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Abstract— This paper introduces a new hybrid control 
architecture for solving the navigation problem of mobile robot 
in an unknown dynamic environment based on an actual-
virtual target switching strategy. This hybrid architecture is a 
combination of deliberative and reactive architectures which 
consists of three layers: modeling, planning and reaction. The 
deliberative architecture produces collision-free with shortest-
distance path, while using the reactive architecture generates 
safe and time minimal navigation path. The proposed approach 
differs from previous ones in its integration architecture, the 
control techniques implemented in each module, and interfaces 
between the deliberative and reactive components. Validity and 
feasibility of the proposed approach are verified through 
simulation and real robot experiments. 

I. INTRODUCTION 

The most significant issue in the development and design 
of autonomous mobile robots is the ability of the robot to 
plan collision-free motions and perform reliable navigation 
within its environment. Different control architectures have 
been proposed for autonomous navigation of mobile robots. 
These control architectures could be classified into three 
categories: Deliberative (Global) navigation, Reactive 
(Behavior-based) navigation, and hybrid (Deliberative-
Reactive) navigation (see [1] for a review of control 
architectures).  

The deliberative control architecture [2-4] consists of 
three modules: perception, planning and action. First, the 
robot uses a global model of the environment which is 
provided by user input or creates a model of a static 
environment by combining sensory information. Then it 
employs a planning module to search for an optimal path 
and generates appropriate plan to steer the robot towards the 
goal. Finally, the robot executes the desired actions to reach 
the target. Reactive (behavior-based) navigation architecture 
was developed by Brooks [5] to tackle the navigation 
shortcomings of the deliberative approaches in dynamic and 
unknown environments. Proposed reactive methods [6-9] 
employ a Planning-Reaction configuration where it is not 
necessary to build a complete model of the environment. 
The action generation is based on the currently perceived 
environment and the sensed data directly couples to the 
robot’s actuators. Although the deliberative and reactive 
architectures established a successful framework for mobile 
robot navigation, they cannot solve the navigation problems 
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individually. Some features of deliberative architecture can 
be combined with the reactive architecture to achieve a 
comprehensive navigation in a real world which is called a 
hybrid architecture. The hybrid control architecture [10-12] 
involves the advantages of planning in deliberative 
architectures for high level issues to develop an optimal plan 
and the quick response of reactive architectures in dynamic 
or unknown environments on the low level.  

Review of characteristics, advantages and drawbacks of 
different control architectures [1] and various path planning 
methods [6] show that: 1) the hybrid control architecture 
which utilizes the advantages from both deliberative (global) 
and reactive architectures is more robust and has better 
performance in unknown and dynamic environments, 2) the 
fuzzy logic navigation method is simple, fast and more 
coherent for reactive navigation and velocity control [13], 
and 3) the actual/virtual sub-goal approaches are more 
promising in the way to help the basic tasks of obstacle 
avoidance and to cope with the local minimum problem. 

This paper introduces a new hybrid control architecture 
for mobile robot navigation in an unknown and dynamic 
environment. This architecture is a combination of the 
deliberative and reactive navigation architectures which is 
developed based on a modeling-planning-reaction 
configuration. The modeling layer processes and interprets 
sensory information to create a local model of the 
environment. The planning layer is responsible for decision 
making to avoid obstacle collision and local minimum trap 
situations. This layer is developed based on the actual-virtual 
target switching strategy. The robot motion generation is 
handled by the reaction layer. The latter applies a fuzzy 
controller to control the robot’s rotational and translational 
velocities for fast reaction to the obstacles and optimization 
of the navigation time. 

II. PROPOSED APPROACH OVERVIEW 

The proposed hybrid control architecture is a 
combination of the deliberative and reactive navigation 
architectures which is founded on the use of three layers: 
Modeling, Planning and Reaction (Fig.1). The integration of 
the layers is based on a perception-planning–reaction 
configuration where both the planning and reaction layers 
concurrently use the local model of the environment 
constructed by the first layer in execution time. 

Initial locations of the robot and the global target are set 

arbitrarily by the user for each navigation task. The action 

selection and the interaction of the modules of each layer are 

based on obstacles configuration. As shown in Fig. 2, the 

action selection algorithm starts by constructing a local 

occupancy map using information from a laser scanner. 

Then, two conditions are checked based on the obstacle 
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position and the obstacle-free areas in the robot path toward 

the target:  

Condition 1- If there is not any obstacle in a straight-line 

path between the robot and the actual target, the reaction 

layer modules generate robot’s motion toward the actual 

target.  

Condition 2- If an obstacle obstructs the robot’s path 

toward the target, the planning layer generates a plan to 

move the robot away from the obstacle using an obstacle 

avoidance planner (OAP) or a local minimum planner 

(LMP) module. At the same time, the motion generation to 

move towards the actual-virtual target is executed by 

Steering control and Velocity control modules in the 

reaction layer.  

In the next section, the design and functionalities of the 

layers and their modules are detailed. 

 
Fig. 1:  Proposed hybrid control architecture. 

III. HYBRID CONTROL ARCHITECTURE DESIGN 

A.  Modeling Layer 

This layer integrates the sensory information to construct 

a local model of the environment. The local model of the 

environment represents the obstacles distribution in a part of 

the work space. It updates when new information about the 

environment is received by the sensor. A laser range finder 

(LRF) (Hokuyo URG-04LX) is mounted on the robot to 

facilitate navigation and obstacle detection due to its high 

precision in indoor environments. The laser scanner 

detectable range is from 20mm to 5.6m (1mm resolution) in 

a 240° arc area scanning range (0.36° angular resolution) 

and takes 100msec for a complete scan. In this work, the 

maximal scanning range of the LRF is limited to a 180
o 

arc, 

from −90
o
 to 90

o
 with respect to the robot heading direction. 

Therefore, there are 500 beams (180/0.36=500), with each 

laser beam line (Wi) representing a vector (di, ai), where di is 

the distance to an obstacle and ai is the angle of that obstacle 

from the robot heading. The output of each scan is a 

sequence of reflection points (L
P
) to locate a detected object 

in polar (p) coordinates: 

 

L
P 

={Li
p
=(di, ai)| Li

p
ϵP; i=0,1,….,Wi;0≤Wi≤500}        (1) 

 

Wi is the number of reflection points. The detected range 

set (L
p
) represents only the reflected points on the laser 

beams. A silhouette of the detected objects can be created 

based on the recorded ranges of di and ai [14]. As shown in 

Fig. 3a, a reflection point (Oxi, Oyi) is produced by 

determining the intersection point between the i-th laser 

beam line and the surface of an object in the environment. 

To simplify the recorded data in polar coordinates they 

should be converted into Cartesian coordinates: 

                    [
𝑂𝑥𝑖

𝑂𝑦𝑖
]= [

𝑑𝑖 cos( 𝑎𝑖)
𝑑𝑖 sin( 𝑎𝑖)

]                               (2) 

L
C 

= {Li
C 

= (Oxi, Oyi)| Li
C
 ϵ V; i=0,1,…., Wi}             (3) 

Where Li
C 

= (Oxi, Oyi) represents the position data of the 

recorded object in Cartesian coordinates. 

In presence of reflection points, the di value is labeled 

with 

                           dmin ≤ di ≤  dmax                              (4) 

Where, dmax is the maximal range of the LRF. The 

maximal range of the LRF is limited to 3m. However, if 

there is no intersection point between the laser beam and the 

object surface in the environment (di > dmax), then di = −1. 

Therefore, the presence of the obstacles and obstacle-free 

areas are identified by checking the di value. The 

consecutive points by which the di > dmin are clustered as 

obstacles and other points (di =−1) are clustered as obstacle-

free areas (Fig. 3b). 

In summary, this module integrates the sensory 

information and creates a local model of the robot’s 

surroundings. Furthermore, by updating the sensory data, the 

changes in a dynamic environment are reflected rapidly. 

Next, the obstacle avoidance planner uses the obstacle-free 

areas to plan an optimum path toward the target based on an 

actual-virtual target strategy. 

B. Planning Layer  

The planning layer generates a set of actions that steer 

the robot to a desired location. This layer is developed based 

on an actual-virtual target strategy to avoid obstacle collision 

and trap situations. If there are obstacles over the straight-

line path between the robot and the global target, the planner 

layer is applied to generate a path and guide the robot to an 

obstacle-free area. The planned path provides the next 

robot’s direction, but the motion generation will be handled 

by the reaction layer.  
This layer consists of two modules: an obstacle 

avoidance planner (OAP) and a local minimum planner 

(LMP). The OAP generates a virtual target to define an 

optimal collision-free path toward the global target. The 

LMP obtains a virtual target and computes a path to avoid 

local minimum trap situations. To choose a proper module 

dealing with obstacles, the first step is to find navigable 

areas among the obstacles. An area is navigable when it is 

wide enough so that the robot can pass through it toward the 

target. A navigable area is called a safe region. The safe 

region is computed as follows. First, a safety zone is defined 

around the robot bound to have more security. This safety 

zone is a circle with radius of r from the robot center. 

According to the obstacles position and the obstacle-free 

areas, the distance between obstacle edges (DOE) is 

calculated. Then, if DOE is greater than 2r, this area is a safe 

region. As shown in Fig. 4(a), there are three obstacle-free 
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areas and only two regions are navigable (Fig. 4(b)). Since 

the LRF scanning area is limited to 180
o
, to identify safe 

regions at the left and right sides of the robot, it is assumed 

that if there is no reflection point for the W0 or W499 (−90◦ or 

90◦ readings), then the d0 and d499 values are assumed equal 

to dmax. Fig. 4b-d illustrates the identification of the DOE 

and of safe regions in various situations that may occur for 

the robot during its navigation.  

 
Fig. 2: Action selection algorithm. 

 

   

(a) 

 
(b) 

Fig. 3: a) Definition of the robot’s coordinates and intersection point, 

b) obstacles position and obstacle-free areas. 

 

In such situations where there are safe regions, the OAP 

is activated and the nearest virtual target (NVT) method is 

applied to compute the collision-free path toward the target. 

The NVT employs a modified virtual target concept to 

obtain a safe path toward the global target in presence of 

obstacles.  
 

  
(a)                      (b) 

          

(c)                           (d)  

Fig. 4: Definition of a) DOE, and b-d) identification of safe regions in 
various situations. 

Once the safe regions are identified, the middle point 

(MP) of each DOE is calculated. Each MP can be considered 

as a virtual target. However, in determining the priority in 

choosing the shortest path, the closest MP to the global 

target and the robot has the highest priority. Therefore, in 

order to identify the shortest path towards the global target, 

the distance between the robot and MP (RMD), and the 

distance between the target and MP (TMD) are calculated. 

The sum of the RMD and TMD is computed for each MP 

(Eq. 5). 

                    S𝑖 = 𝑅𝑀𝐷𝑖 + 𝑇𝑀𝐷𝑖                               (5) 

Where i= {1, 2,…} represents the number of MPs. 

The minimum value of 𝑆𝑖 the shortest path 

from the current robot position to the global target. 

Eventually, the related MP which generated the shortest path 

is chosen as the virtual target. As shown in Fig. 5, there is 

two MPs according to the two safe regions, and 𝑀𝑃1 has the 

minimum distance to the target and the robot. Therefore, 

𝑀𝑃1 is considered as the virtual target. 

 

Fig. 5: 𝑀𝑃1 produces a virtual target. 
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As a result, the NVT generates an optimal path using 

virtual targets from the robot location to the destination. This 

instantaneous path is used to advise about the motion of the 

robot among obstacles without collision. Since the nature of 

the real world is generally full of uncertainties, it is 

necessary for the robot to have the capability of fast reaction 

to dynamic obstacles. To avoid collision with moving 

obstacles, each time the sensory information is updated 

while robot is moving toward a virtual target, wherever the 

straight-line between the robot and the actual-virtual target is 

obstructed by an unforeseen dynamic obstacle, a new virtual 

target is generated and the previous virtual target will be 

eliminated. Therefore, the robot follows a new obstacle-free 

path towards the target. For example, in Fig. 5, while the 

robot is moving toward MP1, if the instantaneous path is 

obstructed with a dynamic obstacle (Fig. 6a), then the robot 

translational velocity is reduced and MP2 is considered as a 

new virtual target. MP1 is eliminated and the robot turns 

towards MP2 (Fig. 6b). 

 
                                (a)                                        (b) 
Fig. 6: Dynamic obstacle avoidance: a) dynamic obstacle detected, and 

b) new virtual target generated. 

Furthermore, a fuzzy logic controller is applied to get more 

safety and faster reaction, as the robot’s velocity changes 

based on the obstacles position. Translational velocity 

reduces and rotational velocity increases in dealing with 

static or dynamic obstacles in close proximity of the robot. 

However, when the robot is surrounded by the obstacles and 

there are not any safe regions, a trap situation is likely to 

occur. Therefore, the LMP is responsible to plan a path to 

guide the robot outside the trap. 

C. Local Minimum Planner (LMP) 

A local minimum situation typically occurs only when 

the target is aside a long-wall, concave obstacles, or in 

maze-like and u-shaped environments. In this work, the local 

minimum situations are divided into two categories: visible 

and invisible. A local minimum is visible when the robot can 

detect the local trap situation completely, that is when the 

problematic configuration of space lies within the range 

sensor field of view and depth of field, as exemplified in Fig. 

7a. When the local minimum is visible, the OAP creates a 

path for the robot to move away from the local minimum 

(Fig. 7b). However, the robot may get trapped in invisible 

local minimum situations, that is when the local minimum 

cannot be detected using the local model of the environment. 

         

(a)                                                      (b) 
Fig. 7: (a) Example of a visible local minimum; (b) the OAP steers the 

robot to move away from a visible local minimum. 

As shown in Fig. 8, because of the sensory limitations 

the robot is not able to detect the local minimum completely 

and there is a navigable area in front of the robot to move 

towards the target. In such situation, the robot moves 

towards the inside of the local minimum and gets trapped. 

This section introduces a local minimum planner (LMP) 

using the “actual-virtual target switching” strategy to avoid 

the trap situations and find reliable and traversal paths 

towards the target. The LMP is a set of heuristic rules that 

require no memorizing.  

Each time a local minimum trap criterion is satisfied, a 

new virtual target is generated and the virtual target is 

appointed to replace the global target temporarily until the 

robot gets out of the trap and reaches to the virtual target. 

The virtual target location is computed as a function of the 

distance between the robot and the current actual virtual 

target (RTD), the obstacles position, and the difference angle 

between the robot heading orientation and the relative target 

direction (RTA), as shown in Fig. 9.  

 
Fig. 8: Example of an invisible local minimum trap situation. 

 

 

Fig. 9. Definition of RTA and RTD [7]. 

Since the environment is unknown and dynamic, the 
virtual target might be placed on an obstacle or not in a 
reachable location. Therefore, it is not required that the robot 
reaches exactly to the virtual target. Once the robot gets 
close to the virtual target, then the current target switches 
back to its previous location (either that of the global target, 
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or that of a previous virtual target if there was one defined). 
Whereas a local minimum is likely to occur, the target 
translates and rotates around the robot center according to 
the obstacles configuration and the RTA. The virtual target 
translation (VTD) is defined using the first or last obstacles 
position, within its possible scanning directions (Fig. 10a). 
Then, if the RTA > 0, the target rotates counter clockwise, 
and if RTA<0, then the target rotates clockwise about the 
robot center. Therefore, the new virtual target location is 
calculated as follows:  

 
If          RTA > 0    then       

Ө = RTA and VTDx = ROLx+αx ,  VTDy= ROLy+ αy  
 (6) 

       
If          RTA < 0   then 

Ө =RTA  and VTDx = RORx + αx, VTDy=  RORy+ αx                      

 
(7) 

 αx= αcos (ӨO) 

αy= αsin (ӨO) (8) 

 
Where the α parameter is an experimentally determined 

distance to locate the virtual target out of the trap with a safe 
distance from the obstacles (in this work α= 60 cm), ROR 
and ROL are detected obstacles on the left side and the right 
side of the robot respectively. ӨO is the ROR or ROL angle 
with respect to the base frame and Ө is the rotation angle 
about the robot center. The new i

th
 virtual target location can 

be computed as follows: 
 

[
 𝑇𝑥𝑖

 𝑇𝑦𝑖

1

]=[
1 0  𝑋𝑅

0 1  𝑌𝑅

0 0 1
] [

𝐶𝑜𝑠 𝜃 −𝑆𝑖𝑛 𝜃 0
𝑆𝑖𝑛 𝜃 𝐶𝑜𝑠 𝜃 0

0 0 1
] [

1 0 −𝑋𝑅

0 1 −𝑌𝑅

0 0 1
] [

𝑉𝑇𝐷𝑥
𝑉𝑇𝐷𝑦

1
] (9) 

 
where 𝑖 = {1,2, … . } shows the number of virtual targets 

created each time a new trap is detected;  Txi and  Tyi are the 

i-th virtual target coordinates, XR and YR are the robot 
coordinates, Tx0 and Ty0 refer to the actual global target 
coordinates which are defined by the user, and Ө is the 
rotation angle (Fig. 10b).  

 
(a) 

 
(b) 

Fig. 10. a) ROL and ROR definition, b) virtual target position in a local 
minimum situation. 

D. Reaction Layer 

The reaction layer generates the robot’s motion based on 

the model of the world or the path generated by the planning 

layer. The reaction layer steers the robot to reach the actual 

virtual target. Whether the robot should execute the obstacle 

avoidance, local minimum avoidance or target seeking, the 

modeling and planning layers are to recognize the plan and 

send it to the reaction layer. In other words, the planning and 

the modeling modules provide the input for the reaction 

layer. The modeling module provides information about the 

obstacle position (OP). The planning module obtains the 

virtual target information for the reaction layer. The outputs 

of this layer are the direction of the motion and the velocity. 

In the proposed hybrid architecture, the reaction layer 

consists of two main modules: the steering control module 

and the velocity control module.  

The steering control module is proposed to compute the 
motion direction. This module enables the robot to change 
the direction of travelling, which depends on the actual-
virtual target direction. The modeling and planning layers 
provide input for this module. The input of this layer is the 
actual-virtual target direction. This module output (RTA) is 
the angle between the robot current heading direction and 
the target direction. The RTA is used as the reference for the 
robot's steering command (Fig. 9). The value domain of 
RTA is [-180

o
, 180

o
]. 

The velocity control is responsible for the control of the 
robot’s velocity. A proper way to control the velocity of the 
robot is to use a fuzzy logic controller (FLC). The proposed 
fuzzy controller [6] has two inputs and two outputs. The 
FLC inputs are the obstacle position (OP) and the obstacle 
distance (OD). For 3-set partitioning of the OP and 5-set 
partitioning of the OD the fuzzy rules base contains 15 rules 
(Table 1). After fuzzyfication of inputs, the fuzzy inference 
converts fuzzy input sets to outputs. These fuzzy outputs are 
the rotational velocity (RV) and the translational velocity 
(TV). The rotational and translational velocities change 
according to the obstacles distribution. Where the robot is 
not surrounded with obstacles and the workspace is not very 
dense and cluttered, the robot can move with a higher speed 
towards the target in areas free of obstacles. However, the 
robot speed is reduced in the presence of obstacles to 
prevent collision with them over the robot path towards the 
target. 

TABLE 1.  The Fuzzy Rule Base. 
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IV. SETTING AND EXPERIMENTAL RESULTS 

To validate that the proposed approach complies with the 

objectives of this work, some representative results are 

carried out through real robot experiments. The 

experimentation was conducted on an ActivMedia P3AT 

robot in unknown and dynamic environments. The P3AT is 

a 4-wheel drive rectangular shaped holonomic vehicle from 

ActivMedia Robotics. The maximum translational velocity 

is set to 30 cm/s and the maximum rotational velocity is set 

to 60 deg/s. 

 

Experiment 1: Motion in very dense, cluttered and complex 

scenario. 

  
(a) 

 
(b) 

  
                                                        (c)                                                                    

 
        (d)                                                                                                      

Fig. 11. Robot trajectory in a very dense, cluttered and complex 

scenario. 

 

Experiment 2: Dynamic environment 

This example demonstrates the robot performance when 

dealing with dynamic obstacles (Fig. 12). As shown in Fig. 

12a, while the robot is moving towards the global target, a 

dynamic obstacle (Fig. 12b) obstructs the robot’s path 

towards the target. At the same time another obstacle on the 

right side of the robot is removed. Therefore, a new virtual 

target is generated at this point using the updated sensory 

information (Fig. 12c) and the robot changes its heading 

toward the new virtual target. Fig. 12d shows how the robot 

successfully passes through the moving obstacles and 

reaches the global target. 

    
(a)                                                 (b) 

 
(c) 

 
                                                 (d) 

Fig.12. Robot performance in a dynamic environment. 
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Experiment 3: Avoiding local minimum situation  

This example highlights the robot performance where it 

is surrounded by obstacles and there is not enough space for 

the robot to pass among the obstacles towards the target 

(Fig. 13a). The situation is considered as a trap situation and 

the local minimum planner is responsible to generate a 

virtual target outside of the trap. Therefore, the LMP 

generates a virtual target (virtual target 2) which temporarily 

replaces the global target (Fig. 13b) and then the program 

switches to the obstacle avoidance mode and the OAP steers 

the robot towards the new virtual target by generating some 

more virtual targets (virtual target 1) in safe regions 

according to the updated sensory information (Fig. 13b). 

Once the robot reaches the virtual target 2, the target 

switches back to its previous location (Fig. 13c) and the 

robot moves toward the global target (Fig. 13d). 

 

                                                                    

  
(a) 

 
                                               (b) 

                                                                                                           
                                                       (c)                              

    
                                                          (d) 

 
(e) 

Fig. 13.  Trajectory executed when the robot is surrounded by obstacles 
creating a local minimum. 

 

Fig.14. a) Steering control, b) rotational velocity, c) translational 

velocity for experiment 2. 
 

Comparison of performance of the proposed approach 

with some related works shows that most of the existing 

hybrid control architectures have difficulties for driving in 

very dense, cluttered and complex scenarios due to the 

typical limitations of their methods [15]. In some hybrid 

systems [16], the planning layer is used to compute the 

motion and perform an “any-time” planning instead of the 

reaction layer. In such architectures, the modeling and the 

planning layers can be synchronous or asynchronous. 

However, they do not benefit from the reflexive and 
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responsive part of the reaction module responding to 

unforeseeable circumstances in unknown environments. 

While alternative hybrid control architectures used reactive 

method for motion generation or obstacle avoidance and 

offered better performance in troublesome scenarios, they 

suffer from local minimum traps [17, 18], oscillations in 

dense scenarios [19, 20], and the inability to obtain shortest 

paths [21].The proposed hybrid control architecture benefits 

from the advantages of the reactive and deliberative layers 

which couple the high level motion planning with the low 

level one. The methods and techniques applied for each 

layer result in a reliable, safe and robust motion in 

troublesome scenarios.  

V.  CONCLUSION 

The navigation results demonstrate that the integration of 

the three layers generates a robust motion. First, the 

modeling layer creates the local model of the environment. 

Based on the obstacles configuration, the planning layer 

generates some virtual targets in obstacle-free areas to avoid 

obstacles and trap situations. Then the reaction layer steers 

the robot to move toward the actual virtual target. 

Eventually, the interaction and cooperation between the 

OAP module, the LMP module in the planning layer and the 

fuzzy controller in the reaction layer improve the navigation 

performance.  
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