datasets generally need to be processed.

The following sections present the characteristics of the

probabilistic occupancy modeling scheme in order to define a

base of reference for the proposed fuzzy occupancy

representation. Then the fuzzy inference structure is

introduced and the behavior of the occupancy model that

results from the merge of range measurements using this fuzzy

modeling/fusion scheme is demonstrated. Its performances are

analyzed with respect to the three aspects mentioned

previously and the suitability of a fuzzy workspace

representation for path planning operations is discussed.

II. PROBABILISTIC MODELING SCHEME

The construction of an occupancy grid model consists in

estimating the probability that a grid cell is occupied based on

range measurements collected on the surface of objects.

A. Initial probabilistic scheme

Elfes [4] introduced a bayesian two-step procedure for

building 2-D probabilistic occupancy maps of planar surfaces.

The sensor measurements accuracy is assumed to follow a

gaussian distribution. Measurements are mapped on a

discretized grid containing a probability of occupancy for each

of its cells. Under some assumptions about the status of

successive cells and based on the current configuration of the

grid, the probability that the state, , of a given cell, , is

occupied for a measured range value, , is estimated as:

(1)

where

(2)

for a given configuration, .

In a second phase, the probability of occupancy of grid cells

is updated by means of a merging process that follows Bayes

theorem.
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where  and  are respectively the probability that is

already contained in a given cell of the model and the

probability estimated from the latest measurement following

eq. (1).

Even though this approach reveals to be mathematically

consistent with the definition of probability, the first step

implies the computation of the probability of occupancy for all

possible configurations of the grid as shown in figure 1 for a

simplistic 1-D case. Here, 16 grid configurations must be

processed before updating the probability of each cell when a

new range measurement is provided by the sensor. In general,

 configurations have to be considered for a m-dimensional

grid having n cells along each of its side. Experiments

demonstrated that the computation of such conditional

probabilities becomes computationally untractable in the 3-D

case.

Fig. 1. 16 possible configurations for a 1-D discretized
occupancy grid with 4 cells (0=empty, 1=occupied).

B. Revisited probabilistic scheme

In order to prevent the computational explosion that results

from the implementation of eq. (1) and (2) for 3-D space

occupancy estimation, an extended approach [13] has been

proposed that consists in using a closed-form approximation of

the Occupancy Probability Distribution Function (OPDF)

obtained with the initial scheme as shown in figure 2.

Assuming that the sensor error can be modeled by a gaussian

distribution, we observe that the estimated probability of

occupancy is close to zero near the sensor (located at 0 mm).

This probability rises until it reaches a maximum at the

location of the surface of an object (located at 50 mm in this

example) and then drops to 0.5 for the area which is in

occlusion behind the object. A probability of 0.5 in this area

means that the occupancy state remains unknown.

These observations conducted to the development of an

experimental closed-form expression that approximates the

shape of the OPDF. The main advantage of this closed-form

expression is that is eliminates the need to explore all possible

grid configurations in the computation of the occupancy

probability for a given cell of the occupancy grid. Furthermore,

it makes the probability evaluation process independent from

the number of cells in the grid. The closed-form expression that

is proposed to model the shape of the OPDF for a range sensor

in the 1-D case is given by:
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(4)

where  is the range measurement and  is its variance.

The application of this approximated OPDF for the

estimation of occupancy probability revealed to be

computationally tractable for 3-D workspace modeling.

Moreover, when this closed-form expression is applied in

combination with the Bayes theorem, eq. (3), to merge former

probability estimates contained in the grid along with those

resulting from new measurements, a progressive refinement of

the occupancy probability is observed as several

measurements are collected on the same point of the surface of

objects. This behavior is illustrated in figure 3.

Fig. 2. Characteristic shape of the OPDF resulting from
conditional probability estimation with Bayes merge.

Fig. 3. Refinement of the occupancy probability with
fusion of consistent/contradictory measurements.
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III. FUZZY MODELING SCHEME

When the later closed-form approximation of the OPDF is

used to make occupancy probability estimation tractable, the

strict mathematical definition of probability is approximated.

Instead, a relative assessment of the risk for the robot to

circulate in a given area is monitored in the model of the

environment on a comparative basis with other regions of the

workspace. Therefore, a parallel between the resulting virtual

representation and a fuzzy logic description of the cluttering

state of the environment can be established.

The present section introduces a fuzzy inference engine that

allows to generate such a fuzzy description of a robot

workspace in terms of occupancy level while reproducing the

desirable characteristics achieved by the probabilistic

modeling scheme previously described. The main

characteristics considered are: 1) a progressive refinement of

the occupancy state when consistent/contradictory

measurements are merged, 2) the possibility to represent

uncertainty on measurements and registration, and 3) a

computationally tractable approach.

A typical fuzzy inference engine has been developed to

operate on range measurements collected from a laser range

finder. The system follows the classical structure of a fuzzy

logic inference engine in which the distribution of membership

functions and the rules have been adapted to suit the

requirements of the application.

A. Mapping measurements to fuzzy inputs

The inputs to the system correspond to a mapping of the

occupancy state of space along the line traversed by the laser

beam during data collection for each point on the object’s

surface as shown in figure 4. This area is discretized up to a

given resolution and the fuzzyfication process operates

successively on each cell defined by the discretization step.

Fig. 4. Mapping of the discretized area along the laser beam
to the input of the fuzzy inference engine.

The crisp input to the fuzzyfication process for each cell is

defined as the distance between the actual measurement

provided by the sensor and the discrete position of the given

cell with respect to the sensor.
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Fig. 5. Input membership functions distribution.

Membership functions of the input are classified in an order

that matches with the typical occupancy distribution when a

sensor collects measurements on a surface, taking into account

occlusions. That is, starting from empty space just in front of

the sensor, it evolves up to unknown space behind the surface

of the object, with a region of occupied space around the

surface of the object. Figure 5 shows the distribution of

membership functions for the inputs. We observe the

correspondence between the fuzzy labels and the occupancy

probability distribution shown in figure 2. Especially, the fact

that the unknown tag is located on the far right end indicates

that the sensor is located on the left side of the mapping (along

with negative distances as the cells are closer to the sensor than

the measurement value). Numerical values shown here

correspond to the examples presented in section 4.

When a new measurement is collected, a corresponding

fuzzy representation is created along the line traversed by the

laser beam. Each cell contains a list of activated members

along with their respective level of activation, thus describing

if this area of space is emptied, occupied or in an intermediate

or unknown state. These fuzzy descriptors are then ready to be

used for a data fusion process to occur when other

measurements along the same laser line or in the same region

of space will be collected as illustrated in figure 4.

B. Evaluation rules for data fusion

When two measurements are available for a same cell of the

workspace, they need to be merged to achieve a consistent

representation. Fuzzy evaluation rules are then applied to the

set of fuzzy inputs in order to combine them. Evaluation rules

are defined in such a way that the refinement process

previously observed on the occupancy state of space occurs

depending on the nature of the information provided. Table 1

defines the set of rules that have been used in the present

experimentation to validate the approach. The number of rules

is determined by the number of fuzzy membership functions.

It is also noted that the table should not be symmetrical (in

terms of conclusion labeling) as new inputs must influence the

occupancy state in an appropriate way to led to the refinement

of the occupancy state. One input (here input 2) represents the

current state of the model while the other (input 1) is associated

with the new fuzzyfied measurement. This table of rules can

also be extended to n dimensions in order to allow a

simultaneous merge of n fuzzy inputs.
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Table 1. Data fusion rules.

C. Fuzzy outputs

The membership functions distribution for outputs uses the

same tags as those found on the inputs as shown in figure 6.

This is mandatory as an output is expected to be used as an

input in a forthcoming fusion operation with a new

measurement. The crisp output variable represents the

occupancy state of space or, in the context of robotics, an

assessment of the risk of collision between the robot and its

environment. The distribution of membership functions is

slightly modified with respect to the inputs in order to map the

risk with a linear distribution similar to that obtained from the

probabilistic scheme (between 0.0 and 1.0). As a result, the

unknown tag is now located in the center of the distribution as

it is associated with a risk of 50% (unknown state of space).

The defuzzyfication process does not need to be applied as

long as the model is not to be interpreted by an external device,

e.g. a path planner or a rendering tool. The model can easily be

encoded under his fuzzy representation where each cell

contains a list of activated fuzzy members and their respective

level of activation in accordance with the occupancy state of

the region that it represents. This way the model is ready for

further refinement by merging new fuzzyfied range

measurements.

Fig. 6. Output membership functions distribution.
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IV. EXPERIMENTAL RESULTS

Experimentation has been conducted with the proposed

fuzzy logic inference engine in order to assess its capability to

encode occupancy state. The refinement process has also been

examined and the definition of membership functions and

evaluation rules has been tuned such that a suitable behavior is

achieved. The following curves illustrate the evolution of the

occupancy state along the laser beam line as consistent and/or

contradictory measurements are merged in the model.

Figure 7a shows the normalized distribution of occupancy

for a single raw range measurement after defuzzyfication. The

surface of the object is located where the distance equals 0 mm.

Here the fuzzy representation of the input has been directly

defuzzyfied without any rule evaluation (any fusion with other

data) to observe the initial occupancy state distribution

resulting from the discretized fuzzyfication process.

Next, the same input is merged with a initial occupancy

distribution of 0.5 (unknown) everywhere in order to validate

the refinement process in the occupancy state. The fusion

result is shown in figure 7a. We see that the occupancy state

progressively evolves from 0.5 to lower or higher levels

depending on where the cells are located with respect to the

surface of the object. This refinement process is pursued by

merging the same measurement (at 0 mm) for a second time

with the distribution that resulted from the previous operation.

As a result, figure 7b shows a stronger confidence in space

state both in empty and occupied areas after the fusion with a

second consistent measurement.

The proposed inference engine has also been evaluated in

terms of its response to contradictory data. In figure 8, an

occupancy state distribution corresponding to a range

measurement shifted by 10 mm to the right with respect to the

original one is merged twice with the result of the later fusion

operation shown in figure 7. We observe the modifications to

the distribution that result from the first merge as well as the

evolution of the distribution after a second merge with the

shifted data.

Again, the progressive refinement process is observed as

new conclusions are not drawn drastically after a single

contradictory measurement. The rate at which the distribution

is upgraded actually depends on the refinement of the

membership functions definition. If a larger number of

members are used, the transformation between occupancy

states requires a larger number of consistent data confirming

the information. This makes the system very flexible to various

requirements of the task, especially for safety concerns.

Finally, it is interesting to observe how the fuzzy inference

engine behaves following perturbations from contradictory

measurements. Figure 9 shows how the distribution

progressively retrieves the information about the original

position of the object surface (at 0 mm) after having been

perturbed. For this purpose, the perturbed map obtained in

figure 8 is merge three times with the initial distribution

corresponding to the surface of the object at 0 mm. We observe

that the peak of occupancy risk is brought back to its initial

position after the second fusion with the consistent

measurement. However, another peak is preserved around +10

mm as a result of the perturbation. This behavior is perfectly

suitable as this area of space (behind the actual surface of the

object where distance > 0) cannot be measured from the sensor

viewpoint (located on the far left side) as it is in occlusion.

Fig. 8. Fusion with contradictory measurements.
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Fig. 9. Fusion of the perturbed model with the correct measurement.

As a result, we observe that such a fuzzy logic encoding can

be suitable for mapping the occupancy state of space.

Membership functions and evaluation rules can be defined to

successfully implement the progressive refinement behavior

obtained with a probabilistic scheme while avoiding the

complexity of conditional probability estimation. The resulting

encoding is more intuitive than approximate probabilistic

estimates that are required to make the other approach tractable

with large environments. As with a probabilistic scheme, the

uncertainty on measurements and registration is encoded in the

model as it influences the level of activation of membership

functions. Finally, the computational workload of fuzzy logic

inference engine can easily be kept tractable as only a very

limited number of evaluation rules are activated during a given

fusion process.

This approach also reveals to be suitable for robotics

applications where path planning and collision avoidance are

critical. As the fuzzy representation can directly be converted

to a linear distribution representing the risk assessment for

collisions in a given region of space, the same path planning

techniques can be applied both for a probabilistic or a fuzzy

occupancy representation of the environment [1,12].

V. CONCLUSION

This work demonstrates that fuzzy logic can

advantageously be used in the construction of continuous

occupancy models for robot path planning and collision

avoidance. Fuzzy descriptors provide a consistent and more

intuitive representation of the cluttering state of space and

allow to handle large quantities of information in a tractable

manner. A fuzzy logic inference engine is proposed that

implements data fusion with similar behaviors as those

observed under the application of the Bayes theorem for the

risk assessment of collisions in robotic applications. This

strategy is also under experimentation for modeling of

complete 3-D spaces following a search for spatial

intersections between fuzzy models of the occupancy state in

complex environments.
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