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The  automated  servicing  of vehicles  is  becoming  more  and  more  a  reality  in  today’s  world.  While  certain
operations, such  as car  washing,  require  only  a rough  model  of  the  surface  of  a  vehicle,  other  operations,
such  as  changing  of a wheel  or filling  the  gas  tank,  require  a correct  localization  of  the  different  parts  of
the vehicle  on which  operations  are  to  be performed.  The  paper  describes  a two-step  approach  to  localize
vehicle  parts  over  the surface  of  a vehicle  in  front,  rear  and  lateral  views  capitalizing  on  a  novel  approach
based  on  bio-inspired  visual  attention.  First,  bounding-boxes  are  determined  based  on  a  model  of  human
visual  attention  to roughly  locate  parts  of  interest.  Second,  the  bounding-boxes  are  further  searched  to
finely tune  and better  capture  the  boundaries  of each  vehicle  part by means  of  active  contour  models.  The
utomotive vehicles
ehicle part identification

mage classification
ctive shape models

proposed  method  obtains  average  bounding-box  localization  rates over  99.8%  for different  vehicle  parts
on a dataset  of  120  vehicles  belonging  to  sedan,  SUV  and  wagon  categories.  Moreover,  it allows,  with
the  addition  of  the active  contour  models,  for a  more  complete  and  accurate  description  of vehicle  parts
contours  than  other  state-of-the-art  solutions.  This  research  work  is contributing  to  the  implementation
of  an  automated  industrial  system  for vehicle  inspection.

© 2015  Elsevier  B.V.  All  rights  reserved.
. Introduction

The increase in the number of vehicles on the roads generates
ew requirements for car dealers and garages to offer fast and effi-
ient service. While more complicated operations within the car
ill continue to require the high expertise of human technicians,
any simpler operations such as filling the gas tank or changing
heels could become automated and executed with the help of

ervicing robots in the near future. The successful execution of
uch operations requires an as-accurate-as-possible localization of
pecific vehicle parts to avoid excessive movement of the robotic
quipment that is usually time-consuming and leads to safety con-
erns.

The work in this paper addresses this issue by proposing a
ovel solution to the problem of localization of vehicle parts such

s wheels, windows, headlights and rear lamps, front and rear
umpers, lateral mirrors and gas tank trap in a set of images repre-
enting multiple views of vehicles. It initially proposes an original

∗ Corresponding author at: Université du Québec en Outaouais, 101 Saint-Jean-
osco, Gatineau, QC J8X 3X7, Canada. Tel.: +1 819 595 3900x1527.

E-mail addresses: ana-maria.cretu@uqo.ca (A.-M. Cretu), ppayeur@uottawa.ca
P. Payeur), laganier@uottawa.ca (R. Laganière).

ttp://dx.doi.org/10.1016/j.asoc.2015.02.032
568-4946/© 2015 Elsevier B.V. All rights reserved.
bounding-box approach to roughly locate vehicle parts based on
biological visual attention. Human visual capabilities are a rich
source of inspiration for the improvement of computational vision
algorithms, since human beings show a significantly superior per-
formance in interpreting visual scenes and extracting regions of
interest than most of the current machine vision technologies.
Mimicking the role of human visual attention that extracts rel-
evant regions of interest within a visual scene, a computational
visual attention model is used in the context of this work to iden-
tify areas of interest over the surface of a vehicle. Visual attention
models output a representation, called a saliency map (SM), in
which areas of high visual interest are highlighted [1]. The pro-
jection curves on the two  axes of the binary converted saliency
map, which appears as a features-of-interest map, contain impor-
tant information on the location of different parts of a vehicle and
allow for the identification of a set of bounding-boxes that contain
those vehicle parts. The set of bounding boxes is spatially adjusted
over the vehicle surface according to the category of the vehicle.
Active contour models (ACMs) [2] are then applied within the boxes
to obtain a finer description of the contour of each part of interest.

The proposed method goes therefore beyond state-of-the-art work
on vehicle parts localization that is in general limited to fixed sized
bounding boxes. It also allows the identification of a significantly
larger number of parts in different views, compared to the current

dx.doi.org/10.1016/j.asoc.2015.02.032
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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iterature that is generally restricted to a limited number of vehicle
arts and to a single view of a vehicle.

The paper is organized as follows: Section 2 presents the related
ork on the topic and Section 3 describes the proposed method for

ocalization and fine tuning of vehicle parts. Section 4 discusses
he experimental results and compares them with state-of-the-art
olutions. Finally, the conclusions and the future work are pre-
ented in Section 5.

. Literature review

While there has been a lot of interest in the detection of vehi-
les in images (a survey is available in [3]), there are relatively few
apers dedicated to the localization of vehicle parts in the literature.
ost of the existing work is concerned with the location of the vehi-

le license plates and logos [4–9]. In [4], an adaptive segmentation
echnique called Sliding Concentric Windows is employed to locate
he license plate. Chacon and Zimmerman [5] apply Pulse Coupled
eural Networks (PCNN) to generate candidate regions that may
ontain a license plate. To solve the same problem, Guo et al. [6]
ropose a hybrid method based on PCNN and wavelet analysis. The
ethod proposed in [7] to extract the vehicle plate region uses spe-

ific knowledge, such as the higher density of the plate region due
o the presence of characters.

A three-layer neural network, trained with texture descriptors
omputed from the front image of vehicles is used for car plate
nd logo recognition in [8], while in [9] the vehicle license plate
ocation is followed by a coarse-to-fine method to identify the logo
ased on a phase congruency feature map. A summary of various
ther techniques for plate localization and recognition is presented
n [10].

A simplistic solution for side-view car fitting based on a sketch
ehicle template is proposed in [11]. Brehar et al. [12], identify
he pillars in side views of vehicles, based on a rough selection of
bjects that are likely to have one or two wheels based on circular
ymmetry, followed by an adaptive boosting classifier built using
istograms of oriented gradient features. Because the solution is
ased on the detection of wheels, the approach cannot be directly
pplied for frontal or rear views. Lam et al. [13] identify different
ehicle components such as: roof, windshield, bonnet, side win-
ows, lower front of car (grille, headlight and front bumper) and

ower side of car (wheels and door panels) in a monocular traffic
mage sequence using a topological structure of the vehicle based
n multi-scale textural couriers. The vehicles are divided into mul-
iscale regions based on the center of gravity of the foreground
ehicle mask and the calibrated-camera parameters. A series of
hree key feature points, selected based on the assumption that
ars have generally a windshield and headlights, allows for the
dentification of parts. The method is not directly extendable to
ear views as the windshield is not visible and there is an uncer-
ainty that the same key feature points would be useful in this
ase. Chang and Cho [14] detect in real-time the bumpers and
heels of a moving vehicle, viewed from the lateral side only, using
aar-like features. The algorithm capitalizes on temporal corre-

pondence to reduce the search zones for parts, by verifying when
 vehicle enters, and respectively exits the video frame. For this
eason this approach cannot be directly applied for frontal or rear
iews. More recently, Chávez-Aragón et al. [15] proposed a method
or vision-based detection of vehicle parts such as bumpers, win-
ows, door handles, wheels, lateral mirror, windshield, center, roof,
eadlights and rear lamps in lateral views. The approach is using
 geometrical model to determine feasible search areas for parts
nd a cascade of boosted classifiers based on Haar-like features to
etect the parts within each feasible zone, in a fixed sized bound-

ng box style. The algorithm first identifies the two wheels in a
puting 31 (2015) 369–380

side view of a vehicle, and their relative position in order to deter-
mine the location of other parts with respect to it. Therefore this
solution is not suitable neither for the identification of parts in
frontal or rear views. In [16,17], the license plate and rear lamps
(only red ones), are localized in rear images of cars using their dis-
tinctive color, texture, and expected regions in the context of an
urban traffic surveillance application. This sort of approach does
not work on the detection of parts that are not clearly identified
as having a different color or texture or on different views of a
vehicle.

The current paper builds on previous work of the authors on the
topic [18,19] and goes beyond state-of-the-art solutions by initially
proposing a novel, better performing bounding box approach based
on visual attention to roughly identify the position of vehicle parts
in a first phase. Following a simple initialization stage, in which the
user selects from a series of bounding boxes over the surface of a
single vehicle the ones of interest for his/her application, the nov-
elty of the approach consists in adapting a visual attention model
to automatically adjust the bounding boxes to better fit these parts
of interest for any other vehicle category. Therefore this initializa-
tion step allows for a smooth and simple adaptation to any specific
application that requires the identification of vehicle parts and con-
tributes to ameliorate the performance by only processing relevant
information. A significant advantage of the proposed solution is
that, unlike other approaches available in the state-of-the-art lit-
erature, it can localize a larger number of parts and operates from
different views (e.g. side, frontal or rear) of a vehicle. The solu-
tion is also further improved in order to obtain a finer description
of the contour of each part discovered in a given view by using
ACMs in each bounding box. A thorough comparison performed
with similar work shows the superior performance of the proposed
approach.

3. Localization of vehicle parts based on visual attention
and active contour models

The proposed system for localization of vehicle parts is com-
posed of two  major steps: an initialization step and a refinement
step and its main blocks are illustrated in Fig. 1.

In the initialization step, all the images in the dataset are aligned
to a reference image (usually the one belonging to the first vehi-
cle in the dataset) and their saliency maps (SMs) are built based
on a model of human visual attention. The category of each vehi-
cle is determined based on the SM using the solution proposed in
[19]. For each category of vehicles (here sedan, SUV and wagon
categories are considered), an average SM model, SMavg cat view,
cat ∈ {sed, SUV, wag}, view ∈ {1,2,3,4} is built for each view of a vehi-
cle by summing the individual SM models viewed from a given
direction and dividing the resulting model by the number of vehi-
cles within the category, or in other words, by the number of
individual SM models. The views for each vehicle are provided
by four distinct cameras situated around the vehicle, one in front
(view 1), one in the back (view 2) and the other two on the lateral
sides (views 3 and 4). Due to this specific setup that is compatible
with the proposed application, the view from which the vehi-
cle is seen in an image is known because it comes from a given
camera.

This average SM model serves as a basis for the identification
of category-specific bounding boxes BBcat view. The bounding boxes
are determined by projecting the average SM model on its X and
Y axes and extracting the local minima and maxima over the pro-

jection curves. These local extrema contain important information
on the position of different parts of interest, as will be detailed
in Section 3.1. The coordinates of the local minima and maxima
serve as coordinates for the bounding boxes. The average model of



A.-M. Cretu et al. / Applied Soft Computing 31 (2015) 369–380 371

f the 

a
a
o
t
b
a
b
u
s
w
b
c
a
v
t
p
t
a
b
t
m
a
t
m
Y

S
c
r
a
c
f
m

Fig. 1. Overview o

 sedan, SMavg sed view, is considered as a reference vehicle model
nd is the only one for which the user selects among the boxes, the
nes that contain parts of interest. Therefore the proposed solu-
ion requires the user to only intervene in the initialization stage
y choosing the bounding boxes in one vehicle saliency map  from

 desired viewpoint. In the case illustrated in Fig. 1, the choice of
ounding boxes is made over the average sedan saliency map  (the
ser intervention takes place in the third box of the initialization
tage in Fig. 1), but any other vehicle category could be used as
ell without impact on the performance. This initial setup can be

eneficial in the sense that the user might be interested in spe-
ific vehicle parts and/or in a specific viewpoint for a particular
pplication. The selection of only the required parts of interest and
iewpoints can have a positive impact on the associated compu-
ation time, as it will avoid the non-necessary computation for all
arts and all viewpoints. This model is then automatically adjusted
o fit the position of the bounding boxes for other vehicle categories,
s further detailed in Section 3.2. By computing the difference
etween the local minima and maxima on the X axis obtained on
he average SM of any other category and the local minima and

axima on the X axis of the sedan, the boxes can be displaced
utomatically to the left or right to better fit the shape charac-
eristics of the new category. In a similar way, the boxes can be

oved up or down based on the local minima and maxima on the
 axis.

Each time an image of a vehicle is presented to the system, the
M is computed and this information is used to categorize the vehi-
le. The same information is also used to align the image with the
eference image. Up to this stage, the proposed method identifies

reas where a part could be situated and does not attempt to pre-
isely locate the part within its corresponding bounding box. To
urther refine the contours of each part of interest, the solution

akes use of active contour models (ACM) within each adjusted
proposed system.

bounding box. One ACM is used for each part of interest. The ACM
is initialized within the bounding box corresponding to the part of
interest as determined in the initialization step, and is applied on
the initial color image. The advantage of using ACMs is that, even if
the part of interest is partially out of the determined bounding box,
by iteratively moving towards the contour of the part of interest,
the model adapts to fully capture it. The procedure is detailed in
Section 3.3.

Finally, the resulting contours are overlaid on the initial image
for display and performance evaluation. This information can be
further used by a robot to efficiently and accurately reach any
part of interest over the vehicle to perform automated servicing
provided the cameras are properly calibrated within the robot’s
workspace.

3.1. Bounding box localization of vehicle parts based on a model
of human visual attention

The main idea behind the bottom-up visual attention compu-
tational model of Itti et al. [1] that is largely followed in this work,
is to compute several features derived from a color image pro-
vided as input and fuse their saliencies into a representation called
saliency map. Several features such as: the intensity (I = (R + G + B)/3
where R, G and B are the red, green and blue color channels), the
color (represented by the red-green, RG,  and blue-yellow, BY,
color opponency) and the orientation are computed in parallel.
Feature-dependent saliencies are then calculated for each of the
three feature channels. Center-surround operations modeled as
a difference between fine and coarse scales are applied on all

features. Each feature set is stored in feature dependent saliency
maps, so called conspicuity maps, denoted C̄  for color, Ō for
orientation and Ī for intensity, in form of grayscale images where
the intensity of each pixel is proportional to its saliency. The color
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Table 1
Comparison of average recognition rates for the three vehicle categories.

Sedan (%) SUV (%) Wagon (%)

SIFT key points 73.2 67.9 81.2
Harris corners 76.5 67.9 81.0
DoG features 88.2 89.6 93.5
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Gabor features 87.1 92.4 93.5
SM-based features 91.2 94.4 94.8

onspicuity map  is calculated as C̄ = ⊕
c
⊕
s
N(RG(c, s)) −

(BY(c, s)), c ∈
{

2, 3, 4
}

, s = c + ı, ı ∈ {3, 4}, where c represents
he center-scales, s are the surround-scales, ⊕ represents an across-
cale addition, N represents the normalization operation by (G − L)2,
here G is global maximum in the map  and L the average of local
axima in the same map. The color opponency components RG(c, s)

nd BY(c, s) are calculated as RG(c, s) =
∣∣(R(c) − G(c)) � G(s) − R(s)

∣∣
nd BY(c, s) =

∣∣(B(c) − Y(c)) � Y(s) − B(s)
∣∣ respectively, where �

epresents an across-scale subtraction operation, as in [1]. The
ntensity conspicuity map  is computed as: Ī = ⊕

c
⊕
s
N(

∣∣I(c) ) � I(s)
∣∣).

inally the local orientation information is obtained from the inten-
ity image I, using oriented Gabor pyramids of different scales and
ifferent preferred orientations � and the orientation conspicuity

ap  is Ō =
∑

�

N(⊕
c
⊕
s
N(O�(c, s))), with O�(c, s) =

∣∣(O�(c) � O�(s)
∣∣,

nd preferred orientations � = {0◦, 45◦, 135◦, 180◦}. These three
onspicuity maps for color, intensity and orientation are summed
p in the final saliency map, using the formula SM = (C̄ + Ī + Ō)/3.
he full implementation details are available in [1]. In this work,
he computational attention model is used to identify the areas of
nterest in the images representing front, back and lateral views
f vehicles belonging to the three categories, i.e. sedan, SUV, and
agon.

The saliency map  SM plays a triple role in the context of this
ork. It first allows the identification of the category of vehicle.

 method that was proposed for image-based vehicle classifica-
ion based on SM and support vector machines is used for this
urpose. Full details are available in [18]. The method achieves
lassification rates between 86.9% and 96.2% for the three cate-
ories of vehicles used in this paper when the views from front,
ack and lateral sides are considered separately and an average
ate of 94.3% when the decision from all four views is considered.
dditional tests were performed to compare the average recogni-

ion rates for the three vehicle categories and the results are shown
n Table 1. It can be observed that the SM-derived features obtain
etter results for vehicle classification (with an average of 93.5%
ver the three above-mentioned categories) than SIFT key points
average of 74.1%), Harris corners (average of 75.1%), Difference-
f-Gaussians (DoG) features (average of 90.4%) and Gabor features
average of 91%). It is important to state as well that the computa-
ion time of SM-based features is in line with the one of Gabor and
oG features.

Secondly, the SM provides the necessary information for the
lignment of vehicles with the reference image. Images are aligned
uch that the center of all vehicles corresponds with the center of
he vehicle in the reference image. The center is computed based
n the width and height projection curves of the corresponding SM.
n order to compute the width and height, the image representing
he SM is initially converted to black and white, using the Otsu
hresholding method to obtain SMbw. The vertical and horizontal
rojection curves are built by summing all the columns of SMbw

o obtain width information, w,  and all the rows to obtain height
nformation, h. The horizontal projection curve is then searched
tarting from the left until a value different from 0 is identified.
ach time a value of 0 (empty background) is encountered, the
Fig. 2. Average saliency map for sedan category from (a) lateral and (b) front view.

value of the width, w, originally initialized to the full width of the
image, is decreased by 1 pixel. When the first value different from
0 is encountered, the search from the left direction is stopped.
The same procedure is used from the right direction by decreas-
ing the remaining width value, w, until a value different from 0 is
found. A similar top and down search is performed on the verti-
cal projection curve to compute the height, h, of the vehicle in the
image. The center of the vehicle is computed based on the width
and height information, as: C(x, y)|x = Xnz + w/2, y = Ynz + h/2 or
in other words, having the X coordinate equal to the coordinate
where the first non-zero value appeared in the horizontal projec-
tion curve (where the body of the car starts), Xnz, plus half of the
computed width, and the Y coordinate as the Y coordinate where
the first non-zero value appeared in the vertical projection, Ynz, plus
half of the computed height. The reference center value is computed
for the reference image. A translation is performed to move the cen-
ter of any other image to the reference center and therefore align all
vehicles. While the approach can be sensitive to scaling effects, it is
constrained by defining a specific setup where the vehicle is parked
in the bounded perimeter of the four cameras and therefore no sig-
nificant scaling effects take place. Moreover, to further circumvent
the problem, all images and the corresponding saliency maps can
be rescaled to the size of the reference vehicle after the catego-
rization stage (where the size plays significant role for distinction
between vehicle categories).

Thirdly, the SM provides the necessary information for identi-
fication of vehicle parts. Fig. 2 shows the average SM model for
the sedan class, computed over 41 samples of sedan in the dataset
viewed from the lateral and front views.

The SMs  are presented as negatives (e.g. 1 − SM) for better visu-
alization of the results. In the image, the areas of higher interest are
marked by darker shades. The projections on the X and Y axes of
these average models are illustrated in Fig. 3a,b for the lateral view
and in Fig. 3e,f for the front view, respectively. The local maxima
and minima are not local maxima and minima from a strict mathe-
matical sense, but rather peaks (local highest point, around which
there are points lower by a given amount, e.g. 0.35 in the current
application, on both sides) and valleys of the curves. Local maxima
are displayed with red stars/bars and local minima with green in
Fig. 3. Local maxima, M,  and minima, m are used together to achieve
better localization of different parts of interest along the projection
profiles. Fig. 3c,g show the correspondence between the projection
curves on the X axis and different parts of the vehicle viewed from
lateral and front, with red vertical lines representing the values of
local maxima and the green lines those of the local minima. One
can notice, for example, in Fig. 3c that the first maximum corre-
sponds roughly to the beginning of the headlight, while the second
and third maxima frame roughly the location of the wheel. Simi-
larly, local maxima along the Y axis, illustrated in Fig. 3d,h for the
two views, provide an estimate of the location of parts. For exam-
ple, in the lateral view in Fig. 3d, the front and back bumpers and
the wheels are situated between the first and second local maxima
(shown in red), starting from the bottom of the figure.
By using jointly the information on the two  axes, as illustrated in
Fig. 4a,c for the lateral and front view respectively, a grid is obtained
that provides an approximate localization of the different parts of
interest.
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ig. 3. Projections on X axis (a) for lateral view and (e) for front view, projections 

ocal  minima in green; and correspondence between projections on (c) and (g) the X
egend,  the reader is referred to the web version of this article.)

Fig. 4b,d shows the selected bounding boxes corresponding to
he parts of interest. For example, in the lateral view illustrated in
ig. 4a, the front bumper is situated in the box that ends with the
rst local minima (green) on the X axis and between the two  first

ocal maxima (in red) on the Y axis from the bottom of the figure.
he corresponding rectangle is shown in yellow in Fig. 4b, which
lso displays all the parts of interest visible in the lateral view: the
umpers are located within yellow rectangles, the head and back

amps in green, the wheels in red, the door handles in magenta,
he windows in blue, the mirror in cyan and the gas trap within
he orange rectangle. For the front view, the same colors are used
o localize the wheels, mirrors, windshield and front lamp. In this
ase, the grille is marked by a magenta box and the vehicle logo
y a yellow box. In a similar way, average models can be built for
ther vehicle categories. The discovery of parts of interest from
he grid is solely based on the projection curves. In the current
olution, their position is user initialized for the sedan class and
djusted automatically for all other vehicle categories. If the user
esires to add other parts of interest, he can choose manually the
orresponding bounding boxes for these parts in the grid (only once
nd only for the sedan class).

Additional tests were conducted in order to evaluate the capa-
ility of classical edge detectors to perform the same task and to
otentially replace the SM-based solution for rough identification
f parts of interest. In particular, Canny and Sobel algorithms were
sed in a similar manner to the SM-based approach, to initially

uild an average edge model, corresponding to the average saliency
ap  illustrated in Fig. 2, and the resulting curves were projected on

he X and Y axes as in Fig. 3a,b and e,f to find associations between
xtrema and the parts of interest. No association could be identified

ig. 4. Grid for definition of bounding boxes for (a) lateral view and (c) front view, and b
iew.  (For interpretation of the references to colour in this figure legend, the reader is ref
xis (b) for lateral view and (f) for front view, with local maxima shown in red and
and (d) and (h) the Y axis. (For interpretation of the references to color in this figure

in this case, with or without the application of filtering operation
to smooth out the curves, due to the extremely high number of
extrema and the roughness of the curves.

3.2. Adjustments of the location of bounding boxes for other
vehicle categories

The knowledge available about the local maxima and minima
of the projection curves on the two axes allows for the automated
adjustment of the position of bounding boxes to better fit the aver-
age models from different views of other categories of vehicles.
Fig. 5 shows the difference between the projection curves of the
SUV average model (in red), computed over 49 samples of SUVs in
the dataset, and those of sedan (in blue) for two views. Only the
maxima are shown not to overload the figures. The first, third and
last maxima on the X axis in Fig. 5a as well as the third maxima
from the bottom in Fig. 5b correspond for the two  vehicles, but are
not visible in the figure due to their overlap.

One can notice that some small adjustments can be made to fit
the bounding boxes of the sedan over the SUV  model. For example,
to better fit for the SUV category, the front wheel bounding box, sit-
uated between the second and third maxima on the X axis in Fig. 5a
and between the first and second maxima from the bottom on the
Y axis in Fig. 5b, has to be moved slightly to the right (proportional
to the difference between the second local maxima for sedan and
second local maxima for SUV) and slightly lower (proportional to

the difference between the first local maxima for sedan on the Y
axis and the first local maxima for SUV on the same axis). In those
cases where more peaks are present in the profile of another cat-
egory, the average of their values is computed and mapped to the

ounding boxes corresponding to parts of interest in (b) lateral view and (d) front
erred to the web  version of this article.)
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ig. 5. Differences between SUV (in red) and sedan (in blue), first column: X profil
d)  front view. (For interpretation of the references to colour in this figure legend, t

losest value in the sedan profile. The algorithm for the adjustment
f boxes based on local maxima, MY, along the Y direction is summa-
ized below in pseudo-code, where Mref Y denotes the local maxima
n the Y axis derived from the reference model (e.g. SMavg sed view).

Adjustment algorithm for bounding boxes
Set the amount of adjustment, adjMY = 0; amnt = 5 (number of pixels to the left

and right of the local maxima in the reference model where a search is
performed for local extrema in the profile of the category to be adjusted);
for  all the elements of Mref Y

for all the elements of MY

build a list of values in MY within the amnt number of pixels:

MYL =
{

MY |Mref Y − amnt < MY < Mref Y + amnt
}

;

end
if  MYL = ∅ (MYL is empty) then adjMY = 0;
else
if MYL has one element

if the local maxima coincide in the two profiles MYL(1) = Mref Y then
adjMY = 0

else the adjustment is the amount of difference between the local maxima
adjMY = MYL(1) − Mref Y;

else
sort the elements of MYL in descending order to build MYL sort;
amount of adjustment is the difference between the average of values in

the  profile to be adjusted minus the value of the reference maxima:

adjMY = �[(MYL sort/size(MYL sort)) − Mref Y]

end
end

end
a) side view and (c) front view, and second column: Y profile for (b) side view and
der is referred to the web version of this article.)

The main idea of the algorithm is to search for similar local
extrema over the X and Y axes in the projection profile of the ref-
erence average saliency map  of a vehicle (sedan in this case, e.g.
SMavg sed view, but any other category could be chosen as well) and
the projection profiles of any average saliency map  belonging to
other vehicle categories. The search takes places in the projection
profile of the average saliency map  of the new category in the areas
corresponding to each local extrema of the projection profile of
the reference saliency map  over the X and Y axes respectively, and
within amnt pixels to the left and right of each extremum. Once an
extremum is identified in the projection profiles of the new vehi-
cle category, the amount of displacement is calculated between the
local reference extremum and the local extremum of the new cate-
gory projection (e.g. adjMY for the Y axis and similar for the X axis).
The corresponding bounding box, situated at the local extrema in
the reference model is then moved in space with this displacement
over X and Y axes respectively, resulting in a better fit of the bound-
ing box for the new vehicle category. If no extremum is identified in
the search region or the displacement is 0, the bounding box keeps
its original position.

Only those local maxima are considered that frame the selected

bounding boxes representing different parts, namely the ones that
determine the boxes illustrated in Fig. 4b or d. A similar procedure
is followed for the local maxima on the X axis and the local minima
on the X and Y axes.
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Fig. 6. Reference bounding boxes of sedan superimposed over the average SUV model for (a) lateral view and (c) front view, and adjusted position of bounding boxes for
SUV  for (b) lateral and (d) front view.

Table 2
Parameters for ACM for different vehicle parts.

Vehicle part Pixels around centre on X axis/pixels around centre on Y axis/number of iterations/�

Front view Rear view Side views

Wheels ±5/±5/20/0.05 ±5/±5/20/0.05 ±2/±2/20/0.05
Windows ±20/±5/25/0.05 ±20/±5/25/0.05 ±4/±3/50/0.05
Bumpers N/A* N/A ±3/±3/50/0.05
Handles N/A N/A ±2/±2/40/0.05
Lights ±5/±5/40/0.05 ±2/±2/40/0.05 ±2/±2/40/0.05
Grille ±4/±10/95/0.05 N/A N/A
Mirror ±4/±4/15/0.05 N/A ±2/±2/15/0.05
Logo ±2/±1/45/0.05 ±2/±1/45/0.05 N/A

N/A
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Gas  trap N/A 

* N/A denotes parts that are not perceived in the specific view.

Fig. 6a,c illustrates the uncorrected bounding boxes from for
he sedan model that are directly projected from the SM to the
UV. Fig. 6b,d shows the better fit of bounding boxes when adjust-
ents are performed. It can be seen that they fit better the different

arts of interest. For example, when comparing Fig. 6a with b, the
orresponding bounding boxes for the wheels, in red, and for the
ateral windows, in blue, are better centered over the wheels and

indows surfaces respectively and they cover the wheels and win-
ows entirely in Fig. 6b, which is not the case in Fig. 6a. The same
tates for the headlamps in Fig. 6d with respect to those in Fig. 6c.
djustments for any other category of vehicles are obtained in a
imilar way.

.3. Fine boundary tuning for vehicle parts using active contour
odels

In order to refine the boundaries of the different parts of inter-
st for the vehicle, active contour models (ACMs), particularly the
ctive contour models without edges of Chan and Vese [2] are
pplied over the initial color image, as briefly described in the
eginning of this section. The ACM is initialized for all parts of

nterest with a small rectangle situated around the center of the
ounding box. The coordinates of the center of the box (xc,yc) are
omputed based on the width and height information, as described
n Section 3.1, and a given number of pixels is added to the left

nd right (along X axis), up and down (along Y axis) of this center
o create the small initialization rectangle for the ACM. In order to
etermine the number of pixels to be added to the center for each
f the parts of interest, the average size (width along x axis, denoted

ig. 7. (a) ACM model, (b) ACM model after hole filling, (c) model constrained in the bou
nitial image.
 ±1/±5/20/0.05

wa and height, along y axis, denoted ha) of each bounding box cor-
responding to this part is calculated over all vehicle categories,
namely sedan, SUV and wagon. The coordinates of the initializa-
tion rectangle are then computed as x = xc ± int(wa/4), y = yc ±
int(ha/4) and are illustrated for each part of interest in Table 2.
Given that these parameters are automatically calculated, the user
does not need to select them empirically neither for the dataset
in the context of this work, nor for any other dataset. One can
notice that the size of the initialization rectangle is different for the
front/rear and the lateral views and this occurs due to the change
in the size of different parts with respect to the entire image. It is
also worth mentioning that in the dataset used for experimenta-
tion, the size of vehicles viewed from the sides is relatively smaller
with respect to the front and rear views and this also impacts the
size of the rectangle used for ACM initialization. The number of iter-
ation steps is determined experimentally as the minimum number
of steps required to capture a part of interest and is kept constant
for each part for all the vehicles. Aside from the parameters shown
in Table 2, some additional specific constraints are imposed for
different parts as it will be further discussed.

Fig. 7 illustrates an example for the detection of the front win-
dow for the side view of a sedan. Fig. 7a shows the ACM model,
Fig. 7b illustrates the result after the holes in the ACM model are
filled. It can be observed that (as in almost all cases dealing with
internal parts) the ACM captures more than the desired part.
Therefore only the part of ACM situated within the initial bound-
ing box (including a small tolerance of up to 3 pixels, to cope with
small errors in the bounding-box positioning) is considered, as
illustrated in Fig. 7c. The boundaries of the detected regions of

nding box corresponding to front window and (d) ACM contour superposed over



376 A.-M. Cretu et al. / Applied Soft Computing 31 (2015) 369–380

F ferences to colour in this figure legend, the reader is referred to the web  version of this
a

i
p
i
l
r
t
t
a
a
a
d

e
f
r
r
o
m
a
l
r
t
s
w
t
c
t
a
s
i

t
o
t
i
w
t
a
w

a
(
t
a
i

ig. 8. Detection of (a) red and (b) non-red rear lamp. (For interpretation of the re
rticle.)

nterest are displayed to frame the fine localization of different
arts of interest over the initial image in Fig. 7d. The same approach

s used to detect the front and rear bumper, the grille, the head-
ight and the door handles. For the handles, an additional constraint
eferring to the size of the part (e.g. larger than 3 pixels) is imposed
o allow for the elimination of small outliers in the ACM model
hat result from the changes in door curvature close to the handles
nd from the close proximity of the door seam. Similarly, maximum
rea constraints are imposed on all small sized parts like the mirror
nd logo to eliminate areas of the vehicle that are wrongly included
ue to their proximity to the part of interest in the ACM model.

As the rear lamp is usually red, it has been noticed during the
xperimentation that the addition of the color information is help-
ul to better define the contour of the rear lamp. In order to detect
ed color in the image, the grayscale image is subtracted from the
ed channel of the color image of a vehicle and the result is thresh-
lded to obtain a black and white image in which the red areas are
arked with white and all the other areas with black. Only those

reas of red color situated within the bounding-box for the rear
amp are considered. An AND operation is performed between the
ed areas and the result of the ACM segmentation constrained in
he window of interest to detect the contour of the rear lamp. In
ome cases, the color of the rear lamp is not red, as in Fig. 8c (in
hich case there are no white regions in the thresholded image) or

he car is red (almost all the thresholded image is white). In these
ases, only the results of ACM are considered for the fine localiza-
ion of the rear lamp. Fig. 8b illustrates the successful detection of

 red rear lamp for the vehicle in Fig. 8a, while Fig. 8d shows the
uccessful detection of a rear lamp that is not red, for the vehicle
llustrated in Fig. 8c.

In order to detect the boundaries of the wheels, a circular Hough
ransform is applied over the image transformed to grayscale. In
rder to compute the approximate radius of circles to be found by
he transform and therefore shorten the computation time, an ACM
s first applied in the bounding-boxes corresponding to the two

heels marked by red rectangles in Fig. 4b. The small empty holes in
he ACM model that result due to the threads in the wheel are filled
nd the area of the resulting model is computed, again restricted
ithin the corresponding bounding box as shown in Fig. 9a.

This area provides an estimation of the radius of each wheel,
s being equal to the square root of the area over �. This radius

±3 pixels) is used as a guide for the Hough transform. As well,
he centers of the circles to be identified by the Hough transform
re constrained within the predetermined bounding-boxes to elim-
nate false detections. An example of correct wheel detection is

Fig. 10. (a) Bounding-box, and (b), (c) s
Fig. 9. (a) ACM model for front wheel and corresponding bounding box, and b)
wheel identification with circular Hough transform.

illustrated in Fig. 9b. A similar procedure is applied for the identi-
fication of the gas tank trap, since it is in most cases circular. The
circular Hough transform is applied in this case within the area
of interest over the top of the back wheel, marked by the orange
rectangle and shown enlarged in Fig. 10a,b.

Since the dimension of the gas trap is unknown, the possible
circle radiuses are set in a rather large interval between 7 and 15
pixels. An example of the identified circle is illustrated in Fig. 10b.
The identified circle, if found, is translated back to the original coor-
dinates (coordinates of the center plus the coordinates of the left
bottom corner of the window of interest) within the bounding box
in the original image, as shown in Fig. 10c. Since most of the gas
traps are round in our dataset, the performance of the circular
Hough transform was found to be satisfactory. The identification
of other shapes of gas tank traps using ACMs is complicated due
to the proximity of the door seam, of the fender and of the rear
lamp, and due to the wide space over which the trap can be located.
Alternative solutions will be further studied to better address this
issue.

4. Experimental results

A set of 120 vehicles [20] belonging to the sedan, SUV and wagon
categories, is used for experimentation. Similar performance was
obtained over 180 vehicles including also sport car and pickup truck
categories. For each of the vehicles, 4 views are available as illus-
trated in Fig. 1: front and back views and the two lateral views. Each
image in the dataset has 99 × 155 pixels. The vehicles in the dataset
are presented against simple white background. As the proposed

solution is meant to be incorporated in a vehicle inspection applica-
tion to operate in a garage, the background is known in this context
and can be subtracted prior to the application of the algorithm.
However, the solution has also been tested on images with various

uccessful localization of gas trap.
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Table 4
Accuracy of bounding box (BB) and ACMs localization for front view.

Vehicle Part Percentage of area (%) in BB/ACM Parts found (%)

Sedan SUV Wagon (BB/ACM)

Left wheel 92.9/100 92.5/95.1 95.9/97.5 100/100
Right wheel 92.8/100 93.2/95.6 92.3/98.3 100/100
Wind-shield 99.4/78.4 90.8/83.6 90/78.6 100/100
Grille 99.9/98.3 100/99.6 98.3/94.8 100/100
Logo 100/84.3 100/86.8 100/78.8 100/86.2
Headlight left 93.1/74.4 94/85.8 98.5/78.4 100/96
Headlight right 93.3/81.4 89.2/83.4 91.6/72.2 100/95.1
Fig. 11. Examples of parts located by boundin

ackgrounds, as shown in Fig. 11, and demonstrated similar perfor-
ance if the background is relatively uniform in colour, therefore

ot capturing the visual attention on parts that do not belong to
he vehicle. The performance remains stable as long as there is no
ignificant scaling between the vehicle in the test image and the
nes in the datasets, as it was previously discussed in Section 3.1.

Fig. 12 shows several examples of bounding boxes and the corre-
ponding ACMs obtained using the proposed method for the three
ategories of vehicles in the dataset and for the front, rear and lat-
ral views. The performance for the passenger lateral view is very
imilar to the driver side and is therefore not illustrated. One can
otice that both the bounding boxes and the ACMs are, with few
xceptions, very well localized over the surface of the vehicles. It
s worth mentioning that the bounding boxes indicate candidate
egions where parts would be situated without trying to detect
hem in the image. For example, the gas trap appears in the side
iews in column 5 of Fig. 12, even if no gas trap is present on that
ide of the vehicle. While the fine tuning with ACM is not always
erfect as it can be noticed in the last column of Fig. 12 (e.g. dif-
erent shape of door handles in second line, partially covered front
andle in 7th line, missed back handle due to unnatural placement

n 10th line, or smaller windows in 9th line and 11th line), it pro-
ides in most cases better results in terms of localization than the
imple bounding-box approach.

.1. Performance evaluation

In order to quantify the accuracy of the proposed approach, a
uantitative measure is computed as the percentage of the surface
f the actual vehicle part covered by its corresponding bounding
ox and by its ACM model, respectively. The ground truth surface
f the actual vehicle part is obtained by manual segmentation in a
ectangular bounding-box style such that the box has the smallest
ize possible that covers completely the part.

Similarily, the bounding box that corresponds to the ACM model
s calculated as the largest rectangular box that contains the entire
ontour. At maximum, this box can have the same size as the cor-

esponding bounding box within which the ACM is initialized, as
xplained in Section 3.3. This occurs in the case when the part is not
dentified by the ACM. Tables 3–6 summarize the results obtained
or each category of vehicle and for each of the views.

able 3
ccuracy of bounding box (BB) and ACMs localization for side view.

Vehicle Part Percentage of area (%) in BB/ACM Parts found (%)

Sedan SUV Wagon BB/ACM

Front wheel 88/100 92.8/100 84.8/100 100/100
Rear wheel 89.9/100 90.5/100 90.7/100 100/100
Front window 95.9/90.6 94/95.3 100/89.61 100/100
Back window 96.7/93.8 95.5/94.6 95.4/91.3 100/100
Front bumper 100/97.3 100/100 100/100 100/99.1
Rear bumper 100/92.2 100/93.3 100/93.6 100/92.9
Front handle 95.3/80.9 95.5/90.6 96/78.5 95.6/89.2
Rear handle 95.2/84.7 99/87 99/73.1 97.6/93.6
Head-light 96.5/69.3 100/70 96.7/76.2 100/89.3
Rear light 99.8/91.8 99.5/88.4 98.1/82.1 100/98.8
Mirror 100/70.4 100/90.6 100/87.5 100/87.6
Gas trap 100/89.4 100/98.5 99/98.3 100/94.4
Average 96.4/88.4 97.2/92.4 96.6/89.2 99.4/95.4
Mirror left 94.4/63.5 98.6/68.1 100/73.6 100/85
Mirror right 94.4/68.6 94.4/67.6 100/71.3 100/86.6
Average 95.6/83.2 94.7/85.1 93.3/82.6 100/94.3

In order to enable the comparison with other solutions proposed
in the literature, which report the percentage of cases when a part
is found, the fifth column in Tables 3–5 reports the percentage of
cases when a part is found within its bounding box and within
its corresponding ACM respectively. A vehicle part is considered
found when at least 45% of its surface is within its corresponding
bounding box. From Tables 3–5 it can be observed that there is
no significant difference between the performance for sedan, SUV
and wagon (within 3%) neither for the bounding boxes, nor for the
ACM. The overall performance deteriorates slightly as result of ACM
application for all categories, both in terms of surface of vehicle
part covered (from an average of 94.4% for bounding box to 86.6%
for ACM) and in terms of parts found (from an average of 99.8% for
bounding box to 95.86% for ACM). It is worth mentioning neverthe-
less that this is partially explained by the fact that the bounding box
is much larger than the real part, while the size of ACM is usually
much closer to the real size of the part, and ACM also locates the
parts more accurately over the vehicle.

In terms of individual parts, the same trend occurs, namely there
is a slight decrease in performance when ACMs are used, with the
exception of the wheels where the circular Hough transform com-
bined with ACM results in an increased coverage of the part, as
shown in Table 6. To further strengthen the evaluation, the table
also includes a statistical evaluation measure, the average F-score
obtained for each part of interest for the ACM.

4.2. Comparison with the literature
Fig. 13 shows a comparison of the proposed approach with
various approaches existing in the literature [9,13–16]. To our
knowledge there are currently no solutions for vehicle parts

Table 5
Accuracy of bounding box (BB) and ACMs localization for rear view.

Vehicle Part Percentage of area (%) in BB/ACM Parts found (%)

Sedan SUV Wagon (BB/ACM)

Left wheel 93.8/100 93.6/100 92.8/100 100/100
Right wheel 95.6/100 93.6/97.3 95.6/100 100/100
Window 81/82.8 87.2/93 80.1/74.1 100/97.5
Logo 96.6/78.2 100/81 98.8/79.4 100/92.3
Rear light left 92.5/97.2 93.5/98.3 92.8/90.8 100/98.8
Rear light right 92.5/97.7 93.6/94.3 92.5/92.8 100/98.8
Average 92/92.6 93.6/93.9 92.1/90.71 100/97.9
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Fig. 12. Bounding boxes and corresponding ACMs fo

ocalization that are adapted to the use of multiple viewpoints.
oreover, none of the above methods can be easily expanded to

ope with multiple viewpoints. This is due on one hand to the spe-
ific implementation mechanisms used for the detection of parts.

he parts are identified based on the position of round wheels
12,15]. These are not visible in front and rear views therefore mak-
ng impossible to use the methods on such views. On the other
and, other solutions exploit the specificity of the data available.
rent vehicle categories viewed from different sides.

For example, video data is employed to detect the entry and exit
of a car in the scene in [14]. In the case of the current work, only
static data is available. In [13], key points are detected based on the
availability of camera parameters. The latter remain unknown, and

unnecessary, for the solution introduced in this work. Other solu-
tions are dedicated to one single part of interest (e.g. logo in [9], rear
lamps in [16]). These factors make impossible the implementation
of a method based on the literature that is capable to deal with
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Table  6
Average accuracy of localization for all views.

Vehicle part Percentage of area (%) in BB Percentage of area (%) in ACM Parts found (%) BB Parts found (%) ACM F-Score for ACM

Wheel 92.6 98.9 100 100 1
Wind-shield 93.4 80.2 100 98.8 0.98
Window 94.2 94.1 100 100 1
Bumper 100 96.1 100 96 0.94
Handle 96.7 90.6 96.7 91.4 0.91
Head-light 94.7 76.8 100 92.7 0.93
Rear  light 94.9 92.3 100 98.9 0.94
Grille  99.4 97.5 100 100 1
Mirror 97.9 74.3 100 86.7 0.81
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Logo  99.2 90.8 

Gas  trap 99.6 95.4 

ultiple viewpoints and all the parts of interest for direct compar-
son. Given these constraints, the results are only shown for the
iew and the parts that are reported in the respective work in the
iterature. For the methods that are bounding-box style, such as
14,15], a comparison is performed with the proposed bounding-
ox (BB) solution, while for those that report exact contours of parts
9,13], the comparison is performed with respect to the proposed
CM refinement that results in accurate contours.

The results reported in Fig. 13a are calculated based on the
eported error rate in [13] for the defined point of view, and refer
o the real contour of the windows and windshield. Because of this
act, they are compared with the proposed ACM solution. Other
esults reported in [13] are not directly comparable, because the
erformance is reported on regions containing multiple parts, such

s grille, headlight and bumper region or the door panels, fender
nd wheel region. Similarly, the results in [9] in Fig. 13b, are
eported for the exact contour of the vehicle logo and compared
ith the proposed ACM solution. The approaches in [14] and [15],

Fig. 13. Comparison of performance with related
100 93.3 0.89
100 94.3 0.86

shown in Fig. 13c and d, respectively, identify parts as bounding
boxes and are therefore compared with the bounding-box solution
proposed the context of this work.

It can be seen that the proposed method, shown with red (per-
centage of area of the part within the ACM or BB) and blue (part
found in ACM or BB), achieves better detection and localization
rates, especially for parts that are visually more challenging to
detect such as lights, door handles and mirrors than the solutions in
the literature, shown in green. Furthermore, the same conclusion
can be derived by comparing the F-score reported in [16] for the
rear lamp. The reported value is 0.81, while the one obtained by
the proposed solution 0.94, as shown in Table 6.

In terms of computation time, it takes for the proposed solution
on average 0.01 s from the moment of reading an input image to

the moment that the bounding boxes are displayed using a Matlab
platform running on a Pentium Intel Core 2 duo at 3.0 GHz and 2.0
GB RAM. The computation of average models, including the com-
putation of local minima and maxima and the adjustments, takes

 work: (a) [13], (b) [9], (c) [14] and (d) [15].
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(Ottawa, Canada) (2011) 1–6, http://dx.doi.org/10.1109/CIMSA.2011.6059933.
Avg. time (ms) per part 55–170 19

n average about 0.36 s per vehicle, but is performed offline. The
ne tuning using ACMs comes at additional computation cost of
bout 4 s per vehicle or about 430 ms  per part, which is not signif-
cant considering the amount of time required to displace robotic
quipment. Table 7 compares the computation times per part with
he solution reported in [15].

For the bounding-box style of localization, the proposed solution
s faster than the similar style bounding box method proposed in
15], running on the same computer.

. Conclusion

The paper presents a novel, improved bounding-box approach
or the identification of the location of different vehicle parts from

ultiple views. It is based on a model of human visual attention and
apitalizes on the correspondence between the location of parts and
he projections on the axes of the obtained model. The bounding
oxes are automatically adjusted for different categories of vehi-
les, for different views of each vehicle and for different exemplars
ithin a category of vehicles. They were shown to fit better with

he various vehicle parts than other solutions proposed in the lit-
rature. Moreover, the proposed method offers a very efficient and
obust initialization stage to finely tune the bounding boxes to more
ccurate contours with ACMs and therefore to a more complete
nd accurate description of vehicle parts which none of the current
olutions in the literature achieves.

As future work, the framework will be expanded for additional
ehicle types and further improvements will be brought to cope
ith specific characteristics of different categories of vehicles, such

s the different shapes and placement of the gas trap, or the differ-
nt positions of door handles (e.g. towards the left side of the rear
oor for given wagon models). Other solutions for capturing the
ontour of parts will be studied as well to improve the performance
f the proposed system.
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