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Abstract— In this paper, the quality of the interaction of users 

with a 3D game using different modalities is studied. Three 

different interaction methods with a 3D virtual environment 

are considered: a haptic 3D mouse, natural static gestures 

(postures), and natural dynamic (kinetics) gestures. Through a 

comprehensive user experiment we compared the pre-defined 

natural gestures to each other and also to a haptic interface 

which is designed for the same game. The experiments analyze 

precision (error), efficiency (time), ease-of-use, pleasantness, 

fatigue, naturalness, mobility, and overall satisfaction as 

evaluation criteria. We also used user-selected ranks of 

importance as weight values for evaluation criteria to measure 

the overall satisfaction. Finally, our user experiment presents a 

learning curve for each of the three input methods which along 

with the other findings can be a good source for further 

research in the field of natural multimodal Human-Computer 

Interaction. 

Keywords— Usability study, static/dynamic gestures, haptics, 

3D game, human factors. 

I.  INTRODUCTION 

Due to the substantial growth in computational 
capabilities, both in computer hardware and software, human 
computer interaction (HCI) systems have progressed, 
becoming more accurate, efficient, and practical.  

In general, two major aspects of HCI systems need 
extensive study and analysis: functionality and usability. The 
reason for such categorization is that while the former is 
often bound by machine hardware, software, and complex 
algorithms, the latter depends largely on another complex 
process: the human experience.  

Recently, different aspects of HCI have been subject to 
research and improvement. Modalities involved in such 
systems often play a determining role in the outcome and 
experience of employing the device. Multimodal interfaces 
(i.e. those with different input/output methods) are becoming 
more popular due to their variety, efficiency, and ability to 
adapt to user needs [1][2]. Active systems, capable of 
dynamically and intelligently adapting to different scenarios 
are also becoming more practical. Although there have been 
some advances in research on multimodal interfaces, 

numerous questions remain unanswered and until today, very 
few systems have integrated multiple modalities flawlessly 
and effectively [3]. Among these questions are: 

1) What modalities are more suited to different tasks? 

2) What is the right balance of input/output methods in 

multimodal systems? 
The first question is the main focus of this paper where 

different human factors when playing a 3D computer game 
are measured, studied and analyzed. Following our previous 
studies on usability of natural interfaces [1], in this paper we 
have focused on two input methods that try to provide a 
more natural interaction: gesture-based input using a 3D 
camera and haptic force-feedback input using a 3D mouse. 
For gesture-based method we have considered static 
hand/finger gestures and dynamic arm gestures. By “static” 
we refer to those gestures that are defined by a single state. 
The term “dynamic” is used to refer to gestures that are 
identified by a certain movement. This provides three 
separate input options, all applied to a 3D computer game, a 
simple slingshot game developed using Microsoft XNA. 
Successive to implementation, the system is tested with 
multiple users which provide the feedback needed to analyze 
the usability of such systems with respect to factors such as 
precision, efficiency, ease-of-use, fun-to-use, fatigue, 
naturalness, mobility, and overall satisfaction. 

The major contributions of this study are: a) choice of 
natural gestures, b) system design (UI and gesture 
recognition) and novel use of existing API’s to implement 
gesture recognition and haptic force feedback methods, c) 
usability study for gesture-based and haptic 3D mouse 
inputs, d) overall satisfaction analyses, directly from the 
users feedback, and indirectly from average of multiplying 
the normalized weighted satisfaction criteria, and e) 
presenting a learning curve for each of the three modalities.  

In the following sections, the complete process of 
construction of our proposed system is discussed. In Section 
2 a review of some key literature and usability studies in the 
field of gestural and haptic HCI is carried out. Section 3 
deals with methodology including the UI design, natural 
gestures selection, gesture and haptic recognition modules 
along with their algorithms designed to control the UI, and 
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eventually more detail of the experiment process and our 
evaluation method. In Section 4 the experimental results are 
analyzed and discussed. Finally in Section 5 some 
concluding remarks are presented. 

II. RELATED WORK 

A system, capable of recognizing human gestures and 
providing haptic feedback, is considered a major step 
towards a more natural and viable multimodal system. For 
example, in an augmented reality system to play table tennis, 
it would be ideal if the user could provide the system with 
controlling commands using either speech or gesture and feel 
force feedback when they hit the ball using the racquet. In 
such systems, human gestures play a critical role which 
needs to be preferably detected, classified, and interpreted 
through computer vision and pattern recognition means in 
order to avoid “non-natural” sensors. 

A. Gestures 

Humans, and many other living organisms, have been 
employing motions of limbs for expression. The broad 
definitions for gestures in biology and sociology allow 
researchers to describe the gestures proprietarily [4]. Kendon 
[5] classifies a gesture as: gesticulation (impulsive 
movements of hands/arms during speech), language-like 
gestures (replace words/phrases), pantomime-like gestures 
(depict objects/actions), emblems (common gestures, e.g., 
the “V” sign for victory), and sign languages (sets of 
gestures/postures defining linguistic communication systems, 
e.g., ASL, the American Sign Language). From gesticulation 
to sign languages, the association with speech decreases and 
social parameter increases.  

When interacting with computers, gestures can be 
utilized through vision based techniques. Hand movements 
and poses such as pointing, grabbing, and moving, are 
extremely intuitive and content rich (both spatiotemporally 
and perceptually), and therefore, perfect means for 
interaction purposes [3]. For eventual gesture utilization in 
an HCI system, modeling (2D, 3D, or 4D), analysis (feature 
extraction through region of interest), and recognition 
(combined features to provide the scene’s information) need 
to be designed precisely [6].  

Although static arm/hand gestures, also called hand 
postures (shape-based recognition algorithms), have had the 
main focus in gesture recognition field, recently researchers 
are showing more interests in incorporating dynamic 
gestures (temporal-based classification systems) in their 
study, due to broader domain of hand’s dynamic actions 
comparing to hand postures [7]. 

B. Vision-Based Modality 

There has been significant study in the field of vision-
based modalities. The hands and line of sight (LoS) 
combination, as the interaction method, can lessen the 
fatigue compared to a one hand pointing interaction [8].   

Examples by Villaroman et al. [9] are presented to 
demonstrate how Kinect-assisted instruction can be utilized 
to accomplish certain learning results in Human Computer 
Interaction (HCI) courses. Moreover, the authors have 

confirmed that OpenNI, in addition to its accompanying 
libraries, are adequate and beneficial in enabling Kinect-
assisted learning activities. 

Based on a usability evaluation, Bhuiyan and Picking 
[10] recommend that a gesture user interface application, 
titled Open Gesture (available for standard tasks, such as 
making telephone calls and operating the television), can 
improve the lives of the elderly and the disabled users by 
creating more independence while some challenges still 
remain to be overcome. 

An experimental study by Ebert et al. [11], on touch-free 
navigation through radiological images, measured the 
response period and the practicality of the system compared 
to the mouse/keyboard control. The image recreation time 
using gestures was 1.4 time longer than using 
mouse/keyboard. However it does remove the risk of 
infection, for both patients and staff.  

In spite of all developing and improving facts in above 
mentioned works, it seems there is a significant lack of 
studies in terms of natural gestures selection. Designing a 
suitable user interface for the following usability studies is 
also crucial. Finally, we believe that there are more usability 
features which need to be studied than those in above 
mentioned works. 

C. Haptic Modality 

Haptics denotes the human’s sense of touch for feeling or 
manipulating a virtual object. Haptics has been supported by 
a collaboration of various disciplines such as psychophysics, 
neuroscience, biomechanics, robot design, modeling and 
simulation, and software engineering. A wide range of 
applications have emerged and span many fields such as 
product design, education, video games, graphic arts, 
medical trainers, and rehabilitation [12]. 

Regarding the main forms of feedback, haptic devices 
can be classified into three groups [7]: ground referenced 
force feedback (e.g., Phantom device [13]), body referenced 
force feedback (e.g., CyberGrasp [14]), and tactile feedback 
(e.g., CyberTouch [14]). 

Considering the continuous contact of user with a haptic 
device in most haptic systems, the user’s perception of the 
virtual environment is hindered, and it is also impossible for 
the user to feel a new tactile sensation. The latter drawback 
hampers the integration of tactile and force feedbacks in one 
haptic device [15][16]. Moreover, most haptic devices have a 
very limited workspace (e.g., 13cm × 18cm × 25cm in the 
Phantom Premium 1.0A model [17][18]). Therefore, 
constant contact in such a limited space impairs to 
incorporate rich interaction elements in an extended virtual 
environment. To overcome these limitations and to generate 
an inclusive haptic experience, Ye [3] designed an 
augmented reality system that employs visual tracking to 
seamlessly merge force feedback with tactile feedback.  

To evaluate what can be profoundly achieved in creating 
synthetic haptic experiences, technology development and 
quantitative investigations are indispensable. Having this 
combination, preferably in a multimodal system, would help 
to assign the right balance of input/output methods to 
different tasks in order to build an interactive system 
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between human and machine as much natural and effective 
as possible. 

III. METHODOLOGY 

We initially defined a series of static (Fist and Palm) and 
dynamic (Circle and Push) gestures to be linked to the tasks 
in our test game. Then we designed proper algorithms to 
detect our predefined arm/finger gestures using the Kinect 
sensor and relatively novel existing API’s (OpenNI [19], 
NITE [20], OpenCV) and to interact with our slingshot 3D 
game interface (using Microsoft XNA). Other than the 
vision-based modality, we incorporated a haptic modality to 
also interact with the same game interface (Figure 1).  

 

 
Figure 1.  The experiment devices (Falcon haptic 3D mouse, Microsoft 

Kinect camera, big-screen display using a high quality projector), and 
testing environment. 

Using the static gestures, our prototype grabs the virtual 
ball when a fist is detected in the ball’s space, then releases it 
when it recognizes a palm. This process is reproduced in 
dynamic gestures by detecting a circle drawing in the ball’s 
space to grab it, and pushing to throw the ball towards a pin 
object for scoring purpose. Furthermore, using a 3D Falcon 
haptic device (the world's first consumer 3D touch device, 
which allows users to use their sense of touch in computing), 
the user grabs the ball (similarly to the vision-based 
procedure, when the 3D position of the pointer is in contact 
with the ball’s space) by pressing the button (at this point the 
force feedback of the elastic band is felt), and throws the ball 
by releasing the button. 

We then statistically compared the three input methods 
(static postures, kinetic/dynamic gestures, and haptic force 
feedback) considering the following human factors: 
precision (errors), efficiency (time), ease-of-use, fun-to-use, 
fatigue, naturalness, mobility, and overall satisfaction. As 
another contribution in this research we analyzed the overall 
satisfaction of users in two ways: i) directly from the users 
feedback, and ii) indirectly from average of multiplying the 
normalized weighted satisfaction criteria (easiness, 
pleasantness, fatigue, naturalness, and mobility), which have 
been ranked separately by users, to the respected 
satisfaction feedback rated from users per devices, in order 

to provide a more significant and reliable rate for a practical 
overall satisfaction (more details in section IV.A.8.b). 

Finally, our user experiment presents a learning curve for 
each of the three modalities by recording the time between 
any hit occurrences for the first 10 successful shots since the 
beginning of training session.  

A. User Interface 

For the user interface we have designed a slingshot 3D 
game virtual environment (using Microsoft XNA). The 
design is kept as simple and minimalistic as possible, with 
neutral colors to reduce user error or bias (Figure 2). An 
option for changing the camera view is also included that 
users can use when they wish. The same virtual environment 
is controlled by the three modalities (static postures, dynamic 
gestures, and haptic controller) independently. 

 

   

   

Figure 2.  Slingshot 3D game virtual environment. 

B. Vision-Based Module 

Using the Kinect unit (as a commonly used vision-based 
input device) enables us to identify the depth of every single 
pixel in the frame by projecting a pattern of dots with the 
near infrared projection over the scene, and establishing the 
parallax shift of the dot pattern for each pixel in the detector. 
In addition, using OpenNI and NITE has helped us to secure 
our system with a higher stability and efficiency, and to 
develop a capable algorithm to recognize the arm and finger 
gestures. 

Using the above explained method we can conserve the 
developing time (no need for making samples and efforts in 
training/testing sessions) and running time (CPU 
performance) for gesture recognition and user interaction 
compared to traditional learning-based method. 

1) Static Gestures 
Considering the natural gestures to represent the tasks in 

interaction with our slingshot game interface, the selected 
static postures definition is presented in Table I. 

 
 
 

2 1 

4 3 
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TABLE I.  DESIGN FOR FINGER GESTURES SET. 

Description Fisting Palming 

Static gesture 

  

Action Grabbing the ball Releasing the ball 

 
In order to recognize these gestures, as shown in Figure 

3, we first needed to detect the fingertips through: i) depth 
thresholding, ii) contour extraction, and iii) assuming 
vertices of convex hull to be fingertips if their interior angles 
of hull corners (  is the angle spanned by the predecessor 
edge and successor edge incident to vertex facing to the 
inside of contour polygon) are small enough.  

 

  

                         (a)                                           (b) 

  

                         (c)                                           (d) 

Figure 3.  Images in hand and finger detection processes, (a) depth 

thresholding, (b) contour extraction, (c) fingertips detection, and (d) 

convexity defects (depth points between two fingers). 

        
                           

          
 (1) 

where     = │successor of corner index (   ) – corner index 

(   )│and       = │predecessor of corner index (   ) – 

corner index (   )│. Moreover, we cropped the depth map 
to remove the wrist out of the frame in order to improve 
accuracy.  

Following the above process of fingers detection, the 
system will recognize fist (no fingers) and palm (at least four 
fingers), and interact with the user interface through 
Algorithm 1. 

 
Algorithm 1. The algorithm controlling UI using gesture recognition. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

if (an initial Wave gesture happens) then 

   the pointer appears (session starts) 

   while the pointer follows the hand position (session updates) 

      if (a grabbing gesture Fist/Circle is detected in the object area) then 

         grab the object (save (x,y,z) based on distance deviation) 

         if (a releasing gesture Palm/Push is detected in the object area) then 

            release the object (transfer data) 

2) Dynamic Gestures 
Based on the available gesture recognition module in 

NITE, we have selected the following dynamic gestures 
definition as shown in Table II. During the controlling 
sessions of OpenNI and built-in gestures in NITE, the system 
will recognize circle and push, and interact with the user 
interface through the similar algorithm mentioned for finger 
gesture recognition (Algorithm 1), only replacing Fist and 
Palm gestures to Circle and Push.  

TABLE II.  DESIGN FOR ARM GESTURES SET. 

Description Circling Pushing 

Dynamic gesture 

   

Action Grabbing the ball Releasing the ball 

C. Haptic Module 

We designed our haptic events controller traditionally, as 
shown in Table III. As the user moves the grip in three 
dimensions (right-left and, up-down like a mouse, but also 
forwards-backwards, unlike a mouse), the Falcon's software 
keeps track of where the grip is moved and creates forces 
that a user can feel. The default grip is a small spherical grip 
with 4 buttons on the top. 

TABLE III.  DESIGN FOR HAPTIC CONTROLLER. 

Description Click & Hold the button Release the button 

Haptic 3D mouse 

  

Action Grabbing the ball Releasing the ball 

D. User Experiments 

Evaluation of the different interface modalities will be 
based on a number of criteria. These criteria are summarized 
in Table IV. Users have been asked to rate each criterion on 
a scale of 1 to 7. To ensure an unbiased sequence of used 
modalities during the user experiments (training and test 
sessions) we divided the participants into three groups (A, B, 
C) and permutated them such that each mode (M1, M2, M3) 
had an equal share of sequence as first, second, and third 
used modalities (ABC, BCA, CAB). 

1) Training Session 
The experimental evaluation starts with a training session 

of about 15 minutes (five minutes on each device) until the 
participants feel comfortable to start the test session. The 
participants try the following four primitive tasks to get used 
to the application in order to run the test session precisely: 

a) Move the pointer (tool) around 

b) Grab the ball and point towards the pin (object) 

c) Pull the ball (elastic band) 

d) Throw the ball towards the pin (object) 
Finally, the time between any hit occurrences for the first 

10 successful shots is recorded since the beginning of 
training session, in order to study the learning curve. 
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TABLE IV.  EVALUATION CRITERIA AND THEIR REPLYING CONTEXTS. 

Evaluation 

Criteria 

Weighted 

Coefficients  

(ranked by 
participants) 

Questions 

(answered by 

participants) 

Measurements 

(measured by the 

observer) 

Ease of Use     
How easy was it? 

(E) 

Normalized    

(   ) 

Fatigue     
How non-fatiguing 

was it? (F) 
Normalized    

(   ) 

Naturalness     
How natural was it? 

(N) 

Normalized    

(   ) 

Pleasantness     
How pleasant was 

it? (P) 

Normalized    

(   ) 

Mobility     
How flexible was it? 

(M) 

Normalized    

(   ) 

Overall Satisfaction 
How satisfied are 

you overall? (S) 

Adjusted-

Weighted-Overall 

Satisfaction (  ) 

Efficiency  
Required time for 

5 shots 

Effectiveness  
Error rate (misses 

in 5 shots) 

Learning Curve  
Time rate for the 

first 10 hits 

 

2) Test Session 
The second part of the evaluation is a test session during 

which the user tries 5 shots using the haptic 3D mouse, static 
postures and kinetic gestures to complete a later satisfaction 
questionnaire. An experiment observer keeps a record of the 
total time (during the 5 shots) and the scores (number of 
hits/misses out of 5 shots) from the start to the end point.  

IV. RESULTS AND DISCUSSIONS 

This study has been conducted using 20 participants (11 
males and 9 females). 17 participants were right-handed. 
They ranged in age from 15 to 45, with an average age of 29 
years old. Ethics approval was secured for participant 
surveys. None of participants were familiar with the use of 
our three modalities before. The participants first read the 
experiment instructions and were given introductions to the 
tasks they were to complete during the trial.  

The trial was divided into three phases:  

1) Training phase: to get familiar with the applications 

2) Test phase: the main process to observe the results 

3) Satisfaction phase: to complete a questionnaire 

A. Analyses 

To analyze the effects of the different human factors 
being studied, one-way repeated measures analysis of 
variances (ANOVA) [21] is carried out in MATLAB, for the 
modality/input device variable (haptics vs. static postures vs. 
dynamic gestures). All analysis are concluded at p < 0.05 
significance level and for 20 participants.  

Notation: Through the following analyses of human 
factors, we calculate the mean and standard deviation for 

different variables in the forms of          
             (e.g.,   

     

is the mean of time for haptic device) and           
             

(e.g.,    
          and    

          are the standard deviations 

of precision for dynamic and static gestures). Moreover, 
F(df,MS) is the test statistic (F-ratio) in which df and MS are 
the degree of freedom and mean square respectively for the 
variables (within subjects). The F-ratio is calculated using 
MSvariable/MSerror and P is the probability value. 

1) Time 
The analysis illustrates that for time (duration of test 

session), there is significant effect in the modality, 
F(2,186.189) = 6.375, P = 0.0041. Further repeated measures 
of ANOVA were used to make post hoc comparisons 
between each paired modalities. This reveals that the effect 
of dynamic gestures vs. static postures is significant on time, 
F(1,370.88) = 15.76, P = 0.0008, where static postures show 
to be significantly faster compared to dynamic gestures 
(Figure 4). 

 

Figure 4.  Temporal statistical facts. 

2) Precision 
The analysis illustrates that the modality has significant 

effect on the precision (number of hits in five shots) when 
playing the game, F(2,3.80) = 5.92, P = 0.0058. Paired 
repeated measure ANOVA shows significant difference on 
scores between haptic 3D mouse vs. static postures, 
F(1,4.90) = 7.11, P = 0.015, and between dynamic gestures 
vs. static postures, F(1,6.40) = 9.65, P = 0.0058, where static 
postures are significantly more precise than the two other 
modalities (Figures 5 and 6). 

 

Figure 5.  Score-based statistical facts. 

 

Figure 6.  Error rate per device. 
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3) Easiness 
Analyzing the results indicates significant effect for the 

modality on easiness (how easy to interact with the UI) 
ratings, F(2,5.55) = 5.42, P = 0.0085. Paired analyses of 
variances indicate that the haptic 3D mouse is significantly 
easier to be worked with compared to dynamic gestures, 
F(1,3.60) = 4.75, P = 0.0421, while static postures are 
significantly easier than dynamic gestures, F(1,11.02) = 7.91, 
P = 0.0111 (as shown in Figure 7). 

4) Fatigue 
The analysis on feedback for fatigue (how fatiguing to 

interact with the UI) reveals that the modality has significant 
effect F(2,8.02) = 6.93, P = 0.0027. Paired analyses reveal 
that the static postures modality is significantly less fatiguing 
than the haptic 3D mouse, F(1,9.02) = 7.01, P = 0.0159. 
Furthermore, it is revealed that static postures are 
significantly less fatiguing than dynamic gestures, F(1,14.40) 
= 15.54, P = 0.0009 (as shown in Figure 7). 

5) Naturalness 
For this factor (how natural to interact with the UI), it is 

shown that the modality has significant effect, F(2,9.62) = 
11.63, P = 0.0001. Paired analyses indicate that static 
postures are significantly more natural than both the haptic 
3D mouse F(1,18.22) = 18.95, P = 0.0003, and the dynamics 
gestures, F(1,9.02) = 16.37, P = 0.0007 (Figure 7). 

 

Figure 7.  Direct-MEAN: rate of satisfaction criteria (direct criteria 
feedback). 

6) Pleasantness 
When analyzing the participants’ feedback for 

pleasantness (how pleasant to interact with the UI), a similar 
trend to that of naturalness is observed. The effect of 
modality is significant, F(2,9.32) = 9.15, P = 0.0006. 
Moreover, similar to naturalness, paired analyses indicate 
that static postures are significantly more pleasant than both 
the haptic 3D mouse, F(1,15.62) = 19.96, P = 0.0003, and 
dynamics gestures, F(1,12.10) = 17.82, P = 0.0005 (as shown 
in Figure 7). 

 

7) Mobility 
Analysis for participants feedback on mobility (the 

working space to interact with the UI), shows significant 
effect, F(2,27.65) = 20.72, P = 0.0000. Paired analyses 
indicate that participants experience significantly less 
mobility when using the haptic 3D mouse compared to 
dynamic gestures, F(1,46.22) = 24.212, P = 0.0001, and 
static postures, F(1,36.10) = 31.32, P = 0.0000 (Figure 7). 

8) Overall Satisfaction 

a) Directly Gained (S) 
In the overall satisfaction (how overall satisfactory to 

interact with the UI) rating obtained from participants, 
significant effect is observed, F(2,5.12) = 5.76, P = 0.0065. 
Paired analyses indicate that static postures are significantly 
more satisfactory than both the haptic 3D mouse, F(1,7.22) = 
9.62, P = 0.0059, and the dynamic gestures, F(1,8.10) = 9.11, 
P = 0.0071 (as shown in Figure 7). 

b) Indirectly Gained (  ) 
As part of the questionnaire, the participants were asked 

to rank the five satisfaction criteria (easiness, non-fatigue, 
naturalness, pleasantness, and mobility) from 1 to 5 (the 
more important satisfaction factor gets the higher rank) to 
playing a 3D computer game (Figure 8). We name these new 
parameters as weighted satisfaction criteria or weighted 

coefficients (  ,   ,   ,   ,   ). In order to refine the results and 
acquire an unbiased set of coefficients, we normalize the 
rank of satisfaction criteria per user through the following 
equation: 

     
  

       
   

 (2) 

where     is the normalized rank of satisfaction criteria per 

user (Figure 9); and    is the weighted coefficient (   ,    ,    , 

   ,   ), ranked from each user for satisfaction criteria. 
We produce the weighted rate of satisfaction criteria 

(weighted criteria feedback) per device and per user (ω) 
through the following equation: 

ω          (3) 

where X is the rate of satisfaction criteria (direct criteria 
feedback) per device and per user (E, F, N, P, M). 

Finally, we infer a new practical rate (  ) defined as 
Adjusted-Weighted-Overall Satisfaction (average of 
weighted criteria feedback) per device and per user through 
the following equation: 

    
      
   

 
 (4) 

The modality shows significant effect on the indirectly 
gained (computed) overall satisfaction, F(2,0.29) = 11.54, P 
= 0.0001. Paired analyses reveal that similar to the overall 
satisfaction rates acquired directly from participants, static 
postures are significantly more satisfactory compared to the 
haptic 3D mouse, F(1,0.54) = 25.95, P = 0.0001, and to the 
dynamic gestures, F(1,0.30) = 13.48, P = 0.0016 (Figure 10). 

c) Comparison 
Figure 11 illustrates a comparison between the directly 

and indirectly gained “overall satisfaction” (S vs.   ). 
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Figure 8.  Rank of satisfaction criteria (weighted coefficient). 

 

Figure 9.  Normalized rank of satisfaction criteria (normalized weighted 

coefficient). 

 

Figure 10.  Weighted-MEAN: weighted rate of satisfaction criteria 

(weighted criteria feedback). 

 

Figure 11.  Overall satisfaction (gained directly vs. indirectly). 

9) Four Primitive Tasks 
Through the experiments, the participants were also 

asked to rate their satisfaction for the main tasks of moving 
the pointer, grabbing the ball, moving the ball, and throwing 
the ball for each device.  

For moving the ball, the modality shows significant 
effect, F(2,4.62) = 5.14, P = 0.0105. Paired analyses indicate 
that it is significantly easier to move the pointer in static 
postures application compared to dynamic gestures 
application, F(1,9.02) = 11.081, P = 0.0035.  

When grabbing the ball, the effect is significant also, 
F(2,13.07) = 17.82, P = 0.0000. Paired analyses show that all 
three modalities cause significant differences. In other 
words, it is significantly easier to grab the ball using haptic 
3D mouse compared to dynamic gestures, F(1,10.00) = 
14.61, P = 0.0011, and it is significantly easier to grab the 
ball using static postures compared to the haptic 3D mouse, 
F(1,3.60) = 4.44, P = 0.0486, and dynamic gestures, 
F(1,25.60) = 36.30, P = 0.0000.  

For pulling the ball, the effect is again significant, 
F(2,4.82) = 4.61, P = 0.0161. It is significantly easier to pull 
the ball in static postures application than using haptic 3D 
mouse, F(1,7.22) = 11.18, P = 0.0034, and in dynamic 
gestures application, F(1,7.22) = 6.16, P = 0.0226.  

Finally for throwing the ball, the effect is significant, 
F(2,7.72) = 8.65, P = 0.0008. It is significantly more difficult 
to throw the ball using dynamic gestures than using both 
haptic 3D mouse, F(1,11.02) = 9.32, P = 0.0065, and static 
postures, F(1,12.10) = 10.50, P = 0.0043. 

Figure 12 illustrates the comparisons among the tasks 
and devices. 

 

Figure 12.  Satisfaction rate for primitive tasks. 

10) Learning Curve 
In order to study the learning curve, we have recorded the 

time between any hit occurrences for the first 10 successful 
shots since the test session starts (Figure 13). This data also 
presents an initial speed rate (hits/sec) during the beginning 
of the training session (Figure 14 shows the reversed speed).  

For the average learning curves acquired for different 
modalities, there is significant effect, F(2,6.38) = 4.36, P = 
0.0286. Paired analyses reveal that the mean learning time 
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per hit for the static posture is significantly less than that of 
the haptic 3D mouse modality, F(1,12.72) = 5.89, P = 
0.0381. 

 

 

Figure 13.  Learning Curves. 

 

Figure 14.  Reverse speed (average time (sec) per hit): MEAN/STD DEV 
per device. 

For the average learning curves acquired for different 
modalities, there is significant effect, F(2,6.38) = 4.36, P = 
0.0286. Paired analyses reveal that the mean learning time 
per hit for the static posture is significantly less than that of 
the haptic 3D mouse modality, F(1,12.72) = 5.89, P = 
0.0381. 

B. Extra Observations 

Figures 15 and 16 present some more feedbacks from 
participants regarding their preferences in combination of 
devices to be used for this game application (the right 
balance of input/output methods), and their computer skills.  

 

 
 

Figure 15.  Users’ preferences in combining the devices for this application. 

 

Figure 16.  Participants’ computer skills. 

C. Discussions  

Computer skills of participants widely ranged from 
novice to expert. As a result, it would be valid to conclude 
that the findings of this study are extensively applicable for 
practical purposes and not just tech-savvy users. 
Furthermore, the wide age span of the participants ensures 
that the findings are comprehensively general and age-
independent. 

According to the provided statistical analyses, we can 
summarize that static gestures are shown to be faster and 
easier than dynamic gestures while being more precise, less 
fatiguing, more natural, and more pleasant than both other 
modalities. It is faster and lighter to perform hand and arm 
static postures due to fewer movements involved in the 
process compared to dynamic gestures. As a result, they 
would be less fatiguing, more pleasant, and more precise.  

Furthermore, continuous attachment to the haptic 3D 
mouse reduces the naturalness of experiences through the 3D 
virtual environment, while the ergonomic design and force 
feedback increase fatigue and error rate. The haptic 3D 
mouse is easier than dynamic gestures meanwhile having 
less mobility (space of interaction) than both other 
modalities. While the easiness factor was discussed earlier, 
the mobility can be argued in terms of the stationary nature 
and spatial boundaries of the haptic 3D mouse. 

Overall, static postures are directly and indirectly more 
satisfactory than the other two modalities. Since most of the 
human factors showed to be superior for static postures 
compared to the other modalities, it is valid to expect higher 
rates for the direct overall satisfaction feedback as well. The 
weighted overall satisfaction is in complete correlation with 
the direct method. This indicates that intuitive feedback 
regarding satisfaction on a modality is a reliable means for 
design evaluation. 

The experiments also reveal various conclusions 
regarding primitive tasks, namely moving the pointer, 
grabbing the ball, pulling the ball, and finally throwing the 
ball. It is shown that static postures application is more 
approved for moving the pointer compared to dynamic 
gestures application while maintaining superiority over the 
other two modalities when grabbing and pulling the ball. 
Finally, it is more difficult to grab and throw the ball with 
dynamic gestures compared to the other two modalities. 
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None of the users were familiar in applying any of these 
three modalities before this experiment. As a result, the 
obtained learning curves can be valid measures for further 
investigation of the modalities. The acquired learning curves 
indicate that the mean learning time per hit for the static 
posture is less than that of the haptic 3D mouse modality. 
This can be interpreted based on at least the two factors of 
naturalness and fatigue which influence the learning 
capabilities of participants. 

According to Figure 15, direct feedback from participants 
demonstrates that most of them suggested “equal use of 
haptic 3D mouse and gestures” with “mostly gestures” as 
their preferred combination of modalities. 

V. CONCLUSION 

A 3D slingshot game was implemented using XNA, 
OpenNI, NITE, and OpenCV. Three modalities were defined 
using a haptic 3D mouse and Kinect. Two types of vision-
based input methods were developed for Kinect as static and 
dynamic gestures. User experiments were conducted to study 
the different human factors associated with modalities. 
Precision (error) and efficiency (time) along with satisfaction 
criteria such as ease-of-use, fun-to-use, fatigue, naturalness, 
and mobility were rated in each modality and ranked 
independently. Static postures proved to be most efficient, 
precise, fun, and natural to use compared to the other modes. 
Furthermore, overall satisfaction was also acquired as a 
direct feedback from participants. Alternatively overall 
satisfaction was also computed by integrating the satisfaction 
criteria’s ranks in their rates. The result of the computed 
overall satisfaction showed to be in complete conformity 
with the direct satisfaction ratings, yielding that intuitive 
feedback on satisfaction can be valuable means for design 
studies. Overall, static postures are directly and indirectly 
more satisfactory than the other two modalities. In terms of 
learning to utilize the modalities, static postures once more 
showed superiority against the others. Finally, it should be 
mentioned that even though static postures maintain 
superiority in many aspects over dynamic gestures and 
haptic 3D mouse, the latter two modalities cannot be 
completely ignored from being incorporated in HCI systems. 
This is because of the fact that dynamic gestures and haptic 
3D mouse provide a vaster domain for possible gesture 
selection and real 4D tasks (e.g., precise following of a 
trajectory).  
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