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that this vector space of dinaturals has as basis the denotations of cut-free proofs of the sequentin the theory MLL +MIX. Thus we obtain a full completeness theorem in the sense of [2]: oursemantics consists entirely of (linear combinations of) denotations of proofs. The fact that cut-freeproofs form a basis and not just a spanning set means that our interpretation is faithful, as wellas full. In fact, we have a fully faithful representation of a free �-autonomous category, canonicallyenriched over vector spaces. This will be discussed in Remark 2.16 below.It was observed at the end of [13] that this semantics might be expanded to noncommutativelogics by replacing groups with Hopf algebras. In [12], the representation theory of Hopf algebrasis presented as a unifying framework for the analysis of a number of variants of linear logic. Byvarying the Hopf structure, one obtains models of the commutative, fully noncommutative, cyclic orbraided variants. Thus, choosing a Hopf algebra corresponds abstractly to specifying the structuralrules of a theory. This is summarized in the following chart:Theory Hopf Structurecommutative � cocommutativebraided quantum group (i.e. quasitriangular) [28]noncommutative � noncommutative, S invertiblecyclic � noncommutative, S2 = idThe relevance of Hopf algebras is further suggested by the conservativity theorem, Theorem11.7 of [13], which says that every dinatural which is uniform with respect to the integers is alsouniform with respect to arbitrary cocommutative Hopf algebras. Thus by considering general Hopfalgebras, it seemed plausible that one could obtain such theorems for noncommutative logics. Thefull completeness theorem we present here strengthens this analogy, and suggests a general theorywhich we hope to explore in the future.The particular variant of linear logic that we will work with is the cyclic linear logic (CyLL) ofYetter [38]. This variant is obtained by adding the cyclic exchange rule to the fully noncommutativelogic of [3]. The corresponding version of proof net is also described in [38]. This theory hassubsequently been used substantially by Retor�e in his work on linguistics [31].The Hopf algebra which provides our semantics is an example of the incidence algebras of[22, 33]. It is also refered to as a shu�e algebra in [10], which is the name we have chosen touse. Given a sequent in linear logic, we assign a vector space of dinaturals which are uniformwith respect to this Hopf algebra, and show that it is generated by the denotations of (equivalenceclasses of) proofs in the cyclic fragment.Nonsymmetric monoidal categories which arise from Hopf algebras have recently become impor-tant in quantum physics [27, 28]. Since linear logic is a natural vehicle for describing free monoidalcategories [11], then modifying the structural rule of exchange should be the logical analogue of thequantization process discussed in these references. This suggests for example a logical interpretationof theorems such as the various Tannaka-Krein theorems described in [27, 28, 37].The particular Hopf algebra chosen is of independent interest in several �elds. In the theoryof distributed and concurrent computation, an important notion is that of interleaving or mergingof input streams of data. Benson [10] observed that this process has a natural algebraic structure,which led him to consider the shu�e algebra. Such structures also arise in a fundamental wayin combinatorics [22, 33], as such Hopf algebras provide an algebraic framework for the study ofgenerating functions. Connections to combinatorics are further established via Joyal's notion of
2



species [23], a functorial framework for analyzing generating functions. Species were then general-ized and given a Hopf-algebraic interpretation by Schmitt in [34]. Thus the representation theoryof such structures should have important consequences for both these subjects. An overview of theapplications of Hopf algebras to various branches of mathematics is given by Hazewinkel in [21].These results were �rst presented at the conference Linear Logic '96 at Keio University in Tokyo.An extended electronic abstract announcing the results has appeared as [14].Note to the Reader: To avoid repetition of previous work, we assume that the reader hassome familiarity with Hopf algebras, linear topology and functorial polymorphism. Appropriatereferences are [12, 13, 4]. We will begin by reviewing the results of [13].1.1 Review of Linear TopologyIt is well known that VEC, the category of vector spaces, is autonomous, i.e. symmetric monoidalclosed. To obtain a �-autonomous category of vector spaces, we add a topological structure, dueto Lefschetz [26].De�nition 1.1 Let V be a vector space. A topology, � , on V is linear if it satis�es the followingthree properties:� Addition and scalar multiplication are continuous, when the �eld k is given the discretetopology.� � is hausdor�� 0 2 V has a neighborhood basis of open linear subspaces.Let T VEC denote the category whose objects are vector spaces equipped with linear topologies,and whose maps are linear continuous morphisms.T VEC is a symmetric monoidal closed category, when V �� W is de�ned to be the vectorspace of linear continuous maps, topologized with the topology of pointwise convergence. (It isshown in [8] that the forgetful functor T VEC!VEC is tensor-preserving.) Lefschetz proves that theembedding V!V ?? is always a bijection, but need not be an isomorphism. We then have:Theorem 1.2 (Barr [5]) RT VEC, the full subcategory of reexive objects in T VEC, is a complete,cocomplete �-autonomous category.The following de�nition and theorem can be found in [13].De�nition 1.3 Let G be a group. A continuous G-module is a linear action of G on a space Vin T VEC, such that for all g 2 G, the induced map g.( ) : V ! V is continuous. Let TMOD(G)denote the category of continuous G-modules and continuous equivariant maps. Let RTMOD(G)denote the full subcategory of reexive objects.We have the following result, which in fact holds in the more general context of Hopf algebras[12].Theorem 1.4 The category TMOD(G) is symmetric monoidal closed. The category RTMOD(G)is �-autonomous, and a reective subcategory of TMOD(G) via the functor ( )??. Furthermorethe forgetful functor to RT VEC preserves the �-autonomous structure.3



2 Linear L�auchli Semantics RevisitedIn [13], a full completeness theorem is established for MLL +MIX via the notion of a uniformdinatural. Here we simplify the presentation somewhat, in that we show that uniformity is actu-ally a consequence of dinaturality, for the original (commutative) setting (see Proposition 2.5 andCorollary 2.7). We also present the proof of faithfulness of our interpretation 2.16, which was leftimplicit in [13].De�nition 2.1 Let C be a category, and F;G : Cop � C ! C functors. A dinatural transformationis a family of C-morphisms � = f�X : FXX ! GXX j X 2 jCj g such that for any f : X ! Y ,the following diagram commutes: FXX �X - GXX���FfX � @@@GXfRFY X GXY@@@FY f R ���GfY�FY Y �Y - GY Yi.e. equationally, GXf o�X oFfX = GfY o�Y oFY f(1)Note that functoriality of F implies that for arrows X 0 g! X and X f! Y , FXX Fgf�! FX 0Y =FXX FgX�! FX 0X FX0f�! FX 0Y .Let Dinat(F;G) denote the set of dinatural transformations from F to G. If ` � is a one-sidedsequent, then Dinat(�) denotes the set of dinaturals from k to ............................................................................................. �.Recall from [13] the following de�nition of uniform dinatural:De�nition 2.2 Let F and F 0 be de�nable functors on RT VEC. A dinatural transformation�:F!F 0 is uniform for a group G if for every V1; : : : ; Vn 2 RTMOD(G), the morphism �jV1j;:::;jVnjis a G-map, i.e. is equivariant with respect to the actions induced from the atoms Vi.Remark 2.3 Gordon Plotkin [30] has recently observed that dinaturality implies uniformity inour sense; that is, all dinaturals between MLL de�nable functors are automatically uniform. Weshall prove this result below. Of course this permits dropping the word \uniform" in the results of[13] and also puts some of our previous work in a new light.This observation is based on the original L�auchli setting of Sets and hereditary permutations,where there are intriguing connections to Reynolds' \parametricity" [4, 29] and the theory oflogical relations. Indeed, Plotkin and Abadi [29], answering a problem of [4], prove that Reynolds'relational parametricity formally implies dinaturality, in a parametric logical calculus for Girard'ssystem F . We will show that dinaturality implies a version of \naturality for isomorphisms", whichin turn implies our G-uniformity condition.
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We now show dinaturality implies the following version of \uniformity" of the family �.De�nition 2.4 A family � = f�X : FXX ! GXX j X 2 jCj g is uniform for isomorphisms if forall isomorphisms f : X ! Y 2 jCj, the following diagram commutes:FXX �X- GXXFY YFf�1f? �Y- GY Y?Gf�1fProposition 2.5 For a family � de�ned as above, dinaturality implies uniformity for isomor-phisms.Proof. Since Ff�1f = FY f oFf�1X and similarly for G, the above diagram translates to thefollowing equation: for all f : X ! Y 2 C,GY f oGf�1Xo�X = �Y oFY f oFf�1X :(2) We show (1) implies (2). From (1), composing both sides on the right with Ff�1X and observingthat (FfX)�1 = Ff�1X, we have:GXf o�X = GXf o�X oFfXoFf�1X = GfY o�Y oFY f oFf�1X :(3)From equation (3), composing both sides on the left with Gf�1Y we simplify to:Gf�1Y oGXf o�X = �Y oFY f oFf�1X :(4)Finally, observe that (4) equals (2) , since their left hand sides both equal to Gf�1f o�X . 2In the above discussions, we can equally consider n-ary multivariate functors, using Cn in place ofC, in which case X, Y , f , etc. denote vectors of objects and arrows, respectively.We now specialize to the case C = RT VEC. We shall be interested in MLL-de�nable functors.Such functors are given by MLL-formulae F (�1; � � � ; �n) built from propositional atoms �1; � � � ; �n,using the connectives 
; ............................................................................................. ; (�)?. We shall be interested in instantiations F (V1; � � � ; Vn) at G-modules Vi (each equipped with a linear automorphic action v 7! g.v, g 2 G).Proposition 2.6 Let F (�1; � � � ; �n) be an MLL-formula, considered as a de�nable n-ary multi-variate functor. Instantiate each �i at the G-module Vi 2 RTMOD(G). Then the instantiationF (V1; � � � ; Vn) is a G-module, with action given by Ff�1f : F (V1; � � � ; Vn) ! F (V1; � � � ; Vn), wheref = hfii is the vector of maps whose components fi are the automorphisms v 7! g.v, for each �xedg 2 G.Proof. By induction on the formula F . If F is an atom �, then F (V ) = V . So Ff�1f : V ! Vequals f , the given action map v 7! g.v, g 2 G. If F is �?, then Ff�1f : V ? ! V ? is the mapw 7! wof�1. We must show this is the action map of V ? = Hom(V;k) , where k is given the discreteaction. But (Ff�1f)(w)(v) = (wof�1)(v) = w(f�1(v)) = w(g�1.v) = (g.w)(v) from the de�nitionof the contragredient action. So (Ff�1f)(w) = g.w. Finally, 
 and ............................................................................................. are straightforward. 25



From the de�nition of uniformity for isomorphisms and the previous proposition, we see that theaction maps commute with the components of the family �. Thus, the action on an instantiationof F is inherited from the actions on its atoms. We immediately conclude:Corollary 2.7 Under the previous assumptions, if � is uniform for isomorphisms then � is uniformin the sense of linear L�auchli semantics [13].Remark 2.8 While the above observation allows one to remove the uniformity condition in thecommutative case, uniformity will still clearly be necessary with respect to an appropriate Hopfalgebra for noncommutative logic. This follows from the fact that arbitrary symmetries are dinatu-ral. The reason the above proof fails in the noncommutative setting is the action of a general Hopfalgebra on a tensor product is not the the tensor of actions. In other words, if H is a Hopf algebra,and h 2 H then h(v 
 w) will generally not be hv 
 hw. This leads one to de�ne the notion of agrouplike element of H, which will satisfy this equation. See [35].We now reformulate the results of [13] in light of this new observation. It is straightforwardto verify that Dinat(F; F 0) is a vector space, under pointwise operations. We call it the space ofproofs associated to the sequent F ` F 0. Note that we identify formulas with de�nable functors.Before obtaining a full completeness theorem, we �rst obtained a traditional completeness the-orem, which is analogous to the results of [25, 20].Theorem 2.9 (Completeness) Let M ` N be a balanced binary sequent. If the unique cut-free proof structure associated to M ` N is not a proof net for the theory MLL + MIX, thenDinat(M;N) is a zero dimensional vector space.The key lemma in extending this result to a full completeness theorem is:Lemma 2.10 Let M;N be MLL formulas. If Dinat(M;N) has dimension greater than 0, thenthe sequent M ` N is balanced.Now that we see that only balanced sequents need be considered, we establish the �rst form offull completeness:Theorem 2.11 (Full Completeness for Binary Sequents) If a sequent M ` N is binary,then Dinat(M;N) is zero or 1-dimensional, depending on whether its uniquely determined proofstructure is a net. In the latter case, every dinatural is a scalar multiple of the denotation of theunique cut-free proof net.Note that to any balanced sequent, say M ` N , we can assign a set of sets of axiom links. Thisassignment determines a �nite list of binary sequents of which M ` N is a substitution instance.Suppose this list is: M1 ` N1;M2 ` N2; : : :. (The list must be �nite.) We de�ne a new vectorspace, called the associated binary space for the sequent M ` N .ABS(M;N) =ai Dinat(Mi; Ni)There is a canonical linear map:' : ABS(M;N) �! Dinat(M;N)On basis elements, this is de�ned by \equating variables" in the sequent Mi ` Ni, or more formally,restricting which instantiations we will allow according to the pattern in M ` N .6



De�nition 2.12 We call those elements ofDinat(M;N) of the form '(S) for a (necessarily unique)S 2 ABS(M;N) diadditive.Equivalently, a diadditive dinatural transformation is a transformation which is a linear com-bination of substitution instances of binary dinaturals. It is still an open question as to whetherevery dinatural between de�nable functors is diadditive.We wish to note the following lemma which was not mentioned in [13]. It establishes that theinterpretations of distinct proofs are linearly independent, and thus our interpretation is faithful.Lemma 2.13 Let ` � be a balanced, nonbinary sequent. Let ` �1;` �2; : : : ;` �n be the binarycorrect sequents which have � as a substitution instance. Then the set of dinatural interpretationsin Dinat(�) of the unique cut-free proofs of ` �1;` �2; : : : ;` �n are linearly independent.Proof. Since the vector space structure of Dinat(�) is computed pointwise, it su�ces to �nd asingle instantiation for which the interpretations are linearly independent.We suppose that the sequent has a single literal which appears 2n times. The proof we will giveis easily extended to the more general case. We instantiate the literal at an n-dimensional vectorspace with chosen basis fejgnj=1.Let �i be one of the associated binary sequents. Its interpretation at this instantiation will beof the following form: X1�j1;j2;:::;jn�n vj1;j2;:::;jnwhere vj1;j2;:::;jn is a tensor product of basis elements or duals of basis elements such that:1. Each eji and each e�ji appears exactly once.2. Each eji ; e�ji pair appear in positions corresponding to the pairings of the axiom links.Among the terms in this summation will occur several such that each ji is instantiated at adistinct integer. Clearly such tensors will not occur in the interpretation of any other of the binarysequents, thus establishing linear independence. 2The notion of diadditive dinatural transformation then gives us our full completeness theorem.Theorem 2.14 (Full Completeness) Let F and F 0 be formulas in multiplicative linear logic,interpreted as de�nable multivariant functors on RT VEC. Then the vector space of diadditivedinatural transformations has as basis the denotations of cut-free proofs in the theory MLL+MIX.We obtain the following corollary by the methods outlined in [19, 11].Corollary 2.15 Diadditive dinatural transformations compose. Thus we obtain an (indexed) �-autonomous category by taking as objects formulas, interpreted as multivariant functors. Morphismswill be diadditive dinatural transformations.
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Remark 2.16 (Fully Faithful Representation Theorem) The above results may be inter-preted as a fully faithful representation theorem as follows. Let F denote the free �-autonomouscategory with MIX on a discrete graph of atomic types. Let LIN (F) denote the category whoseobjects are the same as in F , but whose homsets are the vector spaces generated by the correspond-ing homsets in F . Composition is then as in F , and extended linearly. Then the above theoremmay be reinterpreted as saying that the free functor from LIN (F) to the category described in2.15 is an equivalence.3 Biautonomous categoriesModels of (intuitionistic) commutative linear logic are symmetric monoidal closed categories. If wedrop the requirement that the tensor be symmetric, then one should consider categories with twointernal HOM 's. Thus we should have adjunctions of the form:HOM(A
B;C) �= HOM(B;A �� C)HOM(A
B;C) �= HOM(A;C �� B)This is the de�nition of biautonomous category, and is the basis of, for example, the Lambekcalculus [24]. Analogously, to de�ne a nonsymmetric analogue of categories with dualizing objectsone needs two duals, A? and ?A. (The dualizing object for each will be the same.)These will be subject to the isomorphisms:?(A?) �= (?A)? �= AMore speci�cally, a biautonomous category has a canonical morphism:A �! ?(A?) �= (?A)?and if this map is an isomorphism, then we have a bi-�-autonomous category. This de�nition ispresented along with a noncommutative analogue of the Chu construction in [9]. Rosenthal presentsexamples of such categories in [32]. Hopf algebraic models are presented in [12]. We now discuss avariant of this notion, which is appropriate for the logic we are modeling.De�nition 3.1 If in a bi-�-autonomous category, the dualizing object, ?, has the property that:?A �= A?then ? is said to be cyclic. A bi-�-autonomous category with such a dualizing object is also saidto be cyclic.Such a �-autonomous category will generally not be symmetric, but will validate the followingweaker form of the exchange rule: ` A1; A2; : : : ; An` A�(1); A�(2); : : : ; A�(n)where � is a cyclic permutation. This leads us to de�ne the following variant of noncommutativelinear logic. 8



4 Sequent CalculusYetter proposes cyclic linear logic (CyLL) in [38]. He presents a posetal semantics, which he callsGirard quantales and presents a completeness theorem, similar to the phase space completenesstheorem of [17]. He also presents the proof net syntax we describe below. We present the sequentcalculus for the multiplicative fragment with theMIX rule adjoined, hereafter refered to as CyLL+MIX.Structural Rules(1) Cyclic Exchange ` �` �(�) for any cyclic permutation � of �.(2) Mix ` � ` �` �;�Logical Rules(3) ` A;A? id(4) ` �; A ` A?;�` �;� Cut (5) ` �; A ` B;�` �; A
B;� 
(6) ` A;B;�` A............................................................................................. B;� .............................................................................................Given the nature of the exchange rule for this fragment, it is natural to represent the formulasof a sequent as lying on the perimeter of a circle, or as labelling radial lines on a disk. Since we willonly consider such structures up to a rotation, then we will not need any explicit representationof the cyclic exchange rule [38, 31]. It is possible to represent nets by an inductive procedureanalogous to that of the commutative case [17, 15, 16]. Rather than describe the construction indetail, we present an example of a cyclic net in �gure 1, and refer the reader to [38, 31] for thedetails of the de�nition. The net presented corresponds to a deduction of the following sequent�:` �?; (� 
 �?)
 �; �?............................................................................................. (� 
 ); ?; �? 
 �; �? 
 ; "?; "
 (? 
 �)There are several important features of this proof net to notice. First, the arcs inside the smallercircle are the cyclic analogue of axiom links. It is crucial that these links can be drawn in such away that they do not cross. This planarity condition (along with the usual correctness criterion)ensures that the structure can be sequentialized.4.1 Some Circular ReasoningWe begin by recalling some basic de�nitions from linear sequent calculus [2].De�nition 4.1 A sequent ` � is balanced if each atom occurs an even number of times, withproper variance. A balanced sequent is binary if each atom occurs exactly twice.�This example of a cyclic net appeared in Retor�e's paper [31]9
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Figure 1: A cyclic proof net
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We now give a helpful criterion for provability in CyLL+MIX.De�nition 4.2 Given a sequent �, its underlying list of literals is the list of literals obtained byerasing all commas and connectives.De�nition 4.3 A binary sequent is called cyclic if its underlying list of literals satis�es the fol-lowing cyclicity condition:(Cyc) We imagine this list of literals written on the perimeter of a circle. Start at some literal lj ,and travel around the circle either clockwise or counterclockwise. Before reaching l?j , if youencounter any other literal li, i 6= j, you will also encounter l?i .We may also have occasion to refer to the underlying literal list as being cyclic. Equivalently,a literal list is cyclic if, whenever a literal lies between � and �? in the literal list, then so does itsdual.Lemma 4.4 A binary sequent is derivable in CyLL+MIX if and only if it is cyclic and derivablein MLL+MIX.Proof. It is straightforward to verify that all of the sequent rules for this fragment preserve theproperty in question. The converse follows from sequentialization for Yetter's nets, cf. [31], andthe planarity condition described above. 25 Hopf algebras and Representations5.1 Algebras and CoalgebrasIn this section we give a quick summary of the necessary background in bialgebras and Hopfalgebras. For suitable introductions, see [1, 35, 21].De�nition 5.1 A Hopf algebra is a k-vector spacey, H, equipped with an algebra structure and acompatible coalgebra structure (= bialgebra) and an antipode satisfying the appropriate equations[21, 35]. The following chart summarizes the necessary structure. All maps shown are linear.yWe will assume throughout this paper that k is a discrete �eld of characteristic 0
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Structure EquationsAlgebra m:H
 H! H Associativity and Unit:(multiplication) mo(m
 id) = mo(id
m)�:k!H and(unit) �(1) is 2-sided unit for m.Coalgebra �:H!H
 H(comultiplication) Coassociativity withcounit for comultiplication" : H! k (dual to algebra structure).(counit)Bialgebra Algebra + Coalgebra � and " are algebra homs.(Equivalently m; � arecoalgebra homs.)Antipode S:H! H Inverse to idH : H! Hunder convolutionHere convolution refers to the operation on Homk(H;H) de�ned by (f � g)(c) = m((f 
 g)(�c)).The identity for the convolution operation is given by �� : H!H. All equations above are naturallypresented as commutative diagrams, cf. [35, 21]. We say a Hopf algebra is (co)commutative if the(co)multiplication is (co)commutative (i.e. the appropriate diagram or its dual commutes [35, 21].)2The canonical example of a Hopf algebra is the group algebra k[G], the vector space generatedby the elements of a group G. The algebra structure is induced by the group multiplication, thecoalgebra is the diagonal �(g) = g 
 g, the counit "(g) = 1 and the antipode is induced byS(g) = g�1. Thus, Hopf algebras can be thought of as a generalization of the notion of group. Weshall study another algebra, the shu�e Hopf algebra, in section 6 below.5.2 H-ModulesThe action of a group G on a vector space V is a group homomorphism � : G ! Aut(V ), whereAut(V ) is the group of linear automorphisms of V . This forms a category, with morphisms being theequivariant maps, i.e. linear maps f : V !W commuting with the action. Still more generally, wemay speak of the action of a Hopf algebra H on a vector space V . This is a linear map � : H
V ! Vsatisfying the analog of the action equations above:De�nition 5.2 Given a Hopf algebra H, a module over H is a vector space V , equipped with ak-linear map called an H-action �:H
 V!V such that the following diagrams commute:H
 H
 V id
 �- H
 V V � � H
 VI@@@@@�=H
 V?m
 id � - V�? k
 V6� 
 id
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We will generally denote an H-action by concatenation, e.g. �(h 
 v) = hv. Then the abovediagrams translate, respectively, to: (h.h0)v = h(h0v) and �(1)v = v, for all h; h0 2 H; v 2 V . Weshall frequently denote �(1) by 1H.If (V; �) and (W; �) are modules, then a map of modules, sometimes called an H-map, is ak-linear map f :V!W such that the following commutes:H
 V id
 f- H
W
V�? f - W�?i.e. in the above notation, f(hv) = hf(v) for all h 2 H; v 2 V . We thus obtain a categoryMOD(H).The above de�nition is a straightforward generalization from group representations; indeed, thelatter arises as the special case H = k[G]. A similar remark applies to the Hopf algebra associatedto a Lie algebra [1].If U and V are modules, then U 
 V has a natural module structure given by:H
 U 
 V �
 id- H
 H
 U 
 V c23- H
 U 
 H
 V �
 �- U 
 VDenote this module as U 
H V . We will frequently drop the subscript if there is no chance ofconfusion.Theorem 5.3 MOD(H) is a monoidal category. If the Hopf algebra is cocommutative, then thetensor product is symmetric. The unit for the tensor is given by the ground �eld with the modulestructure induced by the counit of H.De�nition 5.4 Given an arbitrary Hopf algebra H with bijective antipode, and two H-modules,A and B, we will de�ne two new H-modules, A �� B and B �� A, as follows. In both cases, theunderlying space will be A ��k B, the space of k-linear maps.The action on B �� A is de�ned by:(hf)(a) =Xh1f(S(h2)a)(5)and the action on A �� B is de�ned by:(hf)(a) =Xh2f(S�1(h1)a)(6)where �(h) =P h1 
 h2.The following is proved by Majid in [28].
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Theorem 5.5 Let H be a Hopf algebra with bijective antipode. Then with the actions de�ned above,MOD(H) is a biautonomous category. The adjoint relation:HOM(A
B;C) �= HOM(B;A �� C)holds whether or not the antipode is bijective. In the case of a cocommutative Hopf algebra, the twointernal HOM 's are equal.Now we will consider a topological variant of this result.De�nition 5.6 The category TMOD(H) is de�ned as follows. Objects are modules (V; �) suchthat V is equipped with a linear topology, and such that the action of H on V is continuous, foreach element h 2 H. Maps are H-maps which are also continuous. De�ne RTMOD(H) to be thefull subcategory of reexive objects.The following results are presented in [12]. They are a straightforward generalization of theresults of [28].Theorem 5.7 Let H be a Hopf algebra with bijective antipode. Then RTMOD(H) is a bi-�-autonomous category. Furthermore, if H has an involutive antipode, i.e. S2 = id, thenRTMOD(H) is a cyclic �-autonomous category.6 The Shu�e AlgebraThe particular Hopf algebra which will provide our semantics is known as the shu�e algebra. Itis an example of an incidence algebra [33] and is of fundamental importance in several areas, see[10, 22]. The terminology below is motivated by thinking of shu�ing a deck of cards.Let X be a set and X� the free monoid generated by X. We denote words (= strings) in X�by w;w0; � � � and occasionally z; z0 : : :. Elements x; y; � � � 2 X are identi�ed with words of length 1,the empty word (= unit of the monoid) is denoted by �, and the monoid multiplication is given byconcatenation of strings. We denote the length of word w by jwj. Let k[X�] be the free k-vectorspace generated by X. We consider k[X�] endowed with the following Hopf algebra structure[21, 10]:(i) A = k[X�] is an algebra, i.e. comes equipped with an associative k-linear multiplication (withunit) m : A
A! A: w 
 w0 7! w.w0 = Xu2Sh(w;w0) u(7)where Sh(w;w0) denotes the set of \shu�ed" words of length jwj + jw0j obtained from w and w0.Here, a shu�e of w = a1 � � � am and w0 = a01 � � � a0n is a word of length m+ n, say w00 = c1 � � � cm+nsuch that each of the ai and a0j occurs once in w00 ; moreover, within w00, ai and a0j occur in theiroriginal sequential order. For example, if w = aba and w0 = bc, we obtain the following set ofshu�ed words (where the letters from w0 are underlined)ababc; abbac; abbac; babac; abbca; abbca; babca; abcba; bacba; bcaba
14



Thus the summation w.w0 is equal toababc+ 2abbac+ babac+ 2abbca+ babca+ abcba+ bacba+ bcabaNote that we will always denote the shu�e multiplication with ., as opposed to the monoid multi-plication, for which we use concatenation.The unit � : k! A arises by mapping 1 7! �.(ii) A = k[X�] is a coalgebra, i.e. comes equipped with a coassociative comultiplication (withcounit) � : A! A
A, de�ned as: �(w) = Xw1w2=ww1 
 w2(8)Note that in the equation w1w2 = w we are using the original monoid multiplication of X�. Theabove pair w1w2 is called a cut of w.The counit " : A ! k is de�ned by: "(w) = ( 1 if w = �0 else(9)Finally, there is an antipode de�ned as S(w) = (�1)jwjw(10)where w denotes the word w written backwards.Proposition 6.1 A = k[X�] with the above structure forms a Hopf algebra with involutive an-tipode. Thus RTMOD(A) is a cyclic �-autonomous category.6.1 A-ModulesWe now give several examples of A-modules, where A is the shu�e algebra.� The simplest example of an A-action, which we will frequently have occasion to use, is thezero action on an arbitrary V 2 RT VEC de�ned by:wv = ( v if w = �0 else� Let V be an object of RT VEC and v 2 V . Given any element w 2 X�, de�newv = vjwj!It follows from the fact that the number of shu�es of w with w0 is given by (jwj+jw0j)!jwj!jw0j! , thatthis is indeed an action.
15



� For a more general example, given a vector space V , equipped with a Z-action, we can de�nean A-action by: wv = jwjvjwj!� Finally, choose any element x 2 X. We can de�ne an A action by:wv = ( vn! if w = xn0 elseIn the sequel, we will use various combinations of these actions.7 The �-Autonomous Structure of RTMOD(A)Let us now look in more detail at the structure of RTMOD(A). We will give explicit formulas forthe negation, tensor and par in this category, and then describe the action of A on dinaturals.7.1 Negation and TensorIt is straightforward to describe the action of a word w on an element of V ?.Proposition 7.1 Given a k-linear function f :V!k and an element v 2 V ,(wf)(v) = f((�1)jwjwv) :(11)Proof. Using equations (5) and (10), we have(wf)(v) = Xw1w2=ww1f(S(w2)v)= Xw1w2=ww1f((�1)jw2jw2v)But f((�1)jw2jw2v) is an element of the �eld k, whose structure is induced by the counit, cf. (9).It follows that the only nontrivial term in the last sum is when w1 = � and w2 = w. 2If U; V 2 RTMOD(A) then the action on U 
 V is given by:w(v 
 v0) =X(w1v)
 (w2v0)(12)where �(w) = Pw1 
 w2, the sum over all possible cuts of w. Similarly, to calculate the actionof a word on an iterated tensor product, say V1 
 V2 
 : : : 
 Vn, calculate �n�1(w), and calculatecomponentwise.
16



7.2 The Par StructureRecall that in a noncommutative logic, the usual linear DeMorgan rule takes on the following form:A............................................................................................. B �= (B? 
A?)?. We now describe the action of a word on an element of A............................................................................................. B.Lemma 7.2 Suppose that f : B? 
A? ! k, that w 2 X�, u 2 B? and v 2 A?. Then the actionof w on f may be described as follows:(wf)(u
 v) = Xw1w2=w f(u(w2�)
 v(w1�) )where for any word w0, u(w0�) denotes the function a 7! u(w0a) and similarly for v(w0�).Proof. The proof proceeds by the following calculation.(wf)(u
 v) = f((�1)jwjw(u
 v))= (�1)jwjf(w(u
 v))= (�1)jwjf( Xz1z2=w z1u
 z2v)= (�1)jwjf( Xz1z2=w u ( (�1)jz1jz1�)
 v((�1)jz2jz2�) )= (�1)jwjf( Xz1z2=w(�1)jz1j+jz2j u(z1�) 
 v(z2�) )= (�1)jwjf( Xz1z2=w(�1)jwj u(z1�) 
 v(z2�) )= (�1)2jwjf( Xz1z2=w u(z1�) 
 v(z2�) )= f( Xz1z2=w u(z1�) 
 v(z2�) )= Xz1z2=w f(u(z1�) 
 v(z2�) )= Xw1w2=w f(u(w2�)
 v(w1�) ) ;observing that z1z2 = w if and only if z2 z1 = w. 2The key thing to note is the similarity to the calculation for tensor product. To calculate theaction of a word w on A............................................................................................. B, we calculate �(w) =Pw1
w2, and allow the w1 terms to act in theA position, and the w2 terms to act in the B position. A similar remark applies to iterated ............................................................................................. 's.7.3 Sample CalculationTo illustrate calculations in this category, we present a typical example.Let V 2 RT VEC. There is a canonical element:17



� 2 (V 
 V ?)?de�ned by �(v 
 u) = u(v).We will show that for x; y 2 X, (xy�)(v 
 u) = 0, for all v 2 V; u 2 V ?. In fact, the resultfollows for general reasons, but it is illustrative of how the coalgebra structure interacts with theshu�e multiplication. Recall that the shu�e multiplication is denoted by ..(xy�)(v 
 u) = �(yx(v 
 u))= �(yxv 
 u+ yv 
 xu+ v 
 yxu)= �(yxv 
 u(�)� [yv 
 u(x�)] + v 
 u(xy�))= u(yxv)� u((x.y)v) + u(xyv)= u(yxv)� u(xyv + yxv) + u(xyv)= u(yxv)� (u(xyv) + u(yxv)) + u(xyv)= 07.4 The Action of a Word on a DinaturalSuppose that we have a balanced, binary sequent with n atoms and thus 2n literals, say ` �.Following the ideas of functorial polymorphism [4, 13], we will interpret � as a multivariant functordenoted � . When an object ofRT VEC is chosen for each atom in �, then we have an instantiationof � . Suppose also that we have a dinatural transformation � : k! � interpreting the sequent` �. This can be viewed as a parametrized family of elements of the instantiations of � . If eachatom is interpreted as a space equipped with an A-action, then this induces an action of A on� at this instantiation. To calculate the action of a word w 2 X� on �, we begin by calculating�2n�1(w). For example, suppose � interprets the sequent ` �? 
 �; �?............................................................................................. � . To determine theaction of the word w = xy on �, we �rst calculate �3 : A ! A
A
A
A , obtained by iterating�. In the following display, we have written out the element �3(xy) 2 A
A
A
A in ten rows.The element in question is the sum of the ten rows. We have also divided the element into fourcolumns and labelled each column with the literal on which it will act.
�3(xy) =

�? 
 � ; �? ............................................................................................. �xy 
 � 
 � 
 � +x 
 y 
 � 
 � +x 
 � 
 y 
 � +x 
 � 
 � 
 y +� 
 xy 
 � 
 � +� 
 x 
 y 
 � +� 
 x 
 � 
 y +� 
 � 
 xy 
 � +� 
 � 
 x 
 y +� 
 � 
 � 
 xy18



In general, we refer to the summands in �2n�1(w) as tensor expressions, and the words whichcomprise a tensor expression as tensor terms. Now to calculate the action of a word on �, wecalculate the action of each associated tensor expression, and add. To calculate the action of atensor expression, we determine whether a given term is in a slot corresponding to a covariant orcontravariant literal. In the latter case, we apply the antipode to that term. Then the summandacts \pointwise", each term acting in the slot to which it is assigned.Example 7.3 Let � : �?
�; �?............................................................................................. � be the dinatural transformation given by �(f
u; g) = rg(f
u),where the variables are v : �; f : �?; u : �; g : (�? 
 �)?, and r is any scalar. (Note that � mayequivalently be thought of as � : �? 
 �; (�? 
 �)?.)Consider the following actions, with u : � and v : �.�� action wv = ( vn! if w = xn0 otherwise� � action wu = ( un! if w = yn0 otherwiseWe shall calculate the action of the word xy on �, by calculating the action of each row of �3(xy)above and then summing the total. In row 1, there is an xy (which is a non-power of x) in the �?slot, so � is killed, i.e. � 7! 0. In row 2, x is in the �? slot, which multiplies by �1, y is in the� slot, which multiplies by 1; hence the action of row 2 maps � 7! �� . In row 3, x; y appear innegative slots, contributing (�1) each, so the action is � 7! �. In each of the rows 4-10, there iseither a y in an � slot, or an x in a � slot. In all those cases, � is killed, i.e. � 7! 0. The totalaction is � 7! �� + �, i.e. � 7! 0.8 Full Completeness for CyLLThe notion of G-uniformity can be extended in an evident way to H-uniformity, where H is anarbitrary Hopf algebra. As in the commutative case, we call A�Dinat(F; F 0) the space of cyclicproofs associated to the sequent F ` F 0, where A is the shu�e Hopf algebra.Given a � interpreting a one-sided sequent ` �, we must determine when it is A-uniform. Since� is of the form � : k!j�j and the module structure of k is determined by the counit of A, weconclude:Lemma 8.1 � is A-uniform if and only ifw� = ( � if w = �0 otherwise(13)We immediately demonstrate that it is su�cient to consider balanced sequents.Lemma 8.2 If a sequent ` � has a nonzero A-uniform dinatural, then it is balanced.Strictly speaking, this proposition is a consequence of the observation (from the last section)that all dinaturals are Z-uniform, and the fact that the proposition holds for such dinaturals, seeLemma 2.10. However, we add a direct proof since it illustrates calculations with this Hopf algebra.19



Proof. Suppose that � is such a sequent, and � is a nonzero dinatural. Let �1; �2; : : : ; �n be theatoms appearing in �. For each �i, pick a distinct xi in X.De�ne an A-action on �i by: wv = ( vn! if w = xni0 otherwise(14)To calculate the action of xi on �, we must repeatedly apply � to xi. The result will be a sumof tensor expressions of the form: �
 �
 : : :
 xi 
 : : :
 �Such a term acting on � will be 0, except in the cases where the position of xi corresponds tothe position of �i. In this case, the result will either be � or �� depending on whether the �i is ina covariant or contravariant position. Thus if xi� = 0, it must be the case that the covariant andcontravariant occurrences are in bijection. Thus the sequent is balanced. 2Now that we have established that a sequent with a nontrivial A-uniform semantics must bebalanced, our full completeness result will follow from two facts. They are as follows: (all sequentsconsidered are binary.)1. If ` � is a sequent with a noncyclic list of literals, then there are no A-uniform dinaturals.2. Every A-uniform dinatural is Z-uniformThe �rst of these will be proved in the next subsection. The second is now an immediateconsequence of 2.7. We leave it to the reader as a di�cult combinatorial exercise to prove thesecond fact directly.Our full completeness result would then be an immediate consequence. It follows from ourprevious work [13], summarized in section 2, that every A-uniform dinatural is the denotation ofan MLL +MIX proof (up to scalar multiplication.) The �rst fact then says that a Z-uniformdinatural is A-uniform if and only if its associated proof is a cyclic proof. Clearly every proofin CyLL+MIX is a proof in MLL+MIX. Furthermore, the faithfulness argument of Lemma 2.13evidently extends to this setting. Therefore we may conclude our full completeness theorem. Wenow present these ideas in more detail.8.1 Noncyclic SequentsLemma 8.3 Suppose that ` � is a binary sequent which is not cyclic. Then dim (A�Dinat(�) ) =0.Proof. If � is not cyclic, then there exists atoms � and � such that either � or �? occurs between� and �? but its dual does not. Suppose that � is instantiated at A and � at B. Choose x; y 2 Xand de�ne actions on A and B as follows:A� action: wv = ( vn! if w = xn0 otherwise
20



B � action: wv0 = ( v0n! if w = yn0 otherwiseFor all other atoms in the atom list, we de�ne the action by wv = 0 for all nonempty words.Now consider � 2 A�Dinat(�), instantiated as above. We consider the action of the word xyxon �. As usual, we calculate all tensor expressions for the word xyx. It is clear that the only onewhich does not annihilate � is:�
 : : :
 x
 : : :
 y 
 : : :
 x
 : : : 
 �where the letters appear in the slots corresponding to A;B and A? respectively. (We are assumingfor convenience that the � occurring between � and �? is covariant, though this makes no di�er-ence.) Evidently, the action of this tensor expression is given by � 7! �. Thus the total action ofthe word xyx on � is given by � 7! �. Since � is A-uniform, we conclude that � = 0. 29 Main ResultsBy the previous discussion, we may now state:Theorem 9.1 (Completeness for A-Dinaturals) Let M ` N be a balanced binary sequent. Ifthe unique cut-free proof structure associated to M ` N is not a proof net for the theory CyLL+MIX, then A�Dinat(M;N) is a zero dimensional vector space.Theorem 9.2 (Full Completeness for Cyclic Binary Sequents) If a sequent M ` N is bi-nary, then A�Dinat(M;N) is zero or 1-dimensional, depending on whether its uniquely determinedproof structure is a cyclic net. In the latter case, every A-dinatural is a scalar multiple of the de-notation of the unique cut-free proof net.Theorem 9.3 (Cyclic Full Completeness) Let F and F 0 be formulas in multiplicative linearlogic, interpreted as de�nable multivariant functors on RT VEC. Then the vector space of diadditiveA-uniform dinatural transformations has as basis the denotations of cut-free proofs in the theoryCyLL+MIX.As usual, we are able to obtain the following corollary.Corollary 9.4 A-uniform diadditive dinatural transformations compose. Thus we obtain an (in-dexed) cyclic �-autonomous category by taking as objects formulas, interpreted as multivariantfunctors. Morphisms will be uniform diadditive dinatural transformations.In [13] Theorem 11.7, we show that a diadditive dinatural transformation between multivariantfunctors is uniform with respect to the actions of arbitrary cocommutative Hopf algebras. We nowpresent a similar result for the cyclic setting.Theorem 9.5 A diadditive dinatural transformation which is uniform with respect to the shu�eHopf algebra is uniform with respect to arbitrary involutive Hopf algebras, i.e. those for whichS2 = id.Proof. Our full completeness theorem implies that the only dinaturals which are uniform withrespect to the shu�e Hopf algebra are the structure maps of a cyclic �-autonomous category. Anysuch maps will be uniform with respect to all involutive Hopf algebras. 221



10 Future DirectionsThe next avenue we hope to explore is extending our approach to include the additive connectives.The categories we have considered thus far are inadequate for the consideration of MALL inthat product and coproduct are isomorphic, i.e. RT VEC has all �nite biproducts. This problemis avoided by considering normed vector spaces [36], p. 96. We de�ne a category BAN 1 whoseobjects are Banach spaces, i.e. complete normed vector spaces, and whose morphisms are linearmaps of norm less than or equal to 1. This is a symmetric monoidal closed category, when thetensor product is taken to be the completed projective tensor [36, 6]. One can then apply the Chuconstruction to BAN 1 [7]. In so doing, we obtain a �-autonomous category of topological vectorspaces in which products and coproducts no longer coincide. Explicitly, if V;W 2 BAN 1, then wehave the following formulas: Products- jj(v; w)jj = maxfjjvjj; jjwjjgCoproducts- jj(v; w)jj = jjvjj+ jjwjjThese correspond to the `1 and `1 norms respectively. Given our previous work, this seems apromising candidate for a full completeness theorem for MALL.Girard, in a recent series of talks and preprint [18], has proposed the notion of a coherent Banachspace in which the additive structure is modeled as above, and the exponentials are modeled via thenotion of analytic functions on a Banach space. He also proposes a new version of linear sequentcalculus in which the proof rules are labeled by scalars. He then shows that his semantics is soundfor this theory.11 AcknowledgementThe authors would like to thank Arnaud Fleury and Christian Retor�e for their helpful commentson Yetter's Cyclic Linear Logic. We thank Gordon Plotkin for his astute comments, which led tothe new results of section 2. We also thank Esfan Haghverdi for help in LATEX-ing �gure 1.Special thanks are due to Mitsu Okada and the other organizers of Linear Logic '96 for givingus the opportunity to present these results.References[1] K. Ab�e, Hopf Algebras, Cambridge University Press, (1977).[2] S. Abramsky, R. Jagadeesan, Games and Full Completeness for Multiplicative Linear Logic,J. Symbolic Logic, Vol. 59, No.2 (1994), pp. 543-574.[3] V.M. Abrusci, Phase Semantics and Sequent Calculus for Pure Noncommutative ClassicalLinear Propositional Logic, J. Symbolic Logic Vol. 56 (1991), pp. 1403-1456.[4] E. Bainbridge, P. Freyd, A. Scedrov, P. Scott, Functorial Polymorphism, Theoretical ComputerScience 70, (1990), pp. 1403-1456.[5] M. Barr, Duality of Vector Spaces, Cahiers de Top. et G�eom. Di�. 17, (1976), pp. 3-14.
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