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Abstract. Acquisition of depth and texture with vision sensors finds numerous
applications for objects modeling, man-machine interfaces, or robot navigation.
One challenge resulting from rich textured 3D datasets resides in the
acquisition, management and processing of the large amount of data generated,
which often preempts full usage of the information available for autonomous
systems to make educated decisions. Most subsampling solutions to reduce
dataset’s dimension remain independent from the content of the model and
therefore do not optimize the balance between the richness of the measurements
and their compression. This paper experimentally evaluates the performance
achieved with two computational methods that selectively drive the acquisition
of depth measurements over regions of a scene characterized by higher 3D
features density, while capitalizing on the knowledge readily available in
previously acquired data. Both techniques automatically establish which subsets
of measurements contribute most to the representation of the scene, and
prioritize their acquisition. The algorithms are validated on datasets acquired
from two different RGB-D sensors.

Keywords: 3D imaging, depth measurement, RGB-D cameras, computational
intelligence, selective sampling, neural gas.

1 Introduction

The ever increasing 3D acquisition capabilities of vision sensors now provide
advanced possibilities to generate textured 3D models of an environment or specific
objects. However, a large fraction of the data acquired by sensors such as RGB-D
cameras, laser range finders, LIDARs or stereo-cameras contain substantial
correlation, which leads to redundant information, large model size, lengthy
acquisition, and heavy data processing. Acquiring, coding, interpreting and
transmitting all of this information is a complex task, which contributes to what is
known as the 'Big Data Challenge' [1]. Reducing the complexity of datasets proves
essential to perform subsequent decisions on the resulting data at a reasonable
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computational cost. Current solutions for dimensionality reduction in range data rely
either on predefined pattern-based or random subsampling, where a user input is
expected as to the desired sampling density, or the minimum distance between
samples. This proves difficult as the user is not always aware of the appropriate level
of accuracy required for a given model to be further processed adequately.

However, a reduction of the redundancy in the data, immediately upon acquisition,
can also be accomplished by initiating the acquisition with only a coarse collection of
depth measurements, and then selecting regions of interest, characterized by rich
depth features, within this acquisition to focus on for further refinement. In order to
perform such selective sensing, regions of similar stochastic properties and continuity
must be separated from each other in order to determine what areas need to be
enhanced in the model. This research focuses on the design and evaluation of
innovative approaches to achieve automatic selection of regions of acquisition for
range and RGB-D sensors, in order for a sensor to collect only the most relevant
measurements without human guidance, and as a result, expedite the acquisition
process. The relevant regions of interest are extracted from 3D point clouds during the
acquisition procedure to prevent an avalanche of data.

Two original and different computational methods recently introduced by the
authors in [2, 3] are reported and experimentally compared in the context of RGB-D
imaging to determine their relative performance and to develop guidelines for the
implementation of automated selective depth acquisition procedures. Both methods
begin with an initial sparse and rapidly acquired subset on 3D points over the surface
of a scene. In the first method, the regression process of a neural gas network in the
training phase is used to adaptively identify areas of interest for further scanning in
order to improve the accuracy of the model. In the second method, a formal
improvement measure, which expands on the classical interpolation technique of
ordinary Kriging [4], is applied to automatically establish which regions within the
field of view of a depth camera would provide the most improvement to a model of
the scene if further acquisitions were concentrated in priority over those regions. Both
methods are evaluated from datasets acquired with the popular Kinect multi-modal
imaging sensor and a custom RGB-D structured light sensor, but are designed to be
inherently independent of the depth sensing technology used.

2 Literature Review

Three sampling policies have been largely explored in the literature in relation with
3D point clouds [5, 6, 7]. Uniform sampling favors a sample distribution where the
probability of a surface point to be sampled is equal for all. In random sampling, each
point over an object has an equal chance of being selected, but only a lower number
of points are collected. As the percentage of sampled points increases, the cost gets
higher and eventually reaches that of uniform sampling. Stratified sampling
subdivides the sampling domain into non-overlapping partitions and generates evenly
spaced samples by sampling independently from each partition. Alternatively, Kalaiah
and Varshney [8] propose a scheme to compactly decimate and represent point clouds
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using Principal Component Analysis (PCA). Coherent regions exhibit similar PCA
parameters (orientation, frame, mean, variance) and can therefore be classified using
clustering and quantization. These methods are not meant to be part of the actual
sampling procedure, but rather operate as post-processing on collected data.

Pai et al. [9, 10] merge the sampling procedure into the measurement process, for
modeling deformable objects. The probing procedure considers a known mesh of the
object along with parameters such as the maximum force exerted on the object, the
probing depth and the number of steps for the deformation measurement. An
algorithm generates the next pose for the probe based on the specifications and the
object mesh. However, the procedure is not selective and therefore reaches similar
complexity as collecting data for all points over the mesh. Shih er al. [11] develop
different techniques to guide a non-uniform data acquisition process based on a
hierarchal tree representation, with error between actual values at the leaf nodes and
the estimated values at those points, calculated from the next layer up, being used to
determine if new points within each sub-division are worthwhile to acquire. The
resulting point locations define the optimal scanning pattern for that particular object.

In a different perspective, numerous publications have addressed the next best view
(NBV) problem which consists of dynamically defining a configuration where a
sensor should be positioned and oriented in order to maximize the coverage and
quality of the model of a scene, while minimizing the amount of separate acquisitions
required. Connolly [12] proposed a method based on octrees generated from multiple
views to determine optimal viewing vectors based on the current knowledge of the
scene. Active view selection was investigated by several researchers [13, 14].
Morooka et al. [15] define a discretized shell around a region to limit the number of
possible viewing vectors, which allows the use of lookup tables to optimize the entire
process. Mackinnon et al. [16] rely on several additional fields of data provided by a
laser range sensor to derive a quality metric for each acquisition point in order to
drive the NBV process and optimize the quality of the overall model.

There has also been research that looked into optimal fixed scanning patterns for
various scenarios. Ho and Saripalli [17] investigate scanning patterns for autonomous
underwater vehicles (AUV) which attempt to maximize coverage and quality, while
minimizing energy use from the AUV propulsion system. English et al. [18] use
three different patterns, a Lissajous, a rosette, and a spiral scanning pattern, along
with an adaptive algorithm to swap between them depending on the characteristics
and objects detected in the scene, with the goal of optimizing the estimation of
position and orientation for automated space docking operations.

3 Measurement Selection with Neural Gas

An adaptive computational approach for intelligent depth acquisition was developed
by the authors in [2]. Meant to be an active part of the sampling procedure, the
automated selective scanning scheme builds upon a self-organizing neural network to
select regions of interest for further refinement. A self-organizing architecture is
chosen for its ability to quantize a given input space into clusters of points with
similar properties, leading to an efficient way to compress data. The neural gas
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network is selected over other self-organizing architectures due to its capability to
capture fine details, unlike other architectures that tend to smooth them. The neural
gas algorithm can be described as follows [19]: A set S of network nodes is initialized
to contain N units ¢; with the corresponding reference vectors w,, € R™ (each unit ¢
has an associated n-dimensional reference vector that indicates its position in the
input space) chosen randomly according to a probability density function p(x) or from
a set D = {x;, x3,...,xy| x; € R"}. The winning neuron, namely the one that best
matches an input vector x is identified using the minimum Euclidean distance:

s(x) = argmingeg|lx — well, (1)

where Il.II denotes the Euclidean vector norm. The neurons to be adapted during the
learning procedure are selected according to their rank in an ordered list of distances
between their weights and the input vector. When a new input vector x is presented to
the network, a neighborhood ranking indices list is built (jy, ..., j x.;), Where wj, is the
weight of the closest neuron to x, wj, the weight of the second-closest neuron, and w;,
is the reference vector such that k vectors w; exist with: [lx — w;ll < ||x —w;, ||. The
weights of the neurons to be updated are calculated as follows:

wi(t+1) =w;) + alt)hy (kj(x, wj)) [x@® —w;@®)]. 2)

where a(t)e[0, 1] describes the overall extent of the modification, and h; is 1 for
k;(x, w;)= 0 and decays to zero for higher values according to:

hy (kj(x, wj)) = exp(—k;(x, w;)/A()), 3)

where k;(x,w;) is a function that represents the ranking of each weight vector w;. If j
is the closest to input x then k = 0, for the second closest £ = 1 and so on. The learning
rate a(t) and the function A(t) are both time-dependent. These parameters are
decreased slowly during the learning process in order to ensure that the algorithm
converges. The following time dependencies are used, as in [19]:

a(t) = ao(aT/ao)t/T'A(t) = AO(AT/Ao)t/T > (4)

where the constants a, and A,are the initial values for « (7) and A (¢), a; and A are the
final values, ¢ is the time step and T the training length. The algorithm continues to
generate random input signals x while #<7.

Starting from an initial sparsely scanned sample of 3D points over an object, the
neural gas network with a predefined number of nodes is trained to adapt its nodes to
the point cloud. The number of nodes is chosen according to the size of the initial
scan [2]. In the current work, it varies from 1400 to 3000 for the different objects.
Through this process, the nodes in the neural gas map converge toward regions where
features and edges are located, which produces clusters of points in regions where
more pronounced variations are present in the geometric shape. The training is
stopped early by reducing the number of training epochs, to ensure that the nodes
capture details rather than becoming uniformly distributed.

Regions that require additional sampling to ensure an accurate model are detected
by finding higher density areas in the neural gas output map. A Delaunay



Computational Methods for Selective Acquisition of Depth Measurements 393

triangulation is first applied to the neural gas map. Areas of high density of nodes are
represented by small triangles in the tessellation. The mean value of the length of
vertices between every pair of nodes for every triangle is set as a threshold.
Subsequently, all the edges of triangles that are larger than this threshold are removed
from the tessellation. The removal of these edges ensures the identification of close
points and, therefore, dense areas of features. The subset of remaining nodes extracted
from the neural gas map drives the rescanning over the regions of interest to acquire
extra samples of 3D points. A model can then be constructed by selectively
augmenting the initial sparse point cloud with the extra data samples.

4 Measurement Selection with Improvement Metric

More recently, an alternative computational method was introduced by the authors [3]
that extends on the interpolation formalism of Kriging [4] to formulate an original and
computationally efficient improvement metric which serves to dynamically guide
further acquisition of depth measurements over regions of interest. By monitoring a
relative improvement map which gets computed solely on the basis of data acquired at
any given stage in the acquisition process, the data can be effectively compressed at
acquisition time, while ensuring both an appropriate level of coverage of the scene
and a sufficient level of quality in the 3D model created.

Kriging is an estimation technique that uses the stochastic properties of current
measurements to estimate the measurements at other locations, while minimizing the
estimation variance. Its advantage to the context of selective sampling of
measurements is that it provides both an estimate of a value at a location, and an
estimate of the variance on that estimate. Ordinary Kriging relies on the estimation of
a semivariogram model, which is a graph that relates how much variation to expect
over a given distance. In order to have the semivariogram be related to measured data,
the semivariogram model is fit to the empirical semivariance of the measured data.

Capitalizing on this framework, and in order to determine optimal locations to
acquire future range measurements, a formal measure of potential improvement that
any particular point can contribute to the overall 3D representation of the scene is
derived. Since it is desired to have an estimation of how the error in the estimation
is reduced when a previously unknown point is acquired, the measure of error that is
used as the basis in determining the estimation of improvement measure is the
variance to mean ratio (VMR), vmr(p;). This takes advantage of the fact that
ordinary Kriging provides both the estimated depth, Z(p;), and the estimated variance
of the estimation, 62(p ;), for an unmeasured point, p;. The VMR also appropriately
reflects the fact that typically, and for most range sensors, as a depth measurement is
located further from the sensor, the error on the measurement increases, and is
inherently normalized in the formulation of the VMR, defined as follows:

vmr(p) = 222 )

2(p;)
Now, if in the future, an acquisition is made at a point, p;, it will result in a depth
measurement, z(p,). In order to predict the effects of this acquisition before it occurs,
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the assumption is made that the estimated depth value for that point is the actual
value, namely that p; =P, and z(ps) = Z(Ps). This assumption leads to the
formulation of eq. (6), which represents the new VMR at unmeasured point, p;, given
the previous assumption on point p,. The difference between the former and the new
VMR values leads to the formulation of a measure of improvement, eq. (7), indicating
how much the knowledge acquired on P via a future range acquisition will improve
the estimates of all points, p;, in the neighborhood of p;, or how much improvement
in the model of the scene is estimated to be achieved by the acquisition of p.

(o) = S8 ©

imp(p;) = Ly vmr(p;) — vmr(py[s) - %

Combining the semivariogram model fitted on readily available data with the
improvement measure based on the variance to mean ratio, a final 'unrolled' estimated
improvement, eq. (8), is developed [3] for all locations in the field of view of a range
sensor, which leads to a bi-dimensional improvement map where areas of higher
potential improvement are put in evidence, similarly to the clusters of nodes obtained
with the neural gas approach described in section 3:

imp(B,) =
"y (T( 50 ( ?1%)1( ) - (2a(%,? +9,7) +20) (21 5 ) 2G50 -
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2y 82(p)2s)
where m is the number of points in the neighborhood of ps, s and p; are located at
the coordinates (X, ¥;) and (J?j, 37j) respectively, a and b are the fitting parameters of
the semivariogram model, A(ﬁ ; ) is the ordinary Kriging weight vector corresponding
to point pj, and k(ﬁj) is the ordinary Kriging measured-points-to-estimated-point
semivariance vector corresponding to point pj.

5 Depth Sensing Technologies and Datasets

The evaluation of the proposed computational methods is performed here using a series
of range images acquired, on one side, from the popular Microsoft Kinect for Xbox
360 platform, and on the other side, from a custom RGB-D sensor called Adaptive
Structured Light Sensor (ASLS) developed in our laboratory that supports a larger
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depth of field. The Kinect RGB-D camera uses an IR camera and an IR projector to
generate a structured light pattern. Data acquisition was accomplished using the open
source OpenNI drivers, with the depth sensor resolution set at 640x480. The Kinect
sensor has a 57° horizontal, and a 43° vertical field of view and depth sensing provides
reliable data between 0.8m and 3.5m, with a depth resolution at 2m being about 10mm
[20, 21]. The ASLS [22, 23] capitalizes on adaptive structured light sensing with a
visible marching pseudo-random pattern projected onto a scene to generate features
that are imaged by a stereoscopic pair of cameras. A time-domain multiplexing
strategy projects a three-color pattern, where any 3x3 code block is unique and
supports reliable stereo matching. Multi-focal capability is also integrated to further
increase the operational range of the sensor. The configuration of the ASLS creates a
maximum field of view of approximately 41.4°x31.7°, and a theoretical quantization
error of 39.5mm at 10m depth. Due to its adaptive characteristics, the sensor can
provide depth readings over a wide variety of surfaces, but takes longer to acquire a
scene in high detail, which further substantiates the need for selective sensing.

Three different scenes are considered here to support the experimental evaluation.
The first case consists of a standard computer workstation exhibiting various planar
surfaces with different reflectance characteristics, as shown in Fig. la. The second
scene is that of a large exercise ball, shown in Fig. 1b, which is selected for its curved
and smooth surface. Finally, a more elaborate scene, composed of a fire hose station
surrounded by pipes over a flat wall, shown in Fig. 1c, supports the validation of the
computational methods over complex shapes and a wider range of depth values. All
scenes are initially acquired with both sensors in order to provide datasets from which
a coarse collection of depth measurements is extracted via uniform subsampling, at
various densities, to initialize the selective sensing procedure. The datasets for the three
scenes are also displayed in Fig. 1, respectively for the Kinect sensor and for the
adaptive structured light sensor (ASLS).

- !
B, A
- ! | i
ASLS g
Q Sy }
Tk
b)

Fig. 1. Three scenes supporting the experimental evaluation: a) computer workstation, b)
exercise ball, ¢) fire hose station, and RGB-D data acquired with Kinect and ASLS sensors
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Comparing the two datasets, one easily notices the completeness and sharpness of
the RGB-D information generated by the Kinect sensor. In comparison, the ASLS did
not provide a similar density of depth measurements. White regions in the second and
third rows of Fig. 1 correspond to locations where RGB-D measurements were not
acquired over the scenes. The ASLS sensor also generated a large number of outliers in
its datasets which have been removed here to better support the comparative
evaluation, as they would otherwise have appeared as features and erroneously
attracted the attention of the measurement selectors. Nevertheless it is interesting to
study the performance of the two measurement selection techniques over datasets with
different characteristics in order to monitor their ability to accommodate various means
of acquisition.

6 Experimental Evaluation

This section examines the behavior and performance of both measurement selection
techniques, while assuming an initial coarse scan of depth measurements is available.
For comparison purposes, initial uniform subsampling is performed over the raw data
to extract uniformly distributed 3D point clouds composed of 32x32, 64x64, and
128x128 depth measurements over each of the three scenes, and for both the Kinect
and ASLS datasets respectively. This subsampling plays the role of an initial rough
acquisition of a few measurements to initialize the measurements selection procedure,
given that the methods rely on a priori acquired knowledge about a scene and not on
user selected parameters to drive the acquisition. This makes the computational
approaches fully automated and adaptive to the contents and nature of any scene.

In the case of the improvement metric method, an improvement map is computed
for each of the three initial subsampling densities, following the methodology
described in section 4 and the resulting improvement maps are displayed in the
second and third columns of Fig. 2-4, respectively for the computer, exercise ball, and
fire hose station datasets acquired with the Kinect and ASLS sensors. Brighter (white)
areas represent those with the highest potential for contributing to increase the
knowledge about a scene, and darker regions (black) are those where further time and
energy spent at acquiring depth measurements is not likely to contribute significantly
to knowledge and accurate modeling of the scene. Gray pixels map intermediate
improvement potential on a continuous 0-1 (black-to-white) scale.

The approach based on neural gas is similarly applied on every dataset, initially
subsampled at the same densities, and the resulting location of dense neural gas nodes
highlights the regions of interest where further acquisitions are worthwhile to be
performed to refine the definition of the scene. In this case the regions identified for
further exploration are marked by dark triangles in the two last columns of Fig. 2-4.

One can notice in the set of comparative figures that the two methods succeed to
consistently identify, in spite of their different approaches, most of the areas that
require additional scanning to improve the model. In the current implementations,
only depth information is used to monitor regions of interest over which further
acquisition should be prioritized. This is motivated by the fact that the methods were
developed to accommodate a diversity of range sensors, including laser triangulation
and LIDAR sensors that do not provide color or texture information. In the special
case where full RGB-D content is available, such as with the Kinect and ASLS
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sensors, this extra dimensionality of the data space can be taken advantage of to
further refine the clustering of regions of interest. This aspect is not considered in the
experimental tests reported in this section.

Initial Measurement selection Measurement selection
sampling with improvement metric with neural gas

density Kinect data ASLS data Kinect data ASLS data
& =
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Fig. 2. Measurement selection computational methods applied on computer workstation
acquired with Kinect and ASLS sensors

Initial Measurement selection Measurement selection
sampling with improvement metric with neural gas
density Kinect data

Fo=

ASLS data Kinect data ASLS data
L 2 Q

[32x32]

[64x64]

[128x128]

Fig. 3. Measurement selection computational methods applied on exercise ball acquired with
Kinect and ASLS sensors
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Fig. 4. Measurement selection computational methods applied on fire hose station acquired
with Kinect and ASLS sensors

Close examination of Fig. 2-4 confirms that the sharpness of the regions of interest
identified by both measurement selection methods improves with the density of the
coarse scan of the scene used to initialize the process. The results also demonstrate
that the techniques adapt well to the datasets, independently from their completeness.
In the case of the Kinect sensor, the original data is cleaner and denser than with the
ASLS, ensuring for both methods a sharper definition of areas of interest. For the
neural gas nodes distributions, the smaller the density of the initial scan, a smaller
number of nodes is needed to extract the topology of the scene, but more training
epochs are required in general to ensure the correct identification of regions.

In cases where a larger number of areas are not properly acquired by the sensor, as
can be observed for the computer and the ball scenes acquired with the ASLS, both
measurement selection methods focus their mapping over regions where knowledge is
available. This behavior is expected given that depth features are only detectable over
those areas. A modification to the improvement map method that is currently under
development aims at addressing this issue by introducing a mechanism to force a
balance between accuracy (improving knowledge over already acquired areas) and
coverage (improving knowledge over missed areas).

The correspondence between regions of interest identified by both methods is
evidenced in all sets of results. However, the improvement metric method tends to
highlight the edges and contours of components of the scene, where depth transitions
occur, as denoted by white pixels in all improvement maps, especially those with finer
initialization provided by 128x128 initial subsampling density. The method therefore
concentrates in the areas of transition between the shape of the object and the
background, or between various components of the scene at different depths, resulting
in a clean definition of the object boundaries. On the other hand, the neural gas
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method concentrates clusters of points over sections of the surface of the objects. The
complex fire hose station scene exemplifies this behavior. The neural gas nodes tend
to obtain regions that are overall more uniformly spread, resulting in the identification
of regions over the surface of the object. As a result, the improvement metric method
appears as a very efficient technique for edge detection in depth maps or 3D models.
Alternatively, the neural gas measurement selector provides an efficient approach to
rapidly acquire a compact representation of a scene from only a very sparse set of
measurements. Both methods can therefore find application in rapid scene
understanding and object recognition, beyond their suitability to dynamically drive
the acquisition process with random access range or RGB-D sensors.

Table 1. Computing time for obtaining the improvement map (ImpMap) and neural gas nodes
distribution (NG) from various initial sampling densities on objects acquired with each sensor

Computer Exercise ball Fire hose
ImpMap NG ImpMap NG ImpMap NG
[32x32] Kinect 0.68 s 95s 0.66 s 9.6 s 0.66 s 93s
[64x64] Kinect 0.82s 372s 0.83 s 375s 0.85s 36.5s
[128x128] | Kinect 1.39s [ 153.0s| 14ls 1539 s 1.41s 150.0 s
[32x32] ASLS 134s 9.8s 16.7 s 89s 19.5s 88s
[64x64] ASLS 255s 36.8s 19.8 s 35.8s 40.0 s 323s
[128x128] | ASLS 424 s 161.6s 1525 142.3s 81.7s 140.2s

Sensor

Table 1 summarizes the computation time required to obtain respectively the
improvement map and neural gas node distribution that mark regions of interest. A
significant difference is observed in between the computing time required to obtain
improvement maps and neural gas nodes distribution. As can be observed from Table
1, the NG method scales near linearly with the number of points acquired in the
subsampling, while the ImpMap method scales sub-linearly, although the NG method
provides more consistent timing results regardless of the dataset and source
processed. When acquisition is performed with slower range scanners, the methods
are efficient enough to be embedded in the sensor and dynamically drive the
acquisition process to collect measurements in priority over regions that contribute the
most to increase the knowledge about the scene, that is, focus on regions that are rich
in depth features. On the contrary, when used in conjunction with rapid RGB-D
sensors, like the Kinect technology, advantage can be taken of the proposed
computational methods to rapidly acquire an understanding of the content of a scene.

7 Conclusion

This experimental evaluation of two computational methods for the selective
acquisition of measurements with RGB-D sensors demonstrates the effectiveness of
the proposed techniques to selectively and automatically determine which regions of a
scene best support the acquisition of supplementary data to progressively enhance
knowledge about that scene while reducing the amount of data required to understand
the nature of a scene. Such a capability proves essential when operating slower RGB-D
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sensors, such as the ASLS, or random access laser range sensors, as the acquisition can
be interrupted at an earlier stage, when points that truly contribute to knowledge about
the scene are already acquired. The methods also find applications with faster range
sensors to efficiently detect the location and shape of objects, and support the operation
of recognition processes when used as contour extractors from depth data.
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