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Abstract

We present a full completeness theorem for the multiplicative fragment of a variant of non-
commutative linear logic known as cyclic linear logic (CyLL), first defined by Yetter. The
semantics is obtained by considering dinatural transformations on a category of topological vec-
tor spaces which are equivariant under certain actions of a noncocommutative Hopf algebra,
called the shuffie algebra. Multiplicative sequents are assigned a vector space of such dinaturals,
and we show that the space has the denotations of cut-free proofs in CyLL+MIX as a basis.
This can be viewed as a fully faithful representation of a free x-autonomous category, canonically
enriched over vector spaces.

This work is a natural extension of the authors’ previous work, “Linear Lauchli Semantics”,
where a similar theorem is obtained for the commutative logic. In that paper, we consider
dinaturals which are invariant under certain actions of the additive group of integers. We also
present here a simplification of that work by showing that the invariance criterion is actually
a consequence of dinaturality. The passage from groups to Hopf algebras corresponds to the
passage from commutative to noncommutative logic.

1 Introduction

This paper is a continuation of a program initiated in [13], where a linear version of Lauchli’s
semantics for intuitionistic logic is presented. In that paper, we counsider actions of the additive
group of integers on a category of topological vector spaces. We associate to any sequent in
Multiplicative Linear Logic (M LL) a vector space of dinatural transformations which are invariant
with respect to certain such actions. Originally, we called these dinaturals Z-uniform. In this paper
we present a simplification of this notion based on an observation of Plotkin. We will show that
in fact uniformity with respect to arbitrary groups is a consequence of dinaturality. We then show
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that this vector space of dinaturals has as basis the denotations of cut-free proofs of the sequent
in the theory MLL + MIX. Thus we obtain a full completeness theorem in the sense of [2]: our
semantics consists entirely of (linear combinations of) denotations of proofs. The fact that cut-free
proofs form a basis and not just a spanning set means that our interpretation is faithful, as well
as full. In fact, we have a fully faithful representation of a free x-autonomous category, canonically
enriched over vector spaces. This will be discussed in Remark 2.16 below.

It was observed at the end of [13] that this semantics might be expanded to noncommutative
logics by replacing groups with Hopf algebras. In [12], the representation theory of Hopf algebras
is presented as a unifying framework for the analysis of a number of variants of linear logic. By
varying the Hopf structure, one obtains models of the commutative, fully noncommutative, cyclic or
braided variants. Thus, choosing a Hopf algebra corresponds abstractly to specifying the structural
rules of a theory. This is summarized in the following chart:

Theory ‘ Hopf Structure
commutative A cocommutative
braided quantum group (i.e. quasitriangular) [28]
noncomimutative A noncommutative, S invertible
cyclic A noncommutative, S? = id

The relevance of Hopf algebras is further suggested by the conservativity theorem, Theorem
11.7 of [13], which says that every dinatural which is uniform with respect to the integers is also
uniform with respect to arbitrary cocommutative Hopf algebras. Thus by considering general Hopf
algebras, it seemed plausible that one could obtain such theorems for noncommutative logics. The
full completeness theorem we present here strengthens this analogy, and suggests a general theory
which we hope to explore in the future.

The particular variant of linear logic that we will work with is the cyclic linear logic (CyLL) of
Yetter [38]. This variant is obtained by adding the cyclic exchange rule to the fully noncommutative
logic of [3]. The corresponding version of proof net is also described in [38]. This theory has
subsequently been used substantially by Retoré in his work on linguistics [31].

The Hopf algebra which provides our semantics is an example of the incidence algebras of
[22, 33]. It is also refered to as a shuffle algebra in [10], which is the name we have chosen to
use. Given a sequent in linear logic, we assign a vector space of dinaturals which are uniform
with respect to this Hopf algebra, and show that it is generated by the denotations of (equivalence
classes of) proofs in the cyclic fragment.

Nonsymmetric monoidal categories which arise from Hopf algebras have recently become impor-
tant in quantum physics [27, 28]. Since linear logic is a natural vehicle for describing free monoidal
categories [11], then modifying the structural rule of exchange should be the logical analogue of the
quantization process discussed in these references. This suggests for example a logical interpretation
of theorems such as the various Tannaka-Krein theorems described in [27, 28, 37].

The particular Hopf algebra chosen is of independent interest in several fields. In the theory
of distributed and concurrent computation, an important notion is that of interleaving or merging
of input streams of data. Benson [10] observed that this process has a natural algebraic structure,
which led him to consider the shuffle algebra. Such structures also arise in a fundamental way
in combinatorics [22, 33], as such Hopf algebras provide an algebraic framework for the study of
generating functions. Connections to combinatorics are further established via Joyal’s notion of



species (23], a functorial framework for analyzing generating functions. Species were then general-
ized and given a Hopf-algebraic interpretation by Schmitt in [34]. Thus the representation theory
of such structures should have important consequences for both these subjects. An overview of the
applications of Hopf algebras to various branches of mathematics is given by Hazewinkel in [21].

These results were first presented at the conference Linear Logic '96 at Keio University in Tokyo.
An extended electronic abstract announcing the results has appeared as [14].

Note to the Reader: To avoid repetition of previous work, we assume that the reader has
some familiarity with Hopf algebras, linear topology and functorial polymorphism. Appropriate
references are [12, 13, 4]. We will begin by reviewing the results of [13].

1.1 Review of Linear Topology

It is well known that VEC, the category of vector spaces, is autonomous, i.e. symmetric monoidal
closed. To obtain a *x-autonomous category of vector spaces, we add a topological structure, due
to Lefschetz [26].

Definition 1.1 Let V be a vector space. A topology, 7, on V is linear if it satisfies the following
three properties:

e Addition and scalar multiplication are continuous, when the field k is given the discrete
topology.

e 7 is hausdorff
e 0 € V has a neighborhood basis of open linear subspaces.

Let TVEC denote the category whose objects are vector spaces equipped with linear topologies,
and whose maps are linear continuous morphisms.

TVEC is a symmetric monoidal closed category, when V' —o W is defined to be the vector
space of linear continuous maps, topologized with the topology of pointwise convergence. (It is
shown in [8] that the forgetful functor TVEC—VEC is tensor-preserving.) Lefschetz proves that the
embedding V—V -+ is always a bijection, but need not be an isomorphism. We then have:

Theorem 1.2 (Barr [5]) RTVEC, the full subcategory of reflexive objects in TVEC, is a complete,
cocomplete x-autonomous category.

The following definition and theorem can be found in [13].

Definition 1.3 Let G be a group. A continuous G-module is a linear action of G on a space V
in TVEC, such that for all g € G, the induced map g+( ) : V — V is continuous. Let TMOD(G)
denote the category of continuous G-modules and continuous equivariant maps. Let RT MOD(G)
denote the full subcategory of reflexive objects.

We have the following result, which in fact holds in the more general context of Hopf algebras
[12].

Theorem 1.4 The category T MOD(G) is symmetric monoidal closed. The category RT MOD(QG)
is *-autonomous, and a reflective subcategory of TMOD(G) via the functor ( )*+. Furthermore
the forgetful functor to RTVEC preserves the x-autonomous structure.



2 Linear Lauchli Semantics Revisited

In [13], a full completeness theorem is established for M LL + MIX via the notion of a uniform
dinatural. Here we simplify the presentation somewhat, in that we show that uniformity is actu-
ally a consequence of dinaturality, for the original (commutative) setting (see Proposition 2.5 and
Corollary 2.7). We also present the proof of faithfulness of our interpretation 2.16, which was left
implicit in [13].

Definition 2.1 Let C be a category, and F,G : C°? x C — C functors. A dinatural transformation
is a family of C-morphisms 0 = {fx : FXX - GXX | X € |C| } such that forany f: X — Y,
the following diagram commutes:

0
FXX X L GXX
F fX/‘ \€X f
FYX GXY
FYf\« oy /c; fY
FYY GYY
i.e. equationally,
(1) GX follxoF fX = GfYofyoFY f

Note that functoriality of F implies that for arrows X’ % X and X EN Y, FXX 9l pxty =

rxx ™ rxx 2 pxry.

Let Dinat(F,G) denote the set of dinatural transformations from F to G. If - I' is a one-sided
sequent, then Dinat(I") denotes the set of dinaturals from k to BT

Recall from [13] the following definition of uniform dinatural:

Definition 2.2 Let F and F' be definable functors on RTVEC. A dinatural transformation
0: F—F" is uniform for a group G if for every Vi,...,V,, € RTMOD(G), the morphism 0}y, v,
is a G-map, i.e. is equivariant with respect to the actions induced from the atoms V;.

Remark 2.3 Gordon Plotkin [30] has recently observed that dinaturality implies uniformity in
our sense; that is, all dinaturals between MLL definable functors are automatically uniform. We
shall prove this result below. Of course this permits dropping the word “uniform” in the results of
[13] and also puts some of our previous work in a new light.

This observation is based on the original Lauchli setting of Sets and hereditary permutations,
where there are intriguing connections to Reynolds’ “parametricity” [4, 29] and the theory of
logical relations. Indeed, Plotkin and Abadi [29], answering a problem of [4], prove that Reynolds’
relational parametricity formally implies dinaturality, in a parametric logical calculus for Girard’s
system F. We will show that dinaturality implies a version of “naturality for isomorphisms”, which
in turn implies our G-uniformity condition.



We now show dinaturality implies the following version of “uniformity” of the family 6.

Definition 2.4 A family 6 = {0x : FXX — GXX | X € |C|} is uniform for isomorphisms if for
all isomorphisms f : X — Y € |C|, the following diagram commutes:

rxx X axx
Fflf{ {Gflf
)
FYY Y. QYyy

Proposition 2.5 For a family 0 defined as above, dinaturality implies uniformity for isomor-
phisms.

Proof. Since Ff 'f = FY foFf !X and similarly for G, the above diagram translates to the
following equation: for all f: X — Y €C,

(2) GY foGf 1 Xy = OyoFY foFf~1X .

We show (1) implies (2). From (1), composing both sides on the right with F f "1 X and observing
that (FfX)™! = Ff~'X, we have:

(3) GXfolly = GX folxoF fXFf X = GfYolyoFY foFf 1X .
From equation (3), composing both sides on the left with Gf~'Y we simplify to:
(4) Gf Y oGX foflx = OyoFY foFf~1X .

Finally, observe that (4) equals (2) , since their left hand sides both equal to G f ~! fofx. O

In the above discussions, we can equally consider n-ary multivariate functors, using C" in place of
C, in which case X, Y, f, etc. denote vectors of objects and arrows, respectively.

We now specialize to the case C = RTVEC. We shall be interested in MLL-definable functors.
Such functors are given by MLL-formulae F(aq, - - -, ay) built from propositional atoms ayq, -+, ay,
using the connectives ®,,(—)*. We shall be interested in instantiations F(Vi,---,V,) at G-
modules V; (each equipped with a linear automorphic action v — g-v, g € G).

Proposition 2.6 Let F(aq, -, ap) be an MLL-formula, considered as a definable n-ary multi-
variate functor. Instantiate each «; at the G-module V; € RT MOD(G). Then the instantiation
F(Vi,--+,V,) is a G-module, with action given by Ff=*f : F(Vi,---,V,,) — F(Vq,---,V,.), where
f = (fi) is the vector of maps whose components f; are the automorphisms v — g-v, for each fized
g€QG.

Proof. By induction on the formula F. If F is an atom «, then F(V) =V. So Ff 'f: V -V
equals f, the given action map v — g-v, g € G. If F is o, then Ff~'f : V+ — V1 is the map
w + wof 1. We must show this is the action map of V+ = Hom(V, k) , where k is given the discrete
action. But (Ff~1f)(w)(v) = (wof ~1)(v) = w(f~(v)) = w(g~'+v) = (g-w)(v) from the definition
of the contragredient action. So (Ff !f)(w) = g-w. Finally, ® and B are straightforward. O



From the definition of uniformity for isomorphisms and the previous proposition, we see that the
action maps commute with the components of the family 8. Thus, the action on an instantiation
of F is inherited from the actions on its atoms. We immediately conclude:

Corollary 2.7 Under the previous assumptions, if 0 is uniform for isomorphisms then 0 is uniform
in the sense of linear Lduchli semantics [13].

Remark 2.8 While the above observation allows one to remove the uniformity condition in the
commutative case, uniformity will still clearly be necessary with respect to an appropriate Hopf
algebra for noncommutative logic. This follows from the fact that arbitrary symmetries are dinatu-
ral. The reason the above proof fails in the noncommutative setting is the action of a general Hopf
algebra on a tensor product is not the the tensor of actions. In other words, if H is a Hopf algebra,
and h € H then h(v ® w) will generally not be hv ® hw. This leads one to define the notion of a
grouplike element of H, which will satisfy this equation. See [35].

We now reformulate the results of [13] in light of this new observation. It is straightforward
to verify that Dinat(F,F') is a vector space, under pointwise operations. We call it the space of
proofs associated to the sequent F' = F'. Note that we identify formulas with definable functors.

Before obtaining a full completeness theorem, we first obtained a traditional completeness the-
orem, which is analogous to the results of [25, 20].

Theorem 2.9 (Completeness) Let M = N be a balanced binary sequent. If the unique cut-
free proof structure associated to M = N 1is not a proof net for the theory MLL + MI1X, then
Dinat(M,N) is a zero dimensional vector space.

The key lemma in extending this result to a full completeness theorem is:

Lemma 2.10 Let M,N be MLL formulas. If Dinat(M,N) has dimension greater than 0, then
the sequent M = N 1is balanced.

Now that we see that only balanced sequents need be considered, we establish the first form of
full completeness:

Theorem 2.11 (Full Completeness for Binary Sequents) If a sequent M + N is binary,
then Dinat(M,N) is zero or 1-dimensional, depending on whether its uniquely determined proof
structure is a net. In the latter case, every dinatural is a scalar multiple of the denotation of the
unique cut-free proof net.

Note that to any balanced sequent, say M F N, we can assign a set of sets of axiom links. This
assignment determines a finite list of binary sequents of which M F N is a substitution instance.
Suppose this list is: M7 = Ny, My = No,.... (The list must be finite.) We define a new vector
space, called the associated binary space for the sequent M + N.

ABS(M,N) = [[ Dinat(M;, N;)

)

There is a canonical linear map:
v : ABS(M,N) — Dinat(M, N)

On basis elements, this is defined by “equating variables” in the sequent M; F N;, or more formally,
restricting which instantiations we will allow according to the pattern in M ~ N.



Definition 2.12 We call those elements of Dinat(M, N) of the form ¢(S) for a (necessarily unique)
S € ABS(M,N) diadditive.

Equivalently, a diadditive dinatural transformation is a transformation which is a linear com-
bination of substitution instances of binary dinaturals. It is still an open question as to whether
every dinatural between definable functors is diadditive.

We wish to note the following lemma which was not mentioned in [13]. It establishes that the
interpretations of distinct proofs are linearly independent, and thus our interpretation is faithful.

Lemma 2.13 Let = I' be a balanced, nonbinary sequent. Let = I'y,F 'y, ..., T'yy be the binary
correct sequents which have I' as a substitution instance. Then the set of dinatural interpretations
in Dinat(T') of the unique cut-free proofs of = T'1,F o, ... .= Ty, are linearly independent.

Proof. Since the vector space structure of Dinat(I") is computed pointwise, it suffices to find a
single instantiation for which the interpretations are linearly independent.

We suppose that the sequent has a single literal which appears 2n times. The proof we will give
is easily extended to the more general case. We instantiate the literal at an n-dimensional vector
space with chosen basis {e;}7_;.

Let I'; be one of the associated binary sequents. Its interpretation at this instantiation will be
of the following form:

Z Uj17j27"'7jn
1<g1,J250-5Jn <N

where vj, j, . ;. is a tensor product of basis elements or duals of basis elements such that:

1. Each ej; and each e;fi appears exactly once.

2. Each ej;, €], pair appear in positions corresponding to the pairings of the axiom links.

Among the terms in this summation will occur several such that each j; is instantiated at a
distinct integer. Clearly such tensors will not occur in the interpretation of any other of the binary
sequents, thus establishing linear independence. O

The notion of diadditive dinatural transformation then gives us our full completeness theorem.

Theorem 2.14 (Full Completeness) Let F and F' be formulas in multiplicative linear logic,
interpreted as definable multivariant functors on RTVEC. Then the vector space of diadditive
dinatural transformations has as basis the denotations of cut-free proofs in the theory MLL+MIX.

We obtain the following corollary by the methods outlined in [19, 11].

Corollary 2.15 Diadditive dinatural transformations compose. Thus we obtain an (indexed) -
autonomous category by taking as objects formulas, interpreted as multivariant functors. Morphisms
will be diadditive dinatural transformations.



Remark 2.16 (Fully Faithful Representation Theorem) The above results may be inter-
preted as a fully faithful representation theorem as follows. Let F denote the free x-autonomous
category with M X on a discrete graph of atomic types. Let LZN (F) denote the category whose
objects are the same as in F, but whose homsets are the vector spaces generated by the correspond-
ing homsets in F. Composition is then as in F, and extended linearly. Then the above theorem
may be reinterpreted as saying that the free functor from LZN (F) to the category described in
2.15 is an equivalence.

3 Biautonomous categories

Models of (intuitionistic) commutative linear logic are symmetric monoidal closed categories. If we
drop the requirement that the tensor be symmetric, then one should consider categories with two
internal HOM’s. Thus we should have adjunctions of the form:

HOM(A® B,C) = HOM (B, A —o C)
HOM(A® B,C) = HOM(A,C o B)

This is the definition of biautonomous category, and is the basis of, for example, the Lambek
calculus [24]. Analogously, to define a nonsymmetric analogue of categories with dualizing objects
one needs two duals, A+ and +A. (The dualizing object for each will be the same.)

These will be subject to the isomorphisms:
LAty (tAy =4
More specifically, a biautonomous category has a canonical morphism:
Am At = (o)t

and if this map is an isomorphism, then we have a bi-x-autonomous category. This definition is
presented along with a noncommutative analogue of the Chu construction in [9]. Rosenthal presents
examples of such categories in [32]. Hopf algebraic models are presented in [12]. We now discuss a
variant of this notion, which is appropriate for the logic we are modeling.

Definition 3.1 If in a bi-x-autonomous category, the dualizing object, L, has the property that:
1 A AL

then L is said to be cyclic. A bi-x-autonomous category with such a dualizing object is also said
to be cyclic.

Such a x-autonomous category will generally not be symmetric, but will validate the following
weaker form of the exchange rule:

A Ag, . Ay
- Aa(l)aAa(Z)u s 7Aa(n)

where o is a cyclic permutation. This leads us to define the following variant of noncommutative
linear logic.



4 Sequent Calculus

Yetter proposes cyclic linear logic (CyLL) in [38]. He presents a posetal semantics, which he calls
Girard quantales and presents a completeness theorem, similar to the phase space completeness
theorem of [17]. He also presents the proof net syntax we describe below. We present the sequent
calculus for the multiplicative fragment with the M I X rule adjoined, hereafter refered to as CyL L+
MIX.

Structural Rules

(1) Cyclic Exchange Fo(l') for any cyclic permutation o of I'.

FI FA
(2) Miz FT,A
Logical Rules
FI,A FBA
(3) FA ALY id (5) FT,A® B,A
FILA F AL A A BT
(4) FT,A  cut (6) FABB,T

Given the nature of the exchange rule for this fragment, it is natural to represent the formulas
of a sequent as lying on the perimeter of a circle, or as labelling radial lines on a disk. Since we will
only consider such structures up to a rotation, then we will not need any explicit representation
of the cyclic exchange rule [38, 31]. It is possible to represent nets by an inductive procedure
analogous to that of the commutative case [17, 15, 16]. Rather than describe the construction in
detail, we present an example of a cyclic net in figure 1, and refer the reader to [38, 31] for the
details of the definition. The net presented corresponds to a deduction of the following sequent*:

Fét (@@ i) @ a,at BB 1Y),y B @6 at ®y,eT,e® (YT ®6)

There are several important features of this proof net to notice. First, the arcs inside the smaller
circle are the cyclic analogue of axiom links. It is crucial that these links can be drawn in such a
way that they do not cross. This planarity condition (along with the usual correctness criterion)
ensures that the structure can be sequentialized.

4.1 Some Circular Reasoning

We begin by recalling some basic definitions from linear sequent calculus [2].

Definition 4.1 A sequent F I’ is balanced if each atom occurs an even number of times, with
proper variance. A balanced sequent is binary if each atom occurs exactly twice.

*This example of a cyclic net appeared in Retoré’s paper [31]



Figure 1: A cyclic proof net
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We now give a helpful criterion for provability in CyLL + MI1X.

Definition 4.2 Given a sequent I', its underlying list of literals is the list of literals obtained by
erasing all commas and connectives.

Definition 4.3 A binary sequent is called cyclic if its underlying list of literals satisfies the fol-
lowing cyclicity condition:

(Cyc) We imagine this list of literals written on the perimeter of a circle. Start at some literal I;,
and travel around the circle either clockwise or counterclockwise. Before reaching lj-, if you
encounter any other literal [;, ¢ # j, you will also encounter lZ-J-.

We may also have occasion to refer to the underlying literal list as being cyclic. Equivalently,
a literal list is cyclic if, whenever a literal lies between « and " in the literal list, then so does its
dual.

Lemma 4.4 A binary sequent is derivable in CyLL+ MI1X if and only if it is cyclic and derivable
in MLL+ MIX.

Proof. It is straightforward to verify that all of the sequent rules for this fragment preserve the
property in question. The converse follows from sequentialization for Yetter’s nets, cf. [31], and
the planarity condition described above. o

5 Hopf algebras and Representations

5.1 Algebras and Coalgebras

In this section we give a quick summary of the necessary background in bialgebras and Hopf
algebras. For suitable introductions, see [1, 35, 21].

Definition 5.1 A Hopf algebra is a k-vector space!, H, equipped with an algebra structure and a
compatible coalgebra structure (= bialgebra) and an antipode satisfying the appropriate equations
[21, 35]. The following chart summarizes the necessary structure. All maps shown are linear.

"We will assume throughout this paper that k is a discrete field of characteristic 0

11



Structure Equations

Algebra mH®H —H Associativity and Unit:
(multiplication)
me(m ® id) = me(id @ m)
n:k—H and
(unit) n(1) is 2-sided unit for m.
Coalgebra A:H—-H®H
(comultiplication) Coassociativity with
counit for comultiplication
e:H—k (dual to algebra structure).
(counit)

Bialgebra | Algebra + Coalgebra | A and € are algebra homs.
(Equivalently m,n are
coalgebra homs.)
Antipode S:H—H Inverse to idy : H — H
under convolution

Here convolution refers to the operation on Homy(H, H) defined by (f * g)(c) = m((f ® g)(Ac)).
The identity for the convolution operation is given by ne : H—H. All equations above are naturally
presented as commutative diagrams, cf. [35, 21]. We say a Hopf algebra is (co)commutative if the
(co)multiplication is (co)commutative (i.e. the appropriate diagram or its dual commutes [35, 21].)

a

The canonical example of a Hopf algebra is the group algebra k[G], the vector space generated
by the elements of a group G. The algebra structure is induced by the group multiplication, the
coalgebra is the diagonal A(g) = ¢g ® g, the counit £(g) = 1 and the antipode is induced by
S(g) = g~'. Thus, Hopf algebras can be thought of as a generalization of the notion of group. We
shall study another algebra, the shuffle Hopf algebra, in section 6 below.

5.2 H-Modules

The action of a group G on a vector space V is a group homomorphism p : G — Aut(V'), where
Aut(V') is the group of linear automorphisms of V. This forms a category, with morphisms being the
equivariant maps, i.e. linear maps f : V — W commuting with the action. Still more generally, we
may speak of the action of a Hopf algebra H on a vector space V. Thisis a linear map p : HQV — V
satisfying the analog of the action equations above:

Definition 5.2 Given a Hopf algebra H, a module over H is a vector space V, equipped with a
k-linear map called an H-action p:H ®@ V—V such that the following diagrams commute:

d
HoHoVv 2L uev V—D" HoVv
m ® ud P R nQ id
)
HeV % k®V

12



We will generally denote an H-action by concatenation, e.g. p(h ® v) = hv. Then the above
diagrams translate, respectively, to: (h+h')v = h(h'v) and n(1)v = v, for all h,h' € H,v € V. We
shall frequently denote n(1) by 1p.

If (V,p) and (W,7) are modules, then a map of modules, sometimes called an H-map, is a
k-linear map f:V —W such that the following commutes:

d
Hov 9L Hew
p T
v w

i.e. in the above notation, f(hv) = hf(v) for allh € H,v € V. We thus obtain a category MOD(H).

The above definition is a straightforward generalization from group representations; indeed, the
latter arises as the special case H = k[G]. A similar remark applies to the Hopf algebra associated
to a Lie algebra [1].

If U and V are modules, then U ® V' has a natural module structure given by:

A®id

pRp

HeU®V HoHeUeoV B HeveHeov L8 Uuev

Denote this module as U @y V. We will frequently drop the subscript if there is no chance of
confusion.

Theorem 5.3 MOD(H) is a monoidal category. If the Hopf algebra is cocommutative, then the
tensor product is symmetric. The unit for the tensor is given by the ground field with the module
structure induced by the counit of H.

Definition 5.4 Given an arbitrary Hopf algebra H with bijective antipode, and two H-modules,
A and B, we will define two new H-modules, A —o B and B o— A, as follows. In both cases, the

underlying space will be A —oy B, the space of k-linear maps.
The action on B o— A is defined by:

(5) (hf)(a) =D hf(S(h2)a)

and the action on A —o B is defined by:

(6) (hf)(a) =D haf(S™ (h1)a)

where A(h) = > hy ® ha.

The following is proved by Majid in [28].
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Theorem 5.5 Let H be a Hopf algebra with bijective antipode. Then with the actions defined above,
MOD(H) is a biautonomous category. The adjoint relation:

HOM(A® B,C) =~ HOM(B, A —o C)

holds whether or not the antipode is bijective. In the case of a cocommutative Hopf algebra, the two
internal HOM ’s are equal.

Now we will consider a topological variant of this result.

Definition 5.6 The category TMOD(H) is defined as follows. Objects are modules (V, p) such
that V is equipped with a linear topology, and such that the action of H on V is continuous, for
each element h € H. Maps are H-maps which are also continuous. Define RT MOD(H) to be the
full subcategory of reflexive objects.

The following results are presented in [12]. They are a straightforward generalization of the
results of [28].

Theorem 5.7 Let H be a Hopf algebra with bijective antipode. Then RTMOD(H) is a bi-
x-autonomous category. Furthermore, if H has an involutive antipode, i.e. S*? =id, then
RTMOD(H) is a cyclic x-autonomous category.

6 The Shuffle Algebra

The particular Hopf algebra which will provide our semantics is known as the shuffle algebra. It
is an example of an incidence algebra [33] and is of fundamental importance in several areas, see
[10, 22]. The terminology below is motivated by thinking of shuffling a deck of cards.

Let X be a set and X* the free monoid generated by X. We denote words (= strings) in X*
by w,w’,- -+ and occasionally z,2’.... Elements z,y,--- € X are identified with words of length 1,
the empty word (= unit of the monoid) is denoted by ¢, and the monoid multiplication is given by
concatenation of strings. We denote the length of word w by |w|. Let k[X*] be the free k-vector
space generated by X. We consider k[X*] endowed with the following Hopf algebra structure
21, 10]:

(i) A = k[X*] is an algebra, i.e. comes equipped with an associative k-linear multiplication (with
unit) m: A® A — A:
(7) wRw = wew = Z u

ueSh(w,w")
where Sh(w,w') denotes the set of “shuffled” words of length |w| + |w'| obtained from w and w'.
Here, a shuffle of w = ay -+ - ap, and w’' = a} -+ al, is a word of length m + n, say w” =c¢1 -+ ¢pmin
such that each of the a; and aj occurs once in w" ; moreover, within w”, a; and @} occur in their
original sequential order. For example, if w = aba and w’ = bc, we obtain the following set of
shuffled words (where the letters from w' are underlined)

ababc, abbac, abbac, babac, abbca, abbea, babea, abcba, bacba, beaba
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Thus the summation w+w' is equal to
ababc 4 2abbac + babac + 2abbca + babca + abcba + bacba + beaba

Note that we will always denote the shuffle multiplication with «, as opposed to the monoid multi-
plication, for which we use concatenation.
The unit n : k — A arises by mapping 1 — e.

(ii) A = k[X™*] is a coalgebra, i.e. comes equipped with a coassociative comultiplication (with
counit) A: A - A® A, defined as:

(8) A(w) = Z w1 @ wa

wiwr=w

Note that in the equation wiwe = w we are using the original monoid multiplication of X*. The
above pair wyws is called a cut of w.

The counit € : A — k is defined by:
1 ifw=e
(9) e(w) = {

Finally, there is an antipode defined as
(10) S(w) = (=1)"w
where w denotes the word w written backwards.

Proposition 6.1 A = k[X*| with the above structure forms a Hopf algebra with involutive an-
tipode. Thus RT MOD(A) is a cyclic x-autonomous category.

6.1 A-Modules
We now give several examples of A-modules, where A is the shuffle algebra.

e The simplest example of an A-action, which we will frequently have occasion to use, is the
zero action on an arbitrary V € RTVEC defined by:

_Jov fw=e
wo = 0 else

e Let V be an object of RTVEC and v € V. Given any element w € X*, define

N v
’U)’U—w

It follows from the fact that the number of shuffles of w with w' is given by %, that
this is indeed an action.
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e For a more general example, given a vector space V, equipped with a Z-action, we can define
an A-action by:

jwlv
WY = ——
jwl!

e Finally, choose any element z € X. We can define an 4 action by:

{ % if w=a"
Wy = !

0 else

In the sequel, we will use various combinations of these actions.

7 The *-Autonomous Structure of R7TMOD(A)

Let us now look in more detail at the structure of RT MOD(A). We will give explicit formulas for
the negation, tensor and par in this category, and then describe the action of A on dinaturals.

7.1 Negation and Tensor

It is straightforward to describe the action of a word w on an element of V.
Proposition 7.1 Given a k-linear function f:V—k and an element v €V,
(11) (wf)(v) = f((=1)“hwv)

Proof. Using equations (5) and (10), we have

(Wwhlw) = > wif(S(w2)v)

wiwr=w

= > wf((-1)*hwz0)

wiwr=w

But f((—1)“2lw5v) is an element of the field k, whose structure is induced by the counit, cf. (9).
It follows that the only nontrivial term in the last sum is when w; = € and wy = w. O

fU,V € RTMOD(A) then the action on U ® V' is given by:
(12) wv@v') = (wi1v) @ (wv')
where A(w) = Y wy ® we, the sum over all possible cuts of w. Similarly, to calculate the action

of a word on an iterated tensor product, say V4 ® Vo ® ... ® V,,, calculate A"~ !(w), and calculate
componentwise.
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7.2 The Par Structure

Recall that in a noncommutative logic, the usual linear DeMorgan rule takes on the following form:
ARB = (B*+ ® A')*. We now describe the action of a word on an element of ABB.

Lemma 7.2 Suppose that f : Bt ® At = k, that w € X*, u € B+ and v € A+. Then the action
of w on f may be described as follows:

(WhHuev)= > flu(lw—)@v(wi-))

wiwa=w

where for any word w', u(w'—) denotes the function a — u(w'a) and similarly for v(w'—).

Proof. The proof proceeds by the following calculation.

(wfuev) = f(—1)"wuewv)
= (-)Pf@(uwv))
= (DM sue )

= (—1)'“}f(miju(( D#lz-) @ v((-1)z-))
= (—1)'%(%?(—1)'@'”2' w(Zi-) @ v(5H-))

= (—1)'“’f(z1§fi(—1)'w(z—1—> ® v(m-))

= (—1)“"fzﬂ§_ u(z-) ® o(z-))

= I Z;_uz(lz—zf:;}m(z—z—))

= 52}0 uw(zi—) ® v(z—))

observing that z12o = W if and only if Z3 ZT = w.
Od

The key thing to note is the similarity to the calculation for tensor product. To calculate the
action of a word w on ABB, we calculate A(w) = ) w; @ we, and allow the w; terms to act in the
A position, and the wo terms to act in the B position. A similar remark applies to iterated Z’s.

7.3 Sample Calculation

To illustrate calculations in this category, we present a typical example.
Let V € RTVEC. There is a canonical element:
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Le(VeVvh)t

defined by ¢(v ® u) = u(v).

We will show that for z,y € X, (zy.)(v @ u) = 0, for all v € V,u € V. In fact, the result
follows for general reasons, but it is illustrative of how the coalgebra structure interacts with the
shuffle multiplication. Recall that the shuffle multiplication is denoted by -.

(zy)(v@u) = (yz(v@u))
t(yzv @ u + yv @ Tu + v @ yru)
(yzv @ u(—) — [yv @ u(z—)] + v @ u(xy—))

I
-

(yzv) — u((z-y)v) + u(zyov)
(yzv) — u(zyv + yzv) + u(zyv)
(

I
g

I
g

yav) — (u(zyv) + ulyzv)) + u(zyv)

I
o g

7.4 The Action of a Word on a Dinatural

Suppose that we have a balanced, binary sequent with n atoms and thus 2n literals, say — I.
Following the ideas of functorial polymorphism [4, 13], we will interpret I' as a multivariant functor
denoted [I']. When an object of RTVEC is chosen for each atom in I, then we have an instantiation
of [T']. Suppose also that we have a dinatural transformation 6 : k—[I'] interpreting the sequent
- I'. This can be viewed as a parametrized family of elements of the instantiations of [I']. If each
atom is interpreted as a space equipped with an A-action, then this induces an action of A on
[T] at this instantiation. To calculate the action of a word w € X* on 6, we begin by calculating
A?"=1(w). For example, suppose @ interprets the sequent - ot ® 3,8+Ba . To determine the
action of the word w = zy on 6, we first calculate A% : 4 -+ A® A® A® A , obtained by iterating
A.

In the following display, we have written out the element A3(zy) € A® A® A® A in ten rows.
The element in question is the sum of the ten rows. We have also divided the element into four
columns and labelled each column with the literal on which it will act.

at ® B, Bt B «

Ty @ € ® € ® € +
r ® Yy ® € & € +
T ® € Q@ y Q@ € +
r ® € ® € ® y +

A3(:1:y) = € Q@ vy ® € ® € +
€E ® T ® Yy & € +
e ® T ® € ® y +
€E ® € ® 1wy & € +
Ee ® € ® T ® Y +
€E ® € ® € ® zy

18



In general, we refer to the summands in A?"~!(w) as tensor expressions, and the words which
comprise a tensor expression as tensor terms. Now to calculate the action of a word on @, we
calculate the action of each associated tensor expression, and add. To calculate the action of a
tensor expression, we determine whether a given term is in a slot corresponding to a covariant or
contravariant literal. In the latter case, we apply the antipode to that term. Then the summand
acts “pointwise”, each term acting in the slot to which it is assigned.

Example 7.3 Let 0 : ot ®0, f-Ba be the dinatural transformation given by 0(f®u, g) = rg(f®u),
where the variables are v : «, f : @, u : 8,9 : (a ® B)*, and r is any scalar. (Note that 6 may
equivalently be thought of as 0 : o' ® 3, (o ® 8)*.)

Consider the following actions, with v : § and v : a.

i % ifw=2za"
— wy = : .
@ — action 0 otherwise
X i = "
— acti ) ou HW=Y
p — action wu { 0 otherwise

We shall calculate the action of the word zy on @, by calculating the action of each row of A?(zy)
above and then summing the total. In row 1, there is an zy (which is a non-power of ) in the o
slot, so @ is killed, i.e. # — 0. In row 2, z is in the o slot, which multiplies by —1, ¥ is in the
B slot, which multiplies by 1; hence the action of row 2 maps 0 — —6 . In row 3, z,y appear in
negative slots, contributing (—1) each, so the action is 6 — 6. In each of the rows 4-10, there is
either a y in an « slot, or an x in a G slot. In all those cases, 0 is killed, i.e. 8 — 0. The total
action is 0 — —0 + 0, ie. 6 — 0.

8 Full Completeness for CyLL

The notion of G-uniformity can be extended in an evident way to H-uniformity, where H is an
arbitrary Hopf algebra. As in the commutative case, we call A— Dinat(F, F') the space of cyclic
proofs associated to the sequent F' - F’', where A is the shuffle Hopf algebra.

Given a 6 interpreting a one-sided sequent - ', we must determine when it is A-uniform. Since
6 is of the form @ : k—|I'| and the module structure of k is determined by the counit of A, we
conclude:

Lemma 8.1 6 is A-uniform if and only if

(13) w0={0 ifw=c¢

0 otherwise
We immediately demonstrate that it is sufficient to consider balanced sequents.
Lemma 8.2 If a sequent = I" has a nonzero A-uniform dinatural, then it is balanced.

Strictly speaking, this proposition is a consequence of the observation (from the last section)
that all dinaturals are Z-uniform, and the fact that the proposition holds for such dinaturals, see
Lemma 2.10. However, we add a direct proof since it illustrates calculations with this Hopf algebra.
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Proof. Suppose that I' is such a sequent, and 6 is a nonzero dinatural. Let a1, aq,...,a, be the
atoms appearing in I'. For each «;, pick a distinct z; in X.
Define an A-action on «; by:

D i = g
_ ) om fw=ugj
(14) wo { 0 otherwise

To calculate the action of ; on 6, we must repeatedly apply A to z;. The result will be a sum
of tensor expressions of the form:

ERER..VT; ®...Q¢

Such a term acting on € will be 0, except in the cases where the position of z; corresponds to
the position of «;. In this case, the result will either be 6 or —6 depending on whether the ¢; is in
a covariant or contravariant position. Thus if z;6 = 0, it must be the case that the covariant and
contravariant occurrences are in bijection. Thus the sequent is balanced. O

Now that we have established that a sequent with a nontrivial A-uniform semantics must be
balanced, our full completeness result will follow from two facts. They are as follows: (all sequents
considered are binary.)

1. If - T is a sequent with a noncyclic list of literals, then there are no A-uniform dinaturals.

2. Every A-uniform dinatural is Z-uniform

The first of these will be proved in the next subsection. The second is now an immediate
consequence of 2.7. We leave it to the reader as a difficult combinatorial exercise to prove the
second fact directly.

Our full completeness result would then be an immediate consequence. It follows from our
previous work [13], summarized in section 2, that every A-uniform dinatural is the denotation of
an MLL + MIX proof (up to scalar multiplication.) The first fact then says that a Z-uniform
dinatural is A-uniform if and only if its associated proof is a cyclic proof. Clearly every proof
in CyLL+MIX is a proof in MLL+MIX. Furthermore, the faithfulness argument of Lemma 2.13
evidently extends to this setting. Therefore we may conclude our full completeness theorem. We
now present these ideas in more detail.

8.1 Noncyclic Sequents

Lemma 8.3 Suppose that - T is a binary sequent which is not cyclic. Then dim (A— Dinat(I')) =
0.

Proof. If T is not cyclic, then there exists atoms « and 3 such that either 3 or B+ occurs between
« and at but its dual does not. Suppose that « is instantiated at A and 3 at B. Choose z,y € X
and define actions on A and B as follows:

Loffw=2zg"
A — action: =¢ o .
actron wo { 0 otherwise
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B — action: wv' = { % if w = yn
0 otherwise
For all other atoms in the atom list, we define the action by wv = 0 for all nonempty words.
Now consider § € A— Dinat(L'), instantiated as above. We consider the action of the word zyz
on 6. As usual, we calculate all tensor expressions for the word zyz. It is clear that the only one
which does not annihilate 0 is:

ER..QArR..0YR...0xrQ...Q¢

where the letters appear in the slots corresponding to A, B and A respectively. (We are assuming
for convenience that the 8 occurring between a and o is covariant, though this makes no differ-
ence.) Evidently, the action of this tensor expression is given by € — 6. Thus the total action of
the word zyx on @ is given by 6 — 6. Since 6 is A-uniform, we conclude that § = 0. O

9 Main Results

By the previous discussion, we may now state:

Theorem 9.1 (Completeness for A-Dinaturals) Let M = N be a balanced binary sequent. If
the unique cut-free proof structure associated to M + N 1is not a proof net for the theory CyLL +
MIX, then A — Dinat(M,N) is a zero dimensional vector space.

Theorem 9.2 (Full Completeness for Cyclic Binary Sequents) If a sequent M = N is bi-
nary, then A—Dinat(M, N) is zero or 1-dimensional, depending on whether its uniquely determined
proof structure is a cyclic net. In the latter case, every A-dinatural is a scalar multiple of the de-
notation of the unique cut-free proof net.

Theorem 9.3 (Cyclic Full Completeness) Let F and F' be formulas in multiplicative linear
logic, interpreted as definable multivariant functors on RTVEC. Then the vector space of diadditive
A-uniform dinatural transformations has as basis the denotations of cut-free proofs in the theory
CyLL+MIX.

As usual, we are able to obtain the following corollary.

Corollary 9.4 A-uniform diadditive dinatural transformations compose. Thus we obtain an (in-
dexzed) cyclic x-autonomous category by taking as objects formulas, interpreted as multivariant
functors. Morphisms will be uniform diadditive dinatural transformations.

In [13] Theorem 11.7, we show that a diadditive dinatural transformation between multivariant
functors is uniform with respect to the actions of arbitrary cocommutative Hopf algebras. We now
present a similar result for the cyclic setting.

Theorem 9.5 A diadditive dinatural transformation which is uniform with respect to the shuffle

Hopf algebra is uniform with respect to arbitrary involutive Hopf algebras, i.e. those for which
5? =id.

Proof. Our full completeness theorem implies that the only dinaturals which are uniform with
respect to the shuffle Hopf algebra are the structure maps of a cyclic x-autonomous category. Any
such maps will be uniform with respect to all involutive Hopf algebras. O
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10 Future Directions

The next avenue we hope to explore is extending our approach to include the additive connectives.
The categories we have considered thus far are inadequate for the consideration of MALL in
that product and coproduct are isomorphic, i.e. R7VEC has all finite biproducts. This problem
is avoided by considering normed vector spaces [36], p. 96. We define a category BAN; whose
objects are Banach spaces, i.e. complete normed vector spaces, and whose morphisms are linear
maps of norm less than or equal to 1. This is a symmetric monoidal closed category, when the
tensor product is taken to be the completed projective tensor [36, 6]. One can then apply the Chu
construction to BAN [7]. In so doing, we obtain a *-autonomous category of topological vector
spaces in which products and coproducts no longer coincide. Explicitly, if V,W € BAN{, then we
have the following formulas:

Products-—||(v,w)|| = maz{[[o]], [lw][}

Coproducts-  ||(v,w)|| = ||v|| + ||w]|

These correspond to the £ and ¢; norms respectively. Given our previous work, this seems a
promising candidate for a full completeness theorem for M ALL.

Girard, in a recent series of talks and preprint [18], has proposed the notion of a coherent Banach
space in which the additive structure is modeled as above, and the exponentials are modeled via the
notion of analytic functions on a Banach space. He also proposes a new version of linear sequent
calculus in which the proof rules are labeled by scalars. He then shows that his semantics is sound
for this theory.
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