
 
  

Abstract— This paper proposes an integrated solution for 
automated surface deformations detection and marking on 
automotive body panels in the context of quality control in 
industrial manufacturing. Starting from a 3D image of the 
surface of the panel, deformations are extracted and classified 
automatically. The positions of the surface defects are provided 
to a robotic marking station that handles pose and motion 
estimation of the part on an assembly line using passive vision. 
The integrated system is validated with an experimental setup, 
using an automobile car door panel. 

I. INTRODUCTION 
uality control in the manufacturing industry has 
traditionally been performed manually by workers.  

However, with advances in computers, robotics, and sensor 
technologies, automated inspection is quickly penetrating 
this area of operation, resulting in more accurate, efficient, 
safe and cost effective solutions. In the automotive industry, 
quality control is critical to ensure that automotive body 
parts meet predefined standards. Identifying deformations, 
such as undesired dings and dents on panels, and marking 
them so that they are repaired while still on the assembly 
line is essential. In current industrial settings, the procedure 
for identifying surface defects on automotive body panels 
often requires a laborious manual surface rubbing operation. 
Identified deformations are also manually marked with 
washable ink over the part. 
 To achieve fully automated panel inspection, feature 
extraction is preferably performed over 3-dimensional data. 
However, most approaches are best suited for determining 
features at a single resolution, and target defects of a 
specific size or scale [1]. Due to the possibility of 
deformations being of variable sizes, and because of 
variations in the sampling density of the scanner, feature 
extraction techniques usually rely on adaptive thresholds 
and variable levels of sensitivity to operate in different 
manufacturing scenarios. To accommodate a wider range of 
operational requirements, effective feature extraction 
methods have been proposed that use multiple independent 
passes to generate multi-resolution representations [2, 3]. 
While the techniques can provide accurate results, they also 
remain computationally expensive. The method developed 
in this work for feature extraction and classification directly 

 
The authors acknowledge the financial support from Precarn Inc., and 

the collaboration of Neptec Design Group Ltd and Honda Canada to this 
research. 

V. Borsu, A. Yogeswaran, and P. Payeur are with the School of 
Information Technology and Engineering, University of Ottawa, ON, 
Canada, K1N 6N5; e-mail: {vbors100,ayoge099,ppayeur@site.uOttawa.ca} 

handles features at various scales. It builds on an octree data 
structure to efficiently represent the multi-resolution 
features, and permits the grouping of local features to aid in 
the classification.  

On the other hand, autonomous marking of the locations 
where deformations appear over an automotive body panel, 
with a robotic system, requires that the pose and motion of 
the panel on the assembly line is accurately estimated. Under 
the general constraints of car manufacturing, the panel is 
either translating or rotating, describing a smooth and 
continuous motion. In most cases, the automotive body 
panels are unfinished at the stage of inspection. Therefore 
the texture and color properties of the surface are not 
strongly contrasting or easily detectable to help in solving 
the pose estimation problem. Additionally, the pose 
estimator needs to run without any exact CAD model of the 
panel, in order to maximize flexibility.  

Yoon et al. [4], and Chang et al. [5] pointed out the 
difficulties met in the cases of tracking and interacting with 
industrial bodies, which often suffer from a lack of 
prominent features. For pose estimation, the literature 
provides a number of alternatives to the feature extraction 
and matching problems [6, 7, 8, 9]. However, the reliability 
of these techniques on unfinished automotive body panels is 
highly affected by the lack of sharp and unique features 
visible over the surface. Therefore, given the operational 
constraints mentioned above, and the need to operate in real-
time, a feature-based tracking technique is privileged for 
pose estimation of the panel. The technique relies on a pre-
selected set of geometrical features associated with the 
panel’s structure that can be uniquely identified and 
consistently tracked on an image-by-image basis, along the 
inspection workcell. The feature tracking technique was 
introduced in [10] and uses the pyramidal implementation 
[11] of the Lucas-Kanade (LK) tracker [12]. The proposed 
approach combines a feature tracker with a calibrated stereo-
vision system. This eliminates the restrictions imposed on 
the types of motion that the panel might exhibit on the 
assembly line. As a result, a higher level of generality is 
achieved, when compared to other techniques [13, 14] that 
impose constraints on the movement of the tracked object. 

This paper builds upon initial versions of the pose and 
motion estimation algorithm [10] and the deformation 
detection method [15]. It details the integration of the 
various components that allow for scanning an automotive 
body panel, detecting undesired deformations over its 
surface, and marking the defects using a robotic arm, 
without human intervention beyond initialization. It also 
presents the validation of the automated inspection station. 
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Section II introduces the framework for the automated 
deformations detection and marking system. Sections III and 
IV detail the deformation detection and marking algorithms. 
In Section V, the experimental validation of the system is 
detailed and analyzed. 

II. INTEGRATED SOLUTION AND EXPERIMENTAL PLATFORM 
The major components of the proposed deformations 

detection and marking framework are shown in Fig. 1. A 
structured light sensor (SLS) [16] generates a colored dense 
3D reconstruction of the surface profile of the panel. It uses 
a stereoscopic pair of cameras and projected lighting under 
the form of a bi-dimensional pseudo-random color pattern 
which is scrolled over the surface. The pattern projected 
onto the unfinished metallic panel creates a set of artificial 
feature points that compensate for the lack of prominent 
ones. The 3D data acquisition setup is illustrated in Fig. 2.  

 
Fig. 1. Proposed deformations detection and marking framework. 

 
The 3D surface model of the automotive part represents 

the input to the surface deformations detection subsystem 
which focuses on 3D feature extraction, grouping and 
classification. The output of this subsystem maps the 3D 
locations of the surface deformations, expressed with respect 
to the left camera, CamLSL, of the SLS.  

 
Fig. 2. Surface modeler (SLS) and pose estimator (stereoscopic) used for 

robotic guidance. 
 

The robotic marking subsystem estimates the pose and 
motion of the panel on the assembly line, and performs the 
path planning to guide the marking. In order to guarantee 
consistent movements between the inspected panel and the 
robot’s end-effector, two inter-calibrations are performed. 
The first one involves the computation of the rigid 
transformation between the left camera (CamL) of the 
stereoscopic sensor that monitors the pose of the panel and 
the base reference frame of the robot, OB, as shown in Fig. 

3b. The second calibration relates CamL with the reference 
frame of the SLS, CamLSL. Since the positions of the surface 
deformations are obtained with respect to CamLSL, the inter-
calibrations make it possible to transfer these deformation 
locations into the robot’s reference frame, to guide the 
marking operation. 

In order to reproduce an automotive body panel 
inspection station in the laboratory, an experimental setup, 
shown in Fig. 3a, is used that includes a full-scale mock-up 
car door which is mounted on a 54cm sled system that 
operates as a short assembly line. The door model 
reproduces the generic characteristics of any typical car door 
at an early stage of manufacturing, including a smoothly 
curved surface as well as the inner and outer frames of the 
window opening. In addition to this, the door model also 
features a door handle and some appended deformation 
defects. 

A second stereo-vision system, shown in the upper part of 
Fig. 2, is located about perpendicularly to the panel surface 
and provides estimations on the pose and motion of the 
object in the workcell. The actual interaction with the panel 
is performed by a 7-DOF F3 CRS manipulator robot, 
mounted on a 2m track, which is equipped with a pointing 
tool as shown in Fig. 3b. Figure 3c shows a segment of a 
frame containing the projection of the pseudo-random 
pattern onto the scene by the SLS during the data acquisition 
process. Figure 3d illustrates the resulting textured surface 
map of the scanned car door. 
 

       
         (a)               (b)   

       
         (c)               (d) 
Fig.3. (a) Sled system with car door, (b) F3 manipulator robot with pointing 
tool, (c) bi-dimensional pseudo-random pattern projected onto car door, (d) 
textured point set surface map of scanned car door. 

III. 3-DIMENSIONAL DEFORMATIONS DETECTION 
The surface deformations detection module takes a 3-

dimensional mesh computed from the 3D point cloud 
generated by the SLS, extracts areas containing 3D features, 
and classifies them to identify dings and dents over the 
surface of the object. The detection of deformations operates 
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in three steps. The first stage extracts local features from the 
3D model. The second one groups local features into feature 
clusters to aid in the third and final stage of classification. 

A. Feature Extraction 
The feature extraction uses an octree data structure to 

generate a multi-resolution representation of the 3D mesh 
[15]. Then, using the standard deviation between surface 
normals as a metric, it removes uniform surfaces and leaves 
only the areas containing sharper variations of their normal 
orientation, indicating potential deformation features.   

Variations in the surface of a given region are estimated 
from the standard deviation of the surface normal vectors 
within that region. The performance of this algorithm is 
improved by using the area of each triangle as a weight to 
calculate the mean normal and standard deviation. This 
minimizes the effect of small noisy areas, overcomes the 
effect of non-uniformly distributed 3D points, and provides 
a more accurate representation of the variations over the 
region being analyzed. The evaluation of the standard 
deviation value facilitates the partitioning process, where 
high values indicate a potential feature, and low values 
indicate a relatively smooth or ultimately flat surface. 

First, the area of each triangle is calculated: 
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If, in a given volumetric node of the octree, the calculated 
standard deviation value is greater than a set threshold, the 
node is subdivided for further investigation at a higher 
resolution. The subdivision is realized by adding children to 
the node being investigated, and redistributing the surface 
mesh triangles into the children with each child representing 
a subdivision of the volume. This process is repeated until 
the tree has reached a maximum depth, corresponding to the 
finest resolution for the features. 

The final structure provides a tree where the surface 
triangles are distributed amongst the nodes. By retrieving all 
the nodes at a certain depth, the features at the 
corresponding scale can be identified by the portions of the 
mesh contained in the selected nodes. 

B. Feature Grouping  
After the features are extracted, the tree is analyzed to 

retrieve local information about the features over the mesh. 
This local information contains pieces of the deformation 
features. The feature grouping phase aims at grouping a 
collection of local feature pieces, at a given scale, to 
represent an actual larger deformation, such that information 
about size, shape, and other characteristics of that 
deformation can be determined, to aid in classification. 

 The grouping begins by considering only the extracted 
features at the deepest level of the tree. Given that features 
are mapped by triangles contained in the nodes, triangles at 
nodes that do not belong to the deepest level of the tree are 
removed, and are deemed non-feature triangles.   

Proximity determines whether nodes remaining as feature 
triangles should be connected as part of a feature group. 
Since each node represents a certain volume occupied by the 
mesh, any of them may contain some of the triangles that 
define the surface mesh of the object. Therefore, a relative 
occupancy, ρ, is defined as the total surface of those n 
triangles with respect to the overall volume of the node, v, 
that contains them. The relative occupancy can be calculated 
as follows: 
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At the desired scale, all nodes below a certain threshold of 
relative occupancy are also removed, such that outliers in 
the feature extraction are discarded. Remaining nodes that 
are spatially adjacent are connected, as described in Fig. 4. 
This algorithm results in several lists, each containing one or 
more nodes. Each list represents a different deformation 
feature at the desired scale which can then be classified.  

 
Fig. 4.  Grouping of feature nodes in the octree structure. 

C. Feature Classification 
A feature classifier is designed to identify feature groups 

that exhibit the characteristics of the deformation features to 
be detected, such as extra spots of welding, holes, or dings 
and dents. Deformations are characterized mainly by their 
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size and surface curvature. The classification phase provides 
the exact 3D locations of each deformation that is used by 
the robotic marking system. 

IV. ROBOTIC MARKING OF DEFORMATIONS 
The marking stage integrates the estimation of pose and 

motion of the door panel with a stereoscopic sensor (Fig. 2), 
which is precisely calibrated with the robot manipulator and 
the SLS. 

A. Algorithm for Pose and Motion Estimation 
Considering the structure of a car door, a set of 10 

prominent features, called the macro-features (MFs), are 
selected. They belong to the inner and outer frames of the 
door window. These macro-features are subsequently 
extracted and tracked over a sequence of images. Figure 5 
presents a block diagram of the pose and motion estimation 
algorithm.  

The process starts with a rough selection of macro-
features by the operator. This step is executed only once at 
initialization over the first image grabbed by CamR. This 
initial knowledge gives the system the capability to 
reconfigure itself when a subsequent door appears on the 
assembly line. The rough MFs are refined in the first step of 
the process, A, using the two images grabbed by CamL and 
CamR. The refinement procedure is performed with the Shi 
and Tomasi corner detector [7] with sub-pixel accuracy, in 
the image acquired by CamR. Additionally, the refined 
positions of the macro-features, which form the topological 
structure of the car door, in the image plane, are saved in a 
reference buffer.  

 
Fig. 5. Proposed pose and motion estimation algorithm. 

 

The pyramidal Lucas-Kanade tracker [11, 12] is used for 
guiding the correspondences of the macro-features between 
the two views of the scene. The resulting estimates of the 
position of the MFs in the CamL image are corrected by 
applying the corner detector [7] in the image grabbed by the 
left camera. Following this first estimation, the system can 
re-initialize the estimates provided by the tracker based on 
the motion vectors that will be calculated in step C. 

Once the correspondence problem is solved, a linear 
triangulation procedure [17] is employed for estimating the 
3D position of the macro-features in step B. This 3D data 
provides the input to the pose and motion estimation 
procedure which computes the rigid transformation that the 
panel has undergone between two successive images, 
collected by the stereoscopic camera pair, using least-

squares [18]. The following image capture represents the 
starting point for the computation of the motion vectors for 
the macro-features, using the pyramidal LK tracker [11, 12], 
in step C. The embedded monitoring stage of the MFs’ 
motion vectors returned by the pyramidal LK tracker [11, 
12] relies on the data stored in the reference buffer, which 
imposes geometric constraints on the distribution of the 
MFs. It is assumed that the scaling effects of the tracked car 
door, in the image plane, are minor during the entire motion 
sequence. As a result, the proposed feature tracking module 
overcomes the occlusions caused by the robot, and the 
sensitivity of the LK tracker [11, 12] to illumination 
changes, shading effects, or the temporary appearance of 
other objects in the scene. This tracking approach makes the 
solution suitable for real-time operation. Pose and motion 
estimation is terminated when the door panel exits the field 
of view of the cameras.  

While an image capture rate of fextr=0.5Hz is sufficient to 
achieve accurate marking over an assembly line that moves 
at 1.4cm/s, the pose and motion estimator can operate in 
real-time up to an update rate of fu=5Hz, when using two 
Point Grey Flea2 IEEE-1394a CCD cameras with CCTV 8.5 
mm lenses at a resolution of 640x480 pixels. 

B. Inter-Calibration of Vision Sensors and Robot  
In order for the robot to accurately mark the deformations 

on the automotive body panel, an inter-calibration must be 
performed between CamL of the stereoscopic sensor and the 
robot’s base. For this matter, a checkerboard pattern, which 
can be attached to the gripper, was designed. The calibration 
pattern is mounted in colinearity with the reference frame of 
the tool, OT, as shown in Fig. 6a. Given that the only 
transformation between the tool of the robot and the 
calibration pattern is a constant translation along the Z axis 
of the tool’s reference frame (Fig. 2b), the location of the 
checkerboard corners can be uniquely defined with respect 
to OT, and eventually, to the robot base, OB, knowing the 
robot’s kinematics.  

    
       (a)              (b)  

Fig. 6. (a) Image taken by CamL during the inter-calibration procedure,  
(b) plane interpolation and reference frame over the deformation area. 

 

To acquire a set of calibration feature points, the robot is 
successively driven to 15 different configurations such that 
the region of the workspace containing the automotive body 
panel over the visible section of the assembly line is 
covered. For each different robotic configuration, a 
synchronized set of images is acquired by both cameras, 
CamL and CamR. The stereo correspondence problem is 
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solved and the 3D positions of the calibration feature points 
are recovered, with respect to CamL. The rigid 
transformation from the robot’s base to CamL, QCB, is 
computed [18] using the amalgamated 15 datasets.  

To achieve the inter-calibration between the SLS used for 
3D imaging of the panel surface and the stereoscopic sensor 
used for pose and motion estimation of the panel, the same 
methodology, with synchronized data acquisition, is applied. 

C. Robotic Pointing of Surface Deformations 
The robotic interaction relies on the results provided by 

the deformations detector and the panel’s pose estimator. 
The robot is used to point the regions with deformations 
over the door panel. The fact that the locations of the surface 
deformations are readily provided in the base reference 
frame of the robot, OB, after inter-calibrations, simplifies the 
path planning for the robot to mark the deformations. This 
generic solution is adequate independently of the marking 
strategy, including the use of a marker tip or chalk, a 
stamping sponge or a spray gun. 

Beyond the locations of the detected deformations, the 
orientation of the marking tool, with respect to the area that 
the robot needs to point to, must also be specified. For that 
matter, a least-squares interpolation of a plane is computed 
from a set of 3D points, expressed with respect to CamL, 
that include the location of the surface defect, and a sub-set 
of points extracted from the 3D model of the object, 
acquired with the SLS, by applying uniform 2D sampling 
over a 3cm x 3cm patch centered over the detected 
deformation, as shown in Fig. 6b. A supplementary 
reference frame, Ov, is attached to the computed plane. Its 
origin is defined by the center of the deformation area, with 
the X and Y axes parallel to the interpolated plane vectors 
and the Z axis pointing out of the plane, perpendicularly to 
the local surface patch. The 3D vectors representing the axes 
of Ov are normalized to form a rotation matrix that defines 
the rigid transformation from CamL to the robot’s tool, QTC. 
The rotation matrix is estimated as: 

                      TC v v vR [Y | X | Z ]= − −
uur uur uur

                           (5) 
where the three linear independent columns are selected 
such that the tool reference frame, OT, becomes collinear 
with Ov, except for the Z axes that point in opposite 
directions. The translation component of QTC is estimated by 
the position of the deformation with respect to CamL. 
Finally, the transformation defining the pointing pose of the 
tool with respect to the base of the robot, QTB, is defined by: 

                            TB CB TC.Q Q Q= ⋅                               (6) 

V. EXPERIMENTAL VALIDATION 
The deformations detection module was tested on scans 

containing 32040 points of the door panel collected with the 
SLS sensor. A deformation protruding from the model by 
1.1cm with a diameter of 0.9cm was added, as well as a door 
handle extending from the door panel by 1.8cm over a width 

and height of 10cm and 1.8cm, respectively. Figure 7a 
presents the results of the feature extraction at a tree depth 
of 7. The results show that the deformation and the door 
handle are both extracted from the surface mesh. Various 
features such as the door curvature near the bottom, and the 
door frame and contours are also detected at that resolution. 
Although the deformation and the door handle are of 
different sizes and depths, the algorithm is able to separate 
those features from the curvatures and noise in the 3D 
model. The SLS scanner is capable of many resolutions, and 
at each resolution, the ability of the system to detect 
deformations is different. The current configuration of the 
system allows the detection of deformations at a minimum 
size of approximately 1cm x 1cm x 1cm. Using a 3D 
scanner with higher resolution allows detecting finer 
deformations, without any change to the detection and 
grouping algorithms. 

 

         
        (a)               (b) 
Fig.7. (a) Feature extraction, and (b) feature grouping results at depth 7. 

 

 The feature grouping algorithm is applied at the same tree 
depth. The results are shown in Fig. 7b, with each of the 
feature groups being framed. The door handle is grouped as 
a single feature, and the deformation is also isolated as a 
separate feature. While other features in the mesh also get 
grouped, they are removed during the classification stage as 
they do not meet the size or shape criteria of a deformation 
of interest, being either too large or too sparse.  

To evaluate the performance of the marking system, nine 
scenarios were considered, based on the pose of the door 
panel on the assembly line. For experimentation, a constant 
speed of vsled≈1.4cm/s was set for the sled system. 
Performance with three different orientations of the sled was 
analyzed. These orientations were obtained by rotating the 
sled system around the Yv axis (Fig. 6b), with different 
angles (θ0, θ1, θ2) = ( 0o , 10o , 15− o ). For each case, the 
deformations detection system provided the location of the 
deformations (w.r.t. CamLSL) when the panel was located at 
the beginning of the assembly line (PosA). The pointing 
operation was performed when the panel was located at the 
beginning (PosA), the middle (PosB) and the end (PosC) of 
the sled, each location being separated by 27cm. 

To ensure the integrity of the panel during testing, a 
safety reserve of δr=3cm was preserved between the 
pointing tip and the panel surface. Figures 8a and 8b 
illustrate the pointing operation in scenarios (PosB, θ1) and 
(PosC, θ2).  
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In order to monitor the accuracy of the pointing operation, 
the absolute errors, |ex|, |ey| and |ez|, characterizing the 
displacement error of the pointing tip to the center of the 
deformation, were measured, with respect to the axes of the 
robot’s base reference frame, OB. Table I presents the errors 
for the 9 scenarios considered. 

 

        
        (a)                                                   (b) 

Fig. 8. Deformation pointing results: (a) (PosB, θ1), (b) (PosC, θ2). 
 

TABLE I 
ACCURACY OF DEFECTS POINTING OPERATION 

Absolute 
Error 

POSA POSB POSC 

θ0 θ1 θ2 θ0 θ1 θ2 θ0 θ1 θ2 
|ex|(cm) 1 0.9 1.1 1.3 1.3 1.4 1.5 1.4 1.6 
|ey|(cm) 0.7 0.9 1 1.2 1 1.1 1.1 1.2 1.4 
|ez|(cm) 1.2 1.1 1.2 1.5 1.4 1.5 1.4 1.5 1.5 
 

The errors are fairly uniform in all directions and remain 
stable independently from the position or orientation of the 
panel along the track. The principal sources of error come 
from the limited resolution of the SLS sensor that slightly 
biases the exact location of the deformation over the panel, 
and from the accuracy of the pose and motion estimator, 
together with the rigid transformations estimated via the 
inter-calibration procedures. The latter two are largely 
influenced by the fact that the stereoscopic camera system 
must remain at a relatively large distance (about 3m) from 
the assembly line in order to provide a sufficiently wide 
field of view to track the panel over the entire inspection 
workstation. 

The precision achieved in this validation phase makes the 
approach suitable for marking with a stamping sponge or a 
spray gun, given that the objective is to mark the region that 
contains the deformation within a few centimeters accuracy. 
The exact location of the deformation within the marked 
region is easily determined by workers who will perform the 
repair in a separate station, using the marks as guides. For 
that matter the proposed solution represents a viable 
alternative to perform fully automated detection and region 
marking of deformations over large surfaces and for 
substantial volumes of production.  

VI. CONCLUSIONS AND FUTURE WORK 
This paper addressed the problem of automated 

identification and marking of surface deformation defects 
for quality control in the automotive industry. Starting from 
a 3-D surface mesh of an automotive part, feature extraction 
and classification techniques precisely determine the 

locations of undesired deformations and pass that 
information to an autoguided robotic marking system. The 
latter embeds a pose and motion estimator to track an 
automotive body panel on the assembly line. The 
experimental validation demonstrated that sufficient 
accuracy is obtained for reliable marking of deformation 
areas in a fully automated inspection station, which is able to 
sustain standard production rates in the automotive industry. 
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