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Abstract

In this paper, we propose a biologically-plausible model to
explain the emergence of motion tracking behaviour in early
development using unsupervised learning. The model’s train-
ing is biased by a concept called retinal constancy, which
measures how similar visual contents are between successive
frames. This biasing is similar to a reward in reinforcement
learning, but is less explicit, as it modulates the model’s learn-
ing rate instead of being a learning signal itself. The model
is a two-layer deep network. The first layer learns to encode
visual motion, and the second layer learns to relate that motion
to gaze movements, which it perceives and creates through
bi-directional nodes. By randomly generating gaze movements
to traverse the local visual space, desirable correlations are
developed between visual motion and the appropriate gaze
to nullify that motion such that maximal retinal constancy
is achieved. Biologically, this is similar to using saccades to
look around and learning from moments where a target and
the saccade move together such that the image stays the same
on the retina, and developing smooth pursuit behaviour to
perform this action in the future. Restricted Boltzmann ma-
chines are used to implement this model because they can
form a deep belief network, perform online learning, and act
generatively. These properties all have biological equivalents
and coincide with the biological plausibility of using saccades
as leverage to learn smooth pursuit. This method is unique
because it uses general machine learning algorithms, and their
inherent generative properties, to learn from real-world data.
It also implements a biological theory, uses motion instead
of recognition via local searches, without temporal filtering,
and learns in a fully unsupervised manner. Its tracking perfor-
mance after being trained on real-world images with simulated
motion is compared to its tracking performance after being
trained on natural video. Results show that this model is able
to successfully follow targets in natural video, despite partial
occlusions, scale changes, and nonlinear motion.

Introduction

Smooth pursuit is the process by which the eye tracks a mov-
ing object in its field of view (Thier and Ilg 2005), and is
driven by the direction and speed of a stimulus, resulting in
continual shifts of the eye such that the moving target always
falls approximately in the center of the field of view. How this
mechanism develops is still under considerable debate. This
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work proposes a computational model to illustrate the theory
by which smooth pursuit behaviour can emerge through ex-
posure to real-world data, and demonstrates it as a motion
tracking method which is tested on natural video. General-
purpose machine learning algorithms are used to highlight the
theory’s robustness by operating without customized models.

Newborns cannot track motion, but can observe targets by
redirecting their eyes through saccades (Aslin 1988). Sac-
cades are sharp movements of the eye to change the fixation
point, or gaze, and allow the brain to gather more informa-
tion and learn better sensory-motor control (Canfield and
Kirkham 2001). Smooth pursuit is non-existent at infants
under 8 weeks of age (Aslin 1981) and improves with age
as they mature (Richards and Holley 1999; von Hofsten and
Rosander 1997). As it improves, tracking involves alternat-
ing between saccadic and smooth pursuit movements. This
work posits that, when an infant uses a saccade to look at
something and finds that the object has moved by the time it
gets there, the brain must learn to produce a better prediction
of how to move in the future; getting better at predicting
trajectories facilitates learning to control its gaze to follow
that trajectory. Controlling the gaze, instead of only receiv-
ing data, allows an additional level of interaction with the
visual data available in the world. Smooth pursuit behavior
can emerge via self-organization based on real-world stimuli
and through feedback generated by saccades; the proposed
model will illustrate this process.

Adams et al. (2012) use active inference, which builds on
action and perception to minimize surprise through online
learning, to model smooth pursuit. On simulations, when
the network is presented with a 1-dimensional sinusoidally-
moving black target on a white background, it learns to pre-
dict the trajectory using gaze movements such that pursuit be-
haviour emerges. Active inference uses the generative model
to represent sensory information regarding position and uses
those same variables to generate action. This is a principle
that is also implemented by the proposed method. However,
the proposed method does not hardcode prior beliefs and
learns them from the data. Also, the proposed simulations
occur on more complex data. Denil et al. (2012) use a deep
network and particle filtering to estimate the trajectory of a
target through recognition at each time step by accumulating
information from local gaze searches (Larochelle and Hin-
ton 2010). Wang and Yeung (2013) also perform tracking
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through classification using features learned online followed
by particle filtering. The proposed method differs from the
above-mentioned methods since it uses only a deep belief
network, matches the trajectory through action created gener-
atively, and does not require recognition since it models only
local motion.

The recent move towards unsupervised learning, learning
from large amounts of unlabeled data, has provided excel-
lent results in a number of domains due to the data-driven
approach reducing the bias - and surpassing the insight - of
human designers. The concept that natural visual data can
cause the emergence of physiologically-consistent results
in an unsupervised learning system (Lee et al. 2007) gives
evidence that real-world stimuli might be sufficient for the
self-organization of a visual processing system. Reinforce-
ment learning (Botvinick et al. 2015) has been used to great
effect in recent years, by learning to do complex tasks with a
basic reward mechanism, such as outperforming humans in
games when learning from only raw visual data (Mnih et al.
2015; Silver et al. 2016). Given the discriminative and gen-
erative properties of deep belief networks, they are suitable
to perceive action as well as create it through bi-directional
nodes. Furthermore, their biological similarities via the con-
nectionist paradigm make them an ideal candidate to show
that this behaviour can be learned through only the knowledge
of local connections in intermediate stacked representations.

The proposed unsupervised approach learns how to shift
its gaze such that change in its receptive field is minimized
between timesteps, through a model which learns to perceive
and generate action. Retinal constancy is the simple mecha-
nism required to create the association between motion and
desired gaze movements. Given no prior understanding of
motion information being carried from frame to frame, the
most predictable event to occur is that there is no motion rel-
ative to the retina; there is retinal constancy between frames.
As the system’s best guess is that there is no motion rela-
tive to the retina, its behaviour is to arrive at a state such
that this guess is fulfilled. When its gaze is on a stationary
object, it needs to do nothing to fulfill this guess. When its
gaze is on a moving object, it needs to move its gaze at the
same velocity as the target to fulfill its guess. By using gaze
shifts, analogous to saccades, as a method to traverse the lo-
cal visual space, retinal constancy drives the network to learn
correlations between visual motion and gaze movements. In a
sense, this is similar to reinforcement learning, where retinal
constancy is rewarded.

Motion tracking in machine vision typically consists of
finding an appropriate representation for the target, a method
to detect the target and match it from frame to frame, spa-
tiotemporal constraints, and filtering to compensate for er-
ror. Biological counterparts to these concepts exist, but are
less precisely-defined and the mechanisms are not as well-
understood. The proposed model offers novel perspectives
on many of those concepts.

Background

Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) (Hinton 2002;
Smolensky 1986) is an undirected bipartite network which
uses its hidden layer to represent input data from the visible
layer. The RBM is an energy-based model, and calculates the
energy of the joint configuration of visible nodes and hidden
nodes by (1).

E(v, h) = −b′v − c′h− h′Wv (1)
where v and h are the visible and hidden node states,

respectively, b and c are the visible and hidden biases, re-
spectively, and W are the symmetric weights connecting the
hidden and visible nodes. The equation to determine the prob-
ability that a hidden node is on, given the visible vector, is
given by (2).

P (hj = 1|v) = sigmoid(cj +
∑

i

Wijvi) (2)

where hj is the jth hidden node, v is the visible nodes
vector, cj is the bias of the jth hidden node, wij is the weight
connecting the ith visible node, vi, and hj . The sum is over
all visible nodes. The equation to determine the probability
that a visible node is on, given the hidden vector, is given by
(3).

P (vi = 1|h) = sigmoid(bi +
∑

j

Wijhj) (3)

where vi is the ith visible node, h is the hidden nodes
vector, bi is the bias of the ith visible node. The sum is over
all hidden nodes.

Training is accomplished using contrastive divergence
(CD), and involves lowering the energy for preferred config-
urations of hidden nodes and visible nodes, and raising the
energy for undesirable configurations. The training alternates
between the positive phase and negative phase, where the
positive phase samples the hidden state, h+, and the visible
state, v+, from the data while the negative phase produces
the reconstructions of the hidden state, h−, and the visible
state, v−.

Δwij = γ · [< v+i h
+
j > − < v−i h

−
j >] (4)

where γ is the learning rate, and < · > is the average over
a number of samples.

Gated Factored Restricted Boltzmann Machine

The gated factored restricted Boltzmann machine (GRBM)
(Memisevic and Hinton 2010), an extension of the RBM
model to learn higher-order relationships in the data, models
the joint distribution between inputs, outputs, and hidden
nodes, using intermediate factors. Also trained using CD,
this generative model tries to predict the output, y, from
the input, x, allowing the hidden nodes to develop efficient
codes for the observed transformations between x and y.
With visual data, this technique can be applied to learning
spatial transformations. The energy of the joint configuration
of the nodes is defined in (5).
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E(x, y, h) = −
F∑

f=1

∑

ijk

xiyjhkw
x
ifw

y
jfw

h
kf

+
∑

k

wh
khk +

∑

j

wy
j yj

(5)

where wif , wjf , and wkf are the weights connecting factor
f to the input, output, and hidden nodes which are labeled x,
y, and h, respectively. The probability that hidden node k is
on, given the input and output vector, x and y, respectively,
is calculated by (6). The probability that the output node j is
on, given the input and hidden vector, x and h, is calculated
by (7).

P (hk = 1|x, y) = sigmoid(ck +
∑

f

wh
kf+

∑

i

xiw
x
if +

∑

j

yjw
y
jf )

(6)

P (yj = 1|x, h) = sigmoid(bj +
∑

f

wy
jf+

∑

i

xiw
x
if +

∑

k

hkw
h
kf )

(7)

Deep Belief Network

It is possible to layer several RBMs on top of each other,
where the hidden nodes of one layer behave as the visible
nodes of the next, forming a more powerful representation
of the data with increasing levels. Each RBM is trained in a
greedy manner and only learns correlations in the data from
the layer below it. This type of architecture is considered
a deep architecture, which can also be used as a generative
model. By presenting input data, activations propagate up-
wards until the top most layer, which then behaves as an
autoassociative memory that generates activations that prop-
agate downwards until they generate examples at the input
layer. This is known as a deep belief network (DBN) and can
be used for classification as well as generation. Hinton (2007)
uses it to act discriminatively by classifying hand-written
digits from the MNIST dataset (Lecun et al. 1998) through
generation of associated labels at the visible nodes.

Model

The proposed model contains a motion encoding layer, a mo-
tion tracking layer, and the receptive field. The receptive field
is the visual content of a region of interest, and its position
is controlled by gaze movements generated by the motion
tracking layer. The motion encoding layer learns to represent
motion in the receptive field, while the motion tracking layer
learns gaze control from the output of the motion encoding
layer. The network has some general parameters as follows:

gaze ∈ Γ (8)

h1 = f1(x
(t), x(t+Δtm)) (9)

where gaze controls the receptive field and belongs to the
set of all allowable transformations, Γ. h1 is the encoded
motion vector, and f1 is the motion encoding output function,
where x(t) is the receptive field image at time t, and Δtm is
the sampling delay between frames such that motion can be
perceived. There are slight differences in the formalization
between training and execution. The training is as follows:

htrain
2 = f2(h1, gaze

train, r(x(t), x(t+Δtm+Δtg)) (10)

where f2 is the motion tracking output function, based on
the motion encoding output, a random gaze, and the retinal
constancy value, r. Δtg is the delay between the time the
motion is perceived to the time that the gaze catches up to the
target. t+Δtm +Δtg is also the time at which retinal con-
stancy is evaluated during training. Effectively, the target’s
motion between t and t+Δtm is used to estimate the target’s
position at t + Δtm + Δtg. During execution, the motion
tracking output function relies solely on the motion vector.
The gaze is calculated by f2

′
, an inversion of the motion

tracking output function that behaves generatively. This is
formalized as follows:

hexecution
2 = f2(h1) (11)

gazeexecution = f2
′
(hexecution

2 ) (12)
When using RBMs to implement these functions, the sys-

tem can be modeled as a two-layer DBN. The receptive field
and motion encoding layer propagates data upwards, while
the motion tracking layer generatively produces gaze move-
ments as feedback downwards. The circular dependencies
between them, as well as the details of training and execution,
are illustrated in Figure 1. The timing relationships to the
input, output, and the processing are shown in Figure 2.

Figure 1: Complete system description, where the gaze vector
is generated by the motion tracking layer during execution,
and created randomly during training. The hidden activations
of the motion encoding layer and the gaze vector are con-
catenated to form the input vector of the motion tracking
layer.

From the machine vision perspective, motion encoding
consists of representing the target, and estimating possible
target matches from frame to frame. Motion tracking con-
sists of selecting the best match and moving the region-of-
interest to match that target. The proposed model exhibits a
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Figure 2: Timing and input/output diagram. Items using dot-
ted lines occur only during training.

biologically-plausible self-organizing method for those two
components.

Motion Encoding

The motion encoding layer calculates motion information
from two image frames separated by a finite time interval,
Δtm, as in (9). This encoding is trivial when hardcoded,
such as in traditional machine vision methods, but a primary
directive of this work is to allow such properties to be learned.

The implementation uses the GRBM to learn transforma-
tions between frames, with the learned transformations en-
coded by the hidden nodes. The GRBM’s hidden layer nodes
represent translations and skews when trained on real-world
video data (Memisevic and Hinton 2010), making it ideal for
this task. Also, to meet the other goals of this work, it is a
general machine learning algorithm, and can be a part of the
DBN since it is an extension of the RBM.

Motion Tracking

The goal of the motion tracking layer is to associate the
motion vector produced by the motion encoding layer with
the appropriate gaze movements, such that those gaze move-
ments can be created as defined by (12). This is implemented
by training a bi-directional autoassociative memory with the
learning rate modulated by the retinal constancy value. The
RBM is chosen because of its generative properties, it being
a general machine learning algorithm, and because it can be
part of the DBN.

This association is learned by concatenating the motion
vector and gaze movement vector into a single training exam-
ple, implementing (10). During training, it learns associations
when they have a high retinal constancy. During execution, it
generates the gaze through the execution of one Gibbs step,
initialized with the motion vector, implementing (11) and
(12).

The RBM is suitable to learn of deeper neural functions
from associations in a lower layer, as evidenced by the pro-
gressively more complex features developed in the 2-layer
deep network proposed by Lee et al. (2007), similar to those
found at increasing layers of the visual cortex. Hinton shows

that the RBM can also be used for classification generatively,
demonstrated by MNIST label generation in a deep belief net-
work (Hinton 2007). Computationally, the network behaves
similar to that work, where gaze movements are generated in
a manner similar to the labels through top-down generation
created by bottom-up stimulation. Biologically, this layer
is similar to the middle superior temporal area in the brain,
since it has been shown to produce eye movements relating
to pursuit.

Gaze Movement Vector

The gaze movement vector both perceives the gaze movement
and creates it. In the case of tracking in video, it both captures
and controls the position of the virtual receptive field in the
image. The gaze movement vector encodes translation, as in
(13). This is close to the biological eye, which rotates about
two axes.

Γ = (r, s)|(r, s) ∈ ([−i,+i], [−j,+j]) (13)

where (r, s) is a translation vector within [-i,+i] horizontal
range and [-j,+j] vertical range. The vector is implemented
by dividing it into a half for left-right movement and a half
for up-down movement. Each element represents a velocity
in that axis. For example, in a range of -2 to +2, a vector
of 10000 00010 indicates a -2 horizontal and a +1 vertical
shift. During training, gaze movements are randomized to
simulate saccades, with exactly one element in each axis set
to 1. During execution, this vector is generated by the motion
tracking RBM, and the position in each axis with the highest
value is chosen as the shift in that direction.

Retinal Constancy

In this model, retinal constancy is how desirable saccadic
movements are linked to detected motion. It is a non-trivial
solution, because perception relates to action solely through
comparison snapshots of the receptive field. The comparison
does not describe how the visual contents change, and occurs
despite temporal delays. Retinal constancy is calculated as
a function of the difference between images. In this imple-
mentation, raw pixel data is used, using (14), and is applied
in the training of the motion tracking layer from (10).

r(x(t1), x(t2)) = max(0, 1− α

N∑

i=1

(xt1
i − xt2

i )2

N
) (14)

where N is the number of pixels in image patch x. The
coefficient, α, is the selectivity of the comparison. Higher
selectivity causes the network to have fewer samples from
which to learn, yet the accuracy of those samples will be
higher. Lower selectivity allows the network to see more
samples, even if they are not necessarily good ones.

Retinal constancy is used to bias the motion tracking layer
to learn favorable patterns; this is achieved by throttling the
network’s learning rate with retinal constancy as a multiply-
ing coefficient during training. Equation (15) shows the CD
weight update equation for the motion tracking layer, updated
from (4).
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Δwij = γ · r(x(t), x(t+Δtm+Δtg))·
[< v+i h

+
j > − < v−i h

−
j >]

(15)

Biologically, memory storage and recall can be affected by
factors such as saliency and emotion (Sandberg et al. 2001),
therefore, this is biologically-plausible since this layer is an
autoassociative memory.

Experiments

Experimental Parameters

The simulation enforces practical limits on (13) by limiting
the magnitude of the gaze and, correspondingly, the magni-
tude of possible transformations to encode by:

Γ = (r, s)|(r, s) ∈ ([−2,+2], [−2,+2]) (16)

This corresponds to limiting gaze control to -2 to +2 pixels
both horizontally and vertically, where gaze ∈ Γ. Image
patches from the van Hateren natural image database (van
Hateren and van der Schaaf 1998) are used as training data
for both the motion encoding layer and the motion tracking
layer, with motion simulated by applying transformations
corresponding to the ranges defined by Γ. Experiments are
also performed by training the motion encoding layer with
unconstrained real-world video taken from the Hollywood2
dataset (Marszalek 2009). Random gaze movements are also
selected from Γ with a probability of p = 0.5. Each transfor-
mation has an equal probability of being chosen for both the
random gaze movement and the motion simulation. Recep-
tive field sizes were fixed to 14x14. Raw grayscale frames
are used with local contrast normalization and thresholded to
leave only areas of positive contrast. Retinal constancy uses a
selectivity coefficient, α, of 100. CD was used for the training
of all RBMs, with one weight update per training pattern for
the motion tracking RBM, and one weight update per batch
of 100 for the motion encoding GRBM. The GRBM has 200
factors, 100 hidden nodes, and 196 visible nodes for each
frame. For the purposes of computational motion tracking,
Δtm = 1 frame, meaning two consecutive image frames are
used to estimate motion. Δtg is set to 1, meaning that the
saccade is driven to the target in the frame after when the mo-
tion is perceived. The motion tracking RBM’s hidden layer
contains only 25 nodes such that it must be efficient about the
correlations it learns. Since there is no filtering built into the
model, a convolution procedure is used to increase stability.
The motion encoding is executed on the contents of the re-
ceptive field as well as the nearest non-overlapping windows
surrounding it, and a mean pooling operation is performed
on the resulting vectors to produce the final motion vector,
h1.

Results

The network is first tested on patches taken from the van
Hateren natural image database undergoing the limited subset
of allowable transformations in Γ. The tracking accuracy was
calculated by how frequently the translated image pairs fed
to the network generate the correct gaze control to nullify the

translation. The mean results of tracking accuracy relative
to increasing amounts of training samples over 5 trials are
shown in Figure 3 where the motion encoding layer is trained
with simulated and real-world motion and the motion tracking
layer is trained with varying simulated motion ranges.

Figure 3: Comparison of tracking accuracy vs number of
training samples seen. Model configurations have the motion
encoding layer trained on simulated motion and natural video,
and the motion tracking trained on different shift ranges.

It can be seen that training the motion encoding layer with
simulated motion produces very good results, regardless of
the motion range. The results decrease when training with
real-world video; though it is still acceptable with the [-1,+1]
motion range, the motion range of [-2,+2] suffers a perfor-
mance decrease. This discrepancy is due to the diversity, bal-
ance, and cleanliness of the simulated motion training data
compared to the complex real-world data. Having a smaller
motion range produces better tracking accuracy, as evidenced
by the performance of the motion tracking layer operating
in the [-1,+1] pixel range both horizontally and vertically.
Yet the simulated [-2,+2] pixel range still produces robust
results. To evaluate this robustness in a more challenging
task, and for a more realistic execution, the system was tested
on real-world video footage.

Figure 4 shows selected frames from real-world videos
where the motion tracking system, trained on simulated mo-
tion with a [-2,+2] range, follows a manually-selected target
from beginning to end. A video of the network tracking a
truck on the highway with relatively smooth linear motion,
over the course of 140 frames, is shown in the upper row. The
second example provides a more complex motion with an
object that changes scale by showing a perspective of a soccer
ball being shot. This shows the network’s ability to follow
the target on a more complex motion, including a changing
pattern due to rotation, a changing scale due to distance, and
illumination changes. This tracking occurs over the course
of 150 frames. The third video is that of a flock of birds,
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Figure 4: Selected frames of the network tracking objects in real-world videos. The three videos show the network tracking
a truck on a highway (top), a soccer ball in flight (middle), and a bird in a flock (bottom). The rectangle shows the network’s
receptive field and gaze position. The frame number is listed in the top-right corner of each frame.

which shows the network’s ability to track an object which
changes shape and its ability to tolerate overlapping motion,
performed over 240 frames. The network follows a single
bird through a curved trajectory.

It can be seen from the results that the proposed network
is very effective at tracking the motion of a particular image
pattern once it is in the receptive field. Even with uncon-
strained real-world video, it is accurate in its motion range,
and is capable of tracking a wide variety of targets over a
variety of motion through a behaviour learned exclusively by
self-organization.

Conclusion

As a whole, the concept of motion tracking is well-researched
in machine vision, and its counterpart, smooth pursuit, is well-
researched in biology. There is less focus on computational
models of smooth pursuit, and most of the emphasis is found
in specific implementations to simulate certain aspects of it.
This work aims to promote the idea of unifying perception
and action through the representational and generative capa-
bilities of a biologically-plausible model, as well as postulat-
ing that exposure to natural video is sufficient for tracking
behaviour to emerge. The results show that it performs well
on real-world data both for training and execution, which is
a significant leap forward from simulations that are typically
performed on simplistic synthetic data. The proposed mo-
tion tracking model is positioned well within the realm of
computational models of biological smooth pursuit, machine
vision, and unsupervised learning, and serves to contribute
novel ideas to each of those fields.
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