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Abstract
In this paper, we present a categorical model for Multiplicative Additive Polarized

Linear Logic MALLP, which is the linear fragment (without structural rules) of Olivier
Laurent’s Polarized Linear Logic. Our model is based on an adjunction between re-
flective/coreflective full subcategories C−/C+ of an ambient ∗-autonomous category C
(with products). Similar structures were first introduced by M. Barr in the late 1970’s
in abstract duality theory and more recently in work on game semantics for linear
logic. The paper has two goals: to discuss concrete models and to present various
completeness theorems.

As concrete examples, we present (i) a hypercoherence model, using Ehrhard’s
hereditary/anti-hereditary objects, (ii) a Chu-space model, (iii) a double gluing model
over our categorical framework, and (iv) a model based on iterated double gluing over
a ∗-autonomous category.

For the multiplicative fragment MLLP of MALLP, we present both weakly full
(Läuchli-style) as well as full completeness theorems, using a polarized version of func-
torial polymorphism in a double-glued hypercoherence model. For the latter, we in-
troduce a notion of polarized ↑-softness which is a variation of Joyal’s softness. This
permits us to reduce the problem of polarized multiplicative full completeness to the
nonpolarized MLL case, which we resolve by familiar functorial methods originating
with Loader, Hyland, and Tan. Using a polarized Gustave function, we show that full
completeness for MALLP fails for this model.
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1 Introduction
Girard [20] introduced the notion of “polarized” (positive and negative) formulas in his
study of the theory LC, a “constructive” version of classical logic based on linear logic.
These polarities turn out to be related to the notion of focussing in linear logic proof search,
a method introduced by J-M Andreoli [4, 5, 38]. In a related direction, many papers in
Game Semantics for linear logic have also stressed the notion of polarities, beginning with
Lamarche [32] (see also the survey [1]).

Olivier Laurent [34, 35] began a systematic study of polarized versions of linear logic. In
his thesis he introduced polarized proof structures and nets which are simpler than the non-
polarized original versions. He introduced many interesting proof-theoretical and semantical
techniques and results for polarized logics, notably for full polarized linear logic LLP. In
this theory, the exponentials are polarity changing operations. Laurent also mentions, in
passing, the polarized, multiplicative-additive fragment MALLP of LLP. This happens to be
the main syntax of Girard’s theory of Ludics (without weakening). A fundamental point of
MALLP, is that the polarity-changing operations ↑ and ↓ are more primitive than the full
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exponentials. On the one hand, O. Laurent shows that Selinger’s Control Categories [40]
provide an adequate model for LLP. However, the question of natural categorical models
for MALLP remained open. In [35], a notion of linear control category model for MALLP is
introduced; however in order to construct this model, some canonical morphisms which do
not live in the syntax must be introduced.

In this paper we introduce what we believe is a natural categorical framework for MALLP.
It is based on an ambient ∗-autonomous category C, along with reflective (resp. coreflective)
subcategories C− and C+ of polarized objects, together with their associated adjunction and
bimodule structure. More generally still, if we do not assume the ambient category C is
∗-autonomous, we obtain essentially (i.e. with a slight modification) the structures first
discussed by M. Barr in his book [7] under the name pre-∗-autonomous situations. These
are discussed in Section 3 and Appendix 1 below. Recently, Cockett and Seely [15] have
introduced their notion of polarized categories motivated by AJ games ([2]), with an elaborate
theory of focalized syntax, (two-sided) proof nets, and abstract games based on categorical
proof theory. Our work was begun independently of theirs, as an attempt to directly model
O. Laurent’s MALLP. In conversations with R. Cockett and R. Seely, we now understand
our framework to be a special case of their more general one: some connections with their
work will be discussed below. Also we have recently become aware that structures similar to
ours have arisen in (mostly unpublished) work of Melliès and Selinger [36, 37] again inspired
by game semantics. Thus the kinds of structures we deal with here, which essentially go
back to M. Barr in a totally different setting, seem to be a natural framework for polarized
logics.

The novelties of our paper are in Sections 5 through 7. In Section 5, we present many con-
crete non-game-theoretic examples of our framework, including Ehrhard’s hypercoherences
[18] (studied in our previous MALL full completeness work [10]), Chu spaces, and various
models based on double gluing and iterated double gluing. In Sections 6,7 we begin our
main focus: a study of full completeness theorems (as in our [10]) for polarized logics. By
using Game Semantics, O. Laurent has found various full completeness theorems for LLP.
However to the best of our knowledge, there are no such full completeness theorems for the
fragment MALLP, where polarity shifting operators do not come from exponentials. So this
paper is a first step in this program. However the problem turns out to be rather subtle (as
we discuss below) so we have chosen to primarily discuss the multiplicative fragment MLLP,
using a polarized version of functorial polymorphism [6, 11] on our hypercoherence model.
This framework is developed in Section 6.

We distinguish between full and weakly full completeness as in Läuchli semantics [26, 11].
The main point of the category HCoh of hypercoherences is that, unlike coherence spaces,
there are nontrivial natural polarized subcategories HCoh− and HCoh+ with an adjunction
between them. The category of coherent spaces Coh turns out to be a common subcategory
of both of these polarized subcategories (in fact, it is a fixed point of the adjunction between
HCoh− and HCoh+). Having Coh as a common subcategory of the polarized subcategories
permits us to reduce the full completeness problem for our polarized hypercoherence model
for MLLP to the ordinary multiplicative full completeness problem for Coh, which was solved
by A. Tan [41]. In Subsection 7.1 we prepare the background by introducing a polarized
(MLLP) version of Joyal’s softness (with respect to removability of ↑). In Subsection 7.2 we
prove a version of full completeness for MLLP + Mixp and in 7.3 the Main Theorem extends
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these results to double gluing over hypercoherences, and related structures, and removes the
polarized Mix rule. Finally, in Subsection 7.4 we observe the curious result that the polarized
hypercoherence model does not kill polarized versions of Gustave functions in MALLP, unlike
the nonpolarized case [10], which leads to the failure of polarized full completeness for the
full theory MALLP in this model. We end with some open problems on extensions to MALLP.

2 Syntax of Polarized MALL
In polarized (linear) logics, formulas are divided into two classes: positive and negative. Each
of these classes is in turn closed under certain of the logical operations; moreover, there are
polarity-changing connectives mapping one class of formulas to the other (and vice versa).

Polarities naturally arise within the proof theory of linear logic. For example, in the
case of multiplicative-additive linear logic MALL, we can divide the connectives according
to whether their introduction rules are reversible or not [21, 1]. Those connectives which
are reversible are called negative; those which are not are called positive. As we discussed
above, positive connectives are the foundation of Andreoli’s influential notion of focalization
in proof search for linear logic [4, 5, 38]. Focalization is a dual property to reversibility.

We now introduce Olivier Laurent’s theory of polarized multiplicative-additive linear
logic (MALLP). MALLP is a linear fragment (without structural rules) of polarized linear
logic (LLP).

Definition 2.1 Polarized MALL (MALLP) is defined as follows.

Syntax: Positive and negative formulas are given by the following BNF notation:

P ::= X | P ⊗ P | P ⊕ P | 1 | 0 | ↓N
N ::= X⊥ | N .................................................

............
.................................. N | N&N | ⊥ | T | ↑P

Here ↑ and ↓ are called polarity shifting operations. Note that 1 and 0 are the units of ⊗
and ⊕, respectively (and dually for ⊥ and T with respect to .................................................

............
.................................. and &).

Rules of MALLP are defined as follows: (in the following rules, M and N range over
negative formulas and P and Q over positive formulas).

` N, N⊥
` Γ, P ` ∆, Q

` Γ, ∆, P ⊗Q
⊗ ` Γ, N,M

` Γ, N .................................................
............
.................................. M

.................................................
............
..................................

` Γ, N ` Γ, M

` Γ, N&M
&

` Γ, P

` Γ, P ⊕Q
⊕1

` Γ, Q

` Γ, P ⊕Q
⊕2

` N,N
`↓N,N ↓ ` P, Γ

`↑P, Γ
↑ ` Γ, N ` ∆, N⊥

` Γ, ∆
cut

where N consists only of negative formulas.

` Γ, T
T

` Γ
` Γ,⊥ ⊥ ` 1

1

Example 2.2 Here are two proofs in MALLP, along with their proof net representations.
In our general categorical framework to be introduced below, they are interpreted by two
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different morphisms in general (cf. Example 4.3). We briefly mention models distinguishing
these two proofs in Section 8.

` A⊥, A

`↑A⊥, A
↑

`↑A⊥, ↓A
↓

`↑A⊥, ↑↓A
↑

`↓↑A⊥, ↑↓A
↓

`↑↓↑A⊥, ↑↓A
↑

` A⊥, A

`↑A⊥, A
↑

`↓↑A⊥, A
↓

`↑↓↑A⊥, A
↑

`↑↓↑A⊥, ↓A
↓

`↑↓↑A⊥, ↑↓A
↑

A⊥ A

n↑
n↓
n↑

n↓
n↑

A⊥ A

n↑
n↓
n↑

n↓
n↑

The dotted lines in the proof nets denote ↓-boxes, which correspond to the ↓-rule in
MALLP. These were introduced by O. Laurent [34]. Note that the two proofs above lie in
the multiplicative fragment of MALLP, which we can define precisely as follows:

Definition 2.3 The theory MLLP (polarized multiplicative linear logic) is the subtheory of
MALLP in which there are no additive connectives & and ⊕.

The following theorem is an important proof-theoretical property of MALLP, proved in
[34, 35]:

Proposition 2.4 (Focalization Property) If ` Γ is provable in MALLP, then the se-
quence Γ contains at most one positive formula.

Syntactic Negation: Following O. Laurent, we adjoin to MALLP a syntactic strictly in-
volutive negation on all formulas by general de Morgan duality. Thus we introduce formal
negation, also denoted by ( )⊥, as follows: X⊥⊥ = X for atoms X, and we assume {⊗, .................................................

............
.................................. }

and {&,⊕} are de Morgan duals as in linear logic. Similarly the multiplicative and additive
units are dual: 1⊥ =⊥, ⊥⊥= 1, 0⊥ = T , T⊥ = 0. Finally (↓A)⊥ =↑A⊥ and (↑A)⊥ =↓A⊥

for any formula A. Positivity and negativity of formulas may be defined as before, after
cancelling any occurrences of double-negations.

We now show how MALLP with the above syntactic negation can be given a natural
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categorical modelling.

3 The Categorical Framework
In this section we present a categorical framework for proofs in polarized MALL, based
on a notion of categorical bimodule. We call our models polarized categories1; they are a
slightly modified version of M. Barr’s pre-∗-autonomous situations [7] (p. 15). A more
abstract theory of bimodule models for polarized logics (based on AJ games) is developed
in a recent paper of Cockett and Seely [15]. There is also a related analysis of games
models in unpublished work of Melliès and Selinger, sketched in [36, 37]. Our models were
independently designed for the syntax of O. Laurent’s MALLP (for discussion of the literature,
see Remark 3.2 and Appendix 1 below.)

Recall, if C is a ∗-autonomous category with products (i.e. a model of MALL [8, 12]),
then tensor and cotensor (par) are functors ⊗, .................................................

............
.................................. : C × C → C, along with the dualizing

functor (−)⊥ : Cop → C. We will use the same notation for the connectives of the syntax
of MALLP and their denotation in our models. For the models we discuss in this paper, we
need only consider polarized categories in which the ambient category C is ∗-autonomous.
This simplifies the presentation. We have put our general definition of polarized category,
which inspires the treatment below, in Appendix 1. In particular we assume the coherence
conditions in Barr’s monograph.

Definition 3.1 (Polarized ∗-Autonomous Categories) A polarized ∗-autonomous cat-
egory (with products), denoted C+,−, consists of the following data:

• A ∗-autonomous category C with products (and hence coproducts).

• A full subcategory C+ of C (called the positive subcategory) which is closed under the
positive operations ⊗ and ⊕, along with their respective units 1 and 0, along with the
induced monoidal structure with respect to both connectives.

• A full subcategory C− of C (called the negative subcategory), which is closed under
negatives .................................................

............
.................................. and &, with their respective units ⊥ and T , along with the induced

monoidal structure with respect to both connectives.

• The contravariant equivalence ( )⊥ on C induces a contravariant equivalence of the two
subcategories:

(−)⊥ : (C+)op ∼=−→ C−

Following Barr [7], p. 15, the equivalence induces a natural isomorphism A ∼= A⊥⊥ for
every positive/negative A.

• The subcategories C− (resp. C+) are reflective (resp. coreflective) subcategories of C.
That is, there are distinguished functors

↑: C −→ C−
↓: C −→ C+

1Unfortunately our terminology conflicts with Cockett and Seely’s.
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satisfying: ↓ is right adjoint to the inclusion Inj+ : C+ ↪→ C and ↑ is left adjoint to the
inclusion Inj− : C− ↪→ C, i.e.

C(Inj+(P ), X) ∼= C+(P, ↓X) (1)

C(X, Inj−(N)) ∼= C−(↑X, N) (2)

for all P ∈ C+, X ∈ C and N ∈ C−.

The units and counits of the adjunction (1) are given by:

η↓P : P →↓ Inj+(P ), also denoted η↓P : P →↓ P (3)

ε↓X : Inj+(↓ X) → X, also denoted ε↓X :↓ X → X (4)

and similarly for the adjunction (2); i.e.,

η↑X : X → Inj−(↑ X), also denoted η↑X : X →↑ X (5)

ε↑N :↑ Inj−(N) → N, also denoted ε↑N :↑ N → N (6)

• De Morgan duality for ↓ and ↑

(↓X)⊥ ∼= ↑X⊥

(↑X)⊥ ∼= ↓X⊥

2

Let us make some remarks on this definition. First observe that the above adjointnesses
(1) and (2) may be combined into the following diagram:

C−
�

↑
⊥

⊂

Inj−
-
C

�
Inj+

⊃
⊥
↓

- C+ (7)

We write ⇑ for ↑ o Inj+ and ⇓ for ↓ o Inj−. Then we may write the above diagram by:

C−
�

⇑
⊥
⇓

- C+

The units and the counits of this adjunction are as follows:

η⇑⇓P : P →⇓⇑ P also denoted P →↓↑P (8)

ε⇑⇓N :⇑⇓ N → N also denoted ↑↓N → N. (9)

They are definable by

η⇑⇓P =↓(η↑Inj+(P )) ◦ η↓P and dually ε⇑⇓N = ε↓N◦ ↑(ε↓Inj−(N))

Finally, let us remark on strictness (i.e. to what extent the natural isomorphisms in
the above definitions can be replaced by equalities). Up to categorical equivalence, we may
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assume, without loss, that all ∗-autonomous structure is strict, in particular that double
negation ( )⊥⊥ is strictly involutive, rather than up-to-isomorphism (see also Proposition 3.3
below). This causes no problem, by recent coherence theorems for ∗-autonomous categories
with units ([14, 28, 16]). Moreover, as pointed out in Proposition 5.35 below, all the models
in this paper actually satisfy more: namely that the entire polarized structure is strict.

Remark 3.2 (On Bimodules) Although this work was begun independently of that of
R. Cockett and R. Seely, it turns out that our framework is a very special case of their
general Polarized Categories [15] (as they remark in their Example 4.4.3 ). In particular, to
compare with their work, note that diagram (7) above determines a profunctor (also called
a distributor or bimodule, see [13]) of a particular kind (since the two subcategories C− and
C+ are respectively reflective and coreflective subcategories of C).

Profunctors are genuine functors of the form φ : Cop
+ × C− → Set. We think of them as

“generalized relations” , denoted2 φ : C+−→o C−. An instantiation φ(P, N) is thought of
as a set of “formal maps” from P to N , which is closed under left composition (resp. right
composition) with genuine maps from C− (resp. C+). If P ∈ C+ and N ∈ C−, we write
P−→o N for a typical element of φ(P, N).

As a useful mnemonic, the following patterns (called legal patterns) of maps are allowed
as MALLP proofs: P → N, N → N, P → P where P and N stand for respectively positive
and negative formulas. In our framework, these patterns (in the order given) translate into
saying that the usual hom functor (P, N) 7→ C(P, N) ∼= C−(↑P, N) ∼= C+(P, ↓N) is an allowed
profunctor. However, the pattern N → P is not allowed as a MALLP proof pattern (because
of the focalization property: see Proposition 2.4). Thus the bimodule (P, N) 7→ C(↑P, ↓N)
cannot be used in our setting.

To keep our discussion general (allowing for more general bimodules), we denote by Ĉ the
set of modules on C+,− in the sense above. We shall be explicit in which bimodule properties
we need, allowing for future generalizations. But for the purposes of this paper, bimodules
are given by hom-functors of C, as above.

The concrete models considered in this paper are polarized ∗-autonomous categories C+,−,
which arise from an ambient ∗-autonomous category C. In fact, this structure is somewhat
stronger than we actually need; for example, we may remove the assumption that C is ∗-
autonomous. The precise details of these more general models, which we also call polarized
categories, are in Appendix 1, Section 10.1. There it is pointed out that this framework, is a
variation of the original notion of pre-∗-autonomous situation due to M. Barr (see his book
[7]), where it is a precursor to his theory of ∗-autonomous categories. This notion suffices for
our purposes here, although it is still more specialized than the similarly-named structures
in Cockett and Seely [15].

Proposition 3.3 (de Morgan Laws) From the ∗-autonomous structure of C with prod-
ucts, we have the following natural isomorphisms:

(P1 ⊗ P2)
⊥ ∼= P⊥

1
.................................................

............
.................................. P⊥

2 (P1 ⊕ P2)
⊥ ∼= P⊥

1 &P⊥
2

(N1
.................................................

............
.................................. N2)

⊥ ∼= N⊥
1 ⊗N⊥

2 (N1&N2)
⊥ ∼= N⊥

1 ⊕N⊥
2

C+(P, Q) ∼= C−(Q⊥, P⊥)

2We use the opposite notational convention from Borceux [13]

8



Moreover, the de Morgan laws may be taken as strict equalities, using the coherence result
for ∗-autonomous categories C in Cockett, Hasegawa and Seely [14] (cf. also [28, 16, 17]).

Observe that in the case of bimodules Ĉ, the contravariant equivalence ( )⊥ maps legal
patterns to legal patterns, in the sense of Remark 3.2 .

Remark 3.4 (On the adjunction ⇑a⇓) In addition to the work of Cockett and Seely
[15], it has recently been pointed out to us that Melliès [36] presented a similar adjunc-
tion ⇑a⇓ to that of (7), but in his case arising from games. He models lifting operators
between positive and negative Conway games arising from his categorical formulation of
Blass’s problem in game semantics. Another similar adjunction also plays a fundamental
role for continuation-passing-style models of λµ-calculus (e.g. Selinger’s control categories
[40] as well as their linear variants by Laurent [35]). However, it appears that this adjunction
is a derived property in the setting of O. Laurent, rather than a primitive notion as it is for
us.

Let us consider the adjoint equivalence in Lambek-Scott (Proposition 4.2 and Slogan V
(p.18) of [33]) when applied to our framework.

Remark 3.5 (Adjoint equivalence in Polarized Categories) An adjunction (F, G, η, ε)
between categories A and B induces an adjoint equivalence

Fix η ∼= Fix ε

between the fixed point full subcategories Fix η and Fix ε;

Fix η = {A ∈ A | η(A) is an iso}
Fix ε = {B ∈ B | ε(A) is an iso},

where η and ε are the unit and counit of the adjunction:

η : idA −→ GF

ε : FG −→ idB

Obviously, there is a natural injection between two subcategories of A:

Fix η ⊆ GF (A) := {GF (A) | A ∈ A}

And similarly for B:

Fix ε ⊆ FG(B) := {FG(B) | B ∈ A}

The injection is not surjective in general unless ηGF (equivalently εFG) is an isomorphism.
In our concrete example of HCoh+,− to be discussed below, it becomes surjective, which
yields a nice characterization of Fix η; i.e., Fix η is equivalent to the category of Girard’s
coherence spaces, the original semantics of linear logic (see. Proposition 5.15).
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Let us sketch the adjoint equivalence applied to a polarized category C by taking F :=⇑
and G :=⇓:

C = C

C−

↑

?

a Inj−

∪

6

�
⇑
⊥
⇓

- C+

Inj+

∪

6

a ↓

?

↑↓C
∪

6

↓↑C
∪

6

Fix ε
∪

6

�
∼

- Fix η
∪

6

In general, it is not the case that Fix η (resp. Fix ε) coincides with C+ (resp. C−) (cf. Remark
5.14 in Section 5.1). This is because in the syntax of MALLP, the sequent ↓↑P ` P is not
provable. Moreover we will observe in the following Section 8 that in C+ (resp. in C−) there
exists a decreasing sequence { (↓↑)nC }n≥1 (resp. { (↑↓)nC }n≥1) of subcategories containing
Fix η (resp. Fix ε) (cf. Definition 8.1).

4 Interpretations of Proofs and Soundness
We interpret proofs of MALLP in a polarized ∗-autonomous category C+,− as follows:

• Negative (resp. positive) formulas are interpreted as objects in C− (resp. C+) in the
obvious way.

• A sequent ` Γ in MALLP will be interpreted as some homset ` Γ in C. Given an
interpretation − , a proof of a sequent ` Γ is an element in ` Γ and a sequent ` Γ
is provable if it has a proof (i.e. if the set ` Γ is non-empty.)

• We will interpret the proofs of provable sequents in MALLP as either (elements of)

bimodules Ĉ or as morphisms of C− (or dually C+) as follows:

– ` N1, . . . , Nk : 1−→o N1
.................................................

............
.................................. N2

.................................................
............
.................................. · · · .................................................

............
.................................. Nk in Ĉ

– ` N1, . . . , Nk, P : P ⊥ −→ N1
.................................................

............
.................................. N2

.................................................
............
.................................. · · · .................................................

............
.................................. Nk ∈ C−.

Remark 4.1 (Maps vs. Bimodules) A property of our framework is that there are var-
ious formal connections between maps and bimodules. Similar observations are made by
Cockett and Seely in their setting (see [15], Sections 2 and 3).
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1. Notice that by monoidal closedness of C, for bimodules induced by the hom functor,
we have the following bijection of bimodules in Ĉ:

Ĉ(1, N1
.................................................

............
.................................. · · · .................................................

............
.................................. Nk)

Ĉ(N⊥
1 ⊗ · · · ⊗N⊥

l , Nl+1
.................................................

............
.................................. · · · .................................................

............
.................................. Nk)

This will be used in interpreting MALLP sequents of the form ` N1, . . . , Nk.

2. By the duality between C+ and C−, we have the following bijection of homsets:

C−(P⊥, N1
.................................................

............
.................................. · · · .................................................

............
.................................. Nk)

C+(N⊥
1 ⊗ · · · ⊗N⊥

k , P )

3. Finally, our framework C+,− supports bijections between modules and maps, as follows:

C+(P, ↓ N)

Ĉ(P, N)

C−(↑ P, N)

In particular, since our modules are given by C-homsets, these bijections are given by
the adjunctions Inj+a ↓ and ↑a Inj−. Thus we can apply the functors ↑ and ↓ to maps
in modules.

We now interpret formal MALLP proofs as follows:

1. Axiom: ` N⊥, N = id N : N⊥ ⊥ → N in C− (up to isomorphism), since

N⊥ ∈ C+ hence N⊥ ⊥ ∼= N in the ∗-autonomous category C, hence in C−.

2. Linear connectives: ⊗, .................................................
............
.................................. ,⊕, &-rules are interpreted (using duality) from the induced

monoidal structure on C+ and C−.

3. Polarity Changing ↓: We use the monoidal closure, and adjunction structure ↑a Inj−
of C+,− :

1 −→o N .................................................
............
.................................. (.................................................

............
.................................. N ) in Ĉ

N ⊥ −→o .................................................
............
.................................. N in Ĉ

↑ N ⊥ −→ .................................................
............
.................................. N in C−

where ↓ N ⊥ ∼=↑ N ⊥. Double lines refer to reversible inferences.

4. Polarity Changing ↑:

↓ P ⊥−→o P ⊥ in Ĉ P ⊥ −→.................................................
............
.................................. Γ in C−

↓ P ⊥−→o .................................................
............
.................................. Γ in Ĉ

1−→o ↑ P .................................................
............
.................................. (.................................................

............
.................................. Γ ) in Ĉ

where (↓ P ⊥)⊥ ∼=↑ P in C−. Notice the first line is closure (under right multipli-
cation) of the bimodule corresponding to the counit (4) of the adjunction Inj+ a ↓ in C
with an arrow in C−, so the inference is not reversible. In our concrete modules given
by homfunctors, this is simply composition in C.
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Proposition 4.2 (Soundness)

1. If ` Γ is provable in MALLP then ` Γ is nonempty.

2. − is an invariant of cut-elimination, i.e. if Π ; Π′ is a cut-elimination reduction
in MALLP, then Π = Π′ .

Proof. (1) is obvious from the inductive interpretation of proofs. As for (2), we illustrate
one of the crucial steps. Consider the following cut-elimination step:

.... π1

` N,N
`↓N,N ↓

.... π2

` N⊥,M
`↑ N⊥,M

↑

`M,N cut

�

.... π1

` N,N

.... π2

` N⊥,M
` N ,M cut

We interpret the left branch of the left cut as follows (for typographical reasons, we write N
rather than .................................................

............
.................................. N and ↑ N for ↑ (.................................................

............
.................................. N ):

π1 : N⊥−→o N ∈ Ĉ
↑ ( π1 ) : ↑ N⊥−→o ↑ N ∈ Ĉ , ε↑N :↑ N → N ∈ C−
ε↑N o ↑ ( π1 ) :↑ N⊥−→o N ∈ Ĉ

Similarly, we will interpret the right branch of the left cut to obtain π2 oε↓N :↓ N−→o M∈ Ĉ.
Thus we will interpret the entire proof on the LHS of � as the following bimodule element
( π2 oε↓N)o(ε↑N o ↑ ( π1 ))⊥ : N⊥−→o M∈ Ĉ. We then obtain:

( π2 oε↓N)o(ε↑N o ↑ ( π1 ))⊥ = ( π2 oε↓N)o(↑ π1 )⊥o(ε↑N )⊥

= ( π2 oε↓N)o(↑ π1 )⊥oη↓N⊥

= π2 o(ε↓N o(↑ π1 )⊥oη↓N⊥)

∼= π2 o π1
⊥.

The last isomorphism is based on the fact that (ε↓N o(↑ π1 )⊥oη↓N⊥)⊥ = π1 , up to isomor-
phism. This follows from the following diagram, which commutes up to isomorphism, using
the fact that C− is a reflective subcategory of C, with reflector ↑. For ease of reading, we
write G : C−↪→ C for the inclusion Inj− and F : C → C− for its left adjoint ↑. Here η and ε
are the canonical adjunctions:

GFC
GF π1- GFN

∼= - FN
∼= - FGN

C

ηC

6

π1 - N

ηN

6

�
∼=

GN �
∼=

N

εN

?

2
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Example 4.3 In C+,−, the two proofs of Example 2.2 are interpreted respectively as follows

where εX := ε↓X and ηX := η↑X :

- left proof
ε↑↓Ao ↑(η↓Ao ↓(idAoεA)oη↓A)oε↑↓A

- right proof
η↓Ao ↓(εAo ↑(idAoεA)oε↑↓A)oη↓↑↓A

These two morphisms are not equal in general.

Remark 4.4 (Nonfaithful Models) If the adjunction ↑a Inj− induces an equality of hom-

sets, i.e. C−(↑ P, N) = Ĉ(P, N), the model C+,− turns out to be nonfaithful. For example, in
the concrete models HCoh+,− and (G2C)+,− discussed below in Section 5, ↑ acts nontrivally
on objects, but is the identity functor on morphisms; such models turn out to be nonfaithful,
i.e. such models will identify the two MLLP proofs in Example 2.2. This is in sharp contrast
to Olivier Laurent’s LLP (see [35]), which is polarized linear logic with exponentials. In
this setting, it is well-known that if a categorical semantics identifies the two MLLP proofs
(with ↓=! and ↑=?) then the semantics collapses to a poset, i.e. a boolean algebra. Further
remarks on the issue of faithfulness are given in Section 8.

In the following section, we shall discuss a wide range of examples of the above categorical
modeling of MALLP. Namely, in subsection 5.1 we discuss hypercoherences, in subsection 5.2
we discuss Chu spaces, in subsections 5.3 we discuss double gluing over an arbitrary polarized
category C+,− and in subsection 5.4, iterated double gluing over an arbitrary ∗-autonomous
category.

5 Examples of Polarized Categories
In this section we present four examples of our polarized categories. We first introduce some
general set-theoretical notation.

Notation 5.1 We write P (A) for the powerset of the set A. We denote the finite power set
Pfin(A) := {α ∈ P (A) | α is a finite set}. P ∗(A) := P (A) \ {∅} and similarly P ∗

fin(A) :=
Pfin(A)\{∅}. We write X ⊆∗

fin Y when X is a finite non-empty subset of Y . Similarly,X ⊆∗

Y means X is a nonempty subset of Y . A× B denotes the cartesian product of sets A and
B. For C ⊆ A×B, we use π1(C) := {a ∈ A | ∃b ∈ B (a, b) ∈ C} for its first projection and
π2(C) := {b ∈ B | ∃a ∈ A (a, b) ∈ C} for its second projection. A + B denotes the disjoint
union of sets A and B, i.e., A + B := {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}. For C ⊆ A + B,
we denote its two components C1 := {a ∈ A | (1, a) ∈ D} and C2 := {b ∈ B | (2, b) ∈ D}.
Finally, we write #A for the cardinality of the set A.

5.1 Hypercoherences and Polarities
In this subsection we present a concrete example of a polarized category arising from
Ehrhard’s ∗-autonomous category of hypercoherences [18]. We begin by recalling the def-
inition of hypercoherence. We follow the treatment in [10, 3, 18]. We then introduce the
polarized subcategories of Ehrhard (see Section 5 of [18]).
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5.1.1 Hypercoherences
In [10] we introduced the hierarchy of categories of hypercoherences Cohn for 2 < n ≤ ω,
which are intermediate between Girard’s Coh [19], which is Coh3, and Ehrhard’s hyperco-
herences HCoh [18], which is Cohω in our terminology. For the purposes of this paper, we
will primarily consider hypercoherences.

Definition 5.2 (Hypercoherence E) A hypercoherence E is a pair

E := (|E |, Γ(E))

where |E | is a set and Γ(E) ⊆ P ∗(|E |) such that ∀a ∈|E | {a} ∈ Γ(E).

We use the notation Γ∗(E) := {u ∈ Γ(E) | #u > 1}. A hypercoherence E is identified
with a hypergraph, |E | determines the set of nodes and each element of Γ(E) determines a
hyperedge on |E |.

Definition 5.3 (the set D(E) of states for a hypercoherence E) For a hypercoher-
ence E, the set D(E) of states for E is

D(E) := {X ⊆|E | | ∀u ⊆∗
fin X u ∈ Γ(E)}

where B ⊆∗ A means B is a nonempty subset of A.

Definition 5.4 (linear implication of hypercoherences) For hypercoherences E and
F , the hypercoherence E −◦ F , called linear implication of E and F , is

E −◦ F := (|E | × |F |, Γ(E −◦ F ))

where w ∈ Γ(E −◦ F ) iff

(i) w ⊆ |E| × |F |,
(ii) π1(w) ∈ Γ(E) ⇒ (π2(w) ∈ Γ(F ) ∧ (#π2(w) = 1 ⇒ #π1(w) = 1))

Definition 5.5 (HCoh) The category HCoh consists of the following:
objects: hypercoherences E := (|E |, Γ(E))
morphisms: HCoh(E, F ) := D(E −◦ F )

Remark 5.6 A morphism is a relation on hypergraphs which sends hyperedges to hyper-
edges and such that the preimage of a loop is a loop (but in general the preimage of a
hyperedge is not necessarily a hyperedge).

For E, F ∈ HCoh

1. IdE := {(a, a) | a ∈|E |} ∈ D(E −◦ E)

2. If R ∈ D(E −◦ F ) and S ∈ D(F −◦G) then the relational composition

S ◦R := {(a, c) | ∃b((a, b) ∈ R ∧ (b, c) ∈ S)} ∈ D(E −◦G).

Proposition 5.7 HCoh is a ∗-autonomous category with products and coproducts.
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We indicate the structure on objects, following [3]:

(linear negation:) E⊥ := (|E |, Γ(E⊥)) where

Γ∗(E⊥) := P ∗
fin(|E |) \ Γ∗(E).

(tensor:) E ⊗ F := (|E | × |F |, Γ(E ⊗ F )) where

w ∈ Γ(E ⊗ F ) iff
w ⊆|E | × |F |, w is finite and
(w1 ∈ Γ(E) ∧ w2 ∈ Γ(F )).

(product:) E&F = (|E | + |F |, Γ(E&F )) where

w ∈ Γ(E&F ) iff
w ⊆|E | + |F |, w is finite and
(w2 = ∅ ⇒ w1 ∈ Γ(E)) ∧ (w1 = ∅ ⇒ w2 ∈ Γ(F )).

Hence we have by de Morgan duality:

(par:) E .................................................
............
.................................. F := (|E | × |F |, Γ(E .................................................

............
.................................. F )) where

w ∈ Γ∗(E .................................................
............
.................................. F ) iff

w ⊆|E | × |F |, w is finite and
(w1 ∈ Γ∗(E) ∨ w2 ∈ Γ∗(F )).

(coproduct:) E ⊕ F := (|E | + |F |, Γ(E ⊕ F )) where

w ∈ Γ(E ⊕ F ) iff
w ⊆|E | + |F |, w is finite and
(w1 ∈ Γ(E) ∧ w2 = ∅) ∨ (w1 = ∅ ∧ w2 ∈ Γ(F )).

1 denotes the unique hypercoherence such that |1 | is the singleton {?}. Then 1 = 1⊥ and
1 becomes the unit both for ⊗ and .................................................

............
.................................. .

5.1.2 The Polarized Category HCoh+,−

We introduce polarized subcategories arising from notions in Ehrhard [18], Section 5.

Definition 5.8 (positive and negative subcategories HCoh+ and HCoh−)

• HCoh+ is the subcategory of HCoh consisting of hereditary hypercoherences. A
hypercoherence E is called hereditary when the following holds:

∀u ∈ Γ(E) ∀v ⊆∗
fin u v ∈ Γ(E)

• HCoh− is the subcategory of HCoh consisting of antihereditary hypercoherences. A
hypercoherence E is called antihereditary when E⊥ is hereditary; i.e., the following
holds:

∀u ∈ Γ∗(E) if v ⊆∗
fin|E | is such that u ⊆ v then v ∈ Γ∗(E)

Proposition 5.9

• HCoh+ is closed under positives ⊗ and ⊕; i.e., if E and F are hereditary then so are
E ⊗ F and E ⊕ F .
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• HCoh− is closed under negatives .................................................
............
.................................. and &; i.e., if E and F are antihereditary then

so are E .................................................
............
.................................. F and E&F .

We can use the same construction above on n-coherences Cohn (see [10]) to obtain (Cohn)+

and (Cohn)−, with 3 ≤ n ≤ ω. In the case n = 3, Coh3 is simply Coh, the category of
coherence spaces. It can be shown that

• Coh+ = Coh− = Coh,

• For n > 3, (Cohn)+ 6= (Cohn)−.

Hence the polarization of Cohn only begins at levels beyond 3.

Definition 5.10 (functors ↓ and ↑)

• A functor ↓: HCoh −→ HCoh+ is defined by

(on objects) For a hypercoherence E,

Γ(↓E) := {u ∈ Γ(E) | ∀v ⊆∗
fin u v ∈ Γ(E)},

which is a restriction of Γ(E) in that Γ(↓E) ⊆ Γ(E).

(on morphisms) ↓ is the identity; i.e., for R ∈ D(E−◦F ), we define ↓R ∈ D(↓E−◦ ↓F )
by

↓R = R

• Dually, a functor ↑: HCoh −→ HCoh− is defined by

(on objects) For a hypercoherence E,

Γ∗(↑E) := {u ⊆∗
fin|E| | ∃v ⊆ u v ∈ Γ∗(E)},

which is an expansion of Γ(E) in that Γ(↑E) ⊇ Γ(E).

(on morphisms) ↑ is the identity; i.e., for R ∈ D(E−◦F ), we define ↑R ∈ D(↑E−◦ ↑F )
by

↑R = R

Proposition 5.11 (An adjunction Inj+ a ↓) For every object E ∈ HCoh+ and F ∈
HCoh,

HCoh(E, F ) = HCoh+(E, ↓F )

That is, the functor ↓ is right adjoint to the inclusion functor Inj+ : HCoh+ −→ HCoh.

Dually, we have

Proposition 5.12 (An adjunction ↑ a Inj−) For every object E ∈ HCoh and F ∈
HCoh−,

HCoh(E, F ) = HCoh−(↑E, F )

That is, the functor ↑ is left adjoint to the inclusion functor Inj− : HCoh− −→ HCoh.
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From the above two propositions we have:

Corollary 5.13 HCoh+,− is a polarized category.

For every hypercoherence E ∈ HCoh+, the unit η : E −→↓↑E of (8) for the adjunction
⇑ a ⇓ yields a natural embedding

Γ(E) ⊂ Γ(↓↑E) (10)

However the converse does not hold in general, (see also Remark 3.5 above), as follows:

Remark 5.14 (HCoh+ does not coincide with Fix η) The natural embedding (10) is
strict: i.e., there exists a hypercoherence E ∈ HCoh+ such that Γ(↑↓E) 6⊂ Γ(E).

Proof. Define Γ∗(E) := {{a, b}, {b, c}, {c, a}} with | E |:= {a, b, c}. This is equivalent to
{{a, b, c}} = Γ∗(E⊥). The definition yields that {a, b, c} ∈ Γ∗(↑↓E), and is not an element
of Γ∗(E), as required. 2

On the other hand, in the framework of HCoh+,−, we have a nice characterization of the
subcategories of HCoh+ and HCoh− sketched in Remark 3.5:

Proposition 5.15 The following hold for the subcategory Fix η and ↓↑HCoh:

1. Fix η (resp. Fix ε) coincides with ↓↑HCoh (resp. ↑↓HCoh).

2. Fix η is equivalent to the category Coh of coherent spaces.

3. The category ↓↑HCoh is equivalent to the category ↑↓HCoh.

Proof. 1. It suffices to show that ηGF is an isomorphism: i.e.,

Γ∗(↓↑E) = Γ∗(↓↑↓↑E)

This holds since u belonging to the L.H.S. and the R.H.S is characterized by the
following same condition:

∀u′ ⊆ u (#u′ = 2 ⇒ u′ ∈ Γ(E)) (11)

2. u ∈ Γ∗(↓ ↑E) if and only if (11) holds. So sending each hypercoherence ↓ ↑E to the
coherence consisting of edges from Γ(↓ ↑E) yields the isomorphism between the two
categories.

3. From 1 and the adjoint equivalence Fix η ∼= Fix ε.
2

17



We end this subsection with the following proposition, which will be used for showing
the existence of a polarized Gustave function, discussed in Subsection 7.4.

Proposition 5.16 (↓ and ↑ are strict monoidal in HCoh) In HCoh, ↓ and ↑ induce
strict monoidal functors, i.e. we have for hypercoherences E and F ,

↓(E1 ⊗ E2) = ↓E1⊗ ↓E2

↑(E1
.................................................

............
.................................. E2) = ↑E1

.................................................
............
.................................. ↑E2

Proof. Since one is dual to the other, we prove the preservation of ⊗:
(⊇) Direct, since ∀v ⊆∗ u, we have vi ⊆∗ ui with i ∈ {1, 2}.
(⊆) For u ∈ L.H.S, we shall show ui ∈ Γ(↓Ei); this is derived from the following: ∀u′ ⊆∗ ui

∃v ⊆ u such that vi = u′. 2

5.2 Chu Spaces and Polarities
Chu spaces were introduced by M. Barr (and studied by his student P. Chu) in [7] as a
formal construction for building ∗-autonomous categories from (finitely complete) symmetric
monoidal closed ones. Chu spaces have turned out to be extremely fruitful for building models
of linear logic, as well as in applications to theoretical computer science and in mathematical
studies of duality theories. For detailed discussions and history, see [7, 8, 39].

There are many categories of Chu spaces, depending on the underlying symmetric
monoidal closed category. We now briefly describe the category Chu(Set, K), a particu-
larly simple one. Let K be a set.

Definition 5.17 A Chu Space A = (A, R, X) consists of a pair of sets A, X and a function

A×X
R−→ K. Think of R as a “K-valued matrix” (or “K-valued relation”) from A to X.

Let A = (A, R, X) and B = (B, S, Y ) be Chu spaces. A morphism of Chu spaces
(f, g) : A → B is a pair of maps (f, g), where f : A → B and g : Y → X, satisfying

S(f(a), y) = R(a, g(y)) for all a ∈ A, y ∈ Y .

Chu spaces with morphisms between them form a category, Chu(Set, K), with composition
and identities given pointwise.

Chu(Set, K) is a self-dual, complete (thus cocomplete) ∗-autonomous category, with
small (co)limits inherited from Set (for details, see [8, 39]). For our purposes, we only need
the following properties:

Proposition 5.18 Chu(Set, K) is a ∗-autonomous category with products, thus a model of
MALL.

Proof. Let us sketch the relevant structure. Let A = (A, R, X) and B = (B, S, Y ) be Chu
spaces.

Linear Negation: A⊥ = (X,Rop, A) , where Rop = X × A
∼=−→ A × X

R−→ K is given by
Rop(x, a) = R(a, x). Given (f, g) : A −→ B, define (f, g)⊥ : B⊥ −→ A⊥ by (f, g)⊥ = (g, f).

Tensor: A⊗B = (A×B, T, hom(A,B⊥)), where T (〈a, b〉, (h, k)) = R(a, k(b))( = S(b, h(a)) ).
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Given (f, g) : A −→ A′ and (u, v) : B −→ B′, define (f, g)⊗ (u, v) : A⊗ B −→ A′ ⊗ B′ by:

(f, g)⊗ (u, v) = (f × u, (vo − of, go − ou) )

where, for example, if h′ : A′ → Y ′, (vo − of)(h′) = voh′of : A → Y.

Coproducts: A ⊕ B = (A + B, F, X × Y ), where F ((1, a), (x, y)) = R(a, x) and
F ((2, b), (x, y)) = S(b, y). The unit for ⊕ (i.e. the initial object in Chu(Set, K)) is
0 = (∅, !, {∗}). Injections in` : A −→ A ⊕ B (and similarly right injections) and copair-
ing [(f, g), (u, v)] : A⊕ B −→ C are easy.

Finally, products are given by de Morgan duality from coproducts. 2

Given a Chu space A = (A, R, X), let R̂ : A → KX denote the currying of R, so that

R̂(a)(x) = R(a, x). Call R̂(a) the “row determined by a” (in the K-valued matrix of R).
Dually, define Ř : X → KA to be the currying of Rop, so Ř(x)(a) = R(a, x). We call Ř(x)
the “column determined by x”.

Definition 5.19 A Chu space A is separated if R̂ is injective. Dually, a Chu space is
extensional if Ř is injective. Let Chusep be the full subcategory of Chu(Set, K) of separated
Chu spaces. Similarly, let Chuex be the full subcategory of Chu(Set, K) of extensional Chu
spaces.

Note: from a matrix viewpoint, extensional Chu spaces have no repeated columns in R,
while separated Chu spaces have no repeated rows.

Definition 5.20 (Separated and Extensional Collapses) Let A = (A, R, X) be a Chu

space. Let Ker(R̂) = {(a, a′) ∈ A×A |R̂(a) = R̂(a′) }. This is an equivalence relation on A,
denoted by ∼, with canonical quotient map ν : A → A/∼ . Define the quotient Chu space
A/∼ = (A/∼ , R/∼ , X) where, for [a] ∈ A/∼ , x ∈ X,

R/∼ ([a], x) = R(a, x)

One easily checks that R/∼ is well defined, that A/∼ is separated, and that there is a
canonical quotient morphism (ν, idX) : A → A/∼ . We call A/∼ the separated collapse of
A. The separated collapse of A⊥ is known as the extensional collapse of A.

Proposition 5.21 Chusep is a reflective subcategory of Chu(Set, K), i.e. the inclusion
Chusep↪→ Chu(Set, K) has a left adjoint L. Dually Chuex is coreflective, with coreflector
R. Thus we obtain a polarized category model of MALLP:

Chusep

�
L

⊥
⊂

Inj
-

Chu(Set, K)
�
Inj

⊃
⊥
R

- Chuex

Proof. Define L(A) = A/∼ . Given a morphism (f, g) : A → B, define L(f, g) = (f/∼ , g) :
A/∼−→ B/∼ where f/∼ : A/∼−→ B/∼ is the map on equivalence classes [a] 7→ [f(a)].
f/∼ is well-defined; if a1 ∼ a2, then for all b ∈ Y R(a1, g(b)) = R(a2, g(b)), which means
S(f(a1), b) = S(f(a2), b), hence f(a1) ∼ f(a2). Then it is easy to check that the canonical
quotient morphisms ηA := (ν, idX) : A →↑A determine the unit η : IdChusep → Inj L for the
desired adjunction L a Inj. 2
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Lemma 5.22 (Chuex and Chusep are respectively positive and negative.)
Chuex is closed under ⊗ and ⊕. Dually, Chusep is closed under .................................................

............
.................................. and &.

Proof. Given A and B from Chuex, it is easy to check that A⊗B has no repeated columns
as follows: for (h, k), (h′, k′) ∈ hom(A,B⊥), suppose T (〈a, b〉, (h, k)) = T (〈a, b〉, (h′, k′)) for
all 〈a, b〉 ∈ A × B. From the definition of T for tensor, this means R(a, k(b)) = R(a, k′(b))
for all a ∈ A and b ∈ B. Since A is extensional, R has no repeated columns. Thus
k(b) = k′(b) for all b ∈ B, so k = k′. In the same way, starting from the other definition of
T (〈a, b〉, (h, k)) = S(b, h(a)), we again obtain h = h′. It is more direct to check that Chuex

is closed under ⊕. 2

From the above, we obtain the following proposition by setting C− := Chusep and C+ :=
Chuex, so that L :=↑ and R :=↓;

Proposition 5.23 Chu+,− is a polarized category model for MALLP.

Remark 5.24 (Functors ↑ and ↓ are non trivial in Chu+,−) In Chu+,−, the functors
↑ and ↓ act non-trivially on morphisms in general. However on the intersection of the two
subcategories Chusep and Chuex, the functors ↑ and ↓ act as the identity on morphisms,
which causes the following:

↓↑C = Fixε and ↑↓C = Fixη.

This validates the condition (16) of Remark 8.1, thus Chu+,− is not faithful. In partic-
ular even in this framework of Chu+,− with nontriviality of ↑ and ↓, the interpretations
of the two proofs of Example 2.2 collapse to be the same; i.e., both are interpreted by
the identity (idA, idX/ ∼) on ↓ A := (A, R/ ∼, X/ ∼), where ∼ denotes the equivalence
relation determined by Ker(Ř). This non-discrimination arises because for A ∈ Chusep,
↓A ∈ Chusep ∩ Chuex, thus ↑ ↓↑A⊥ =↑A⊥ and ↑ ↓A =↓A, which makes the the type of
each morphism `↑A⊥, ↓A.

5.3 Double Gluing Categories GC+,− over C+,− and Polarities
In this subsection we shall apply Hyland-Tan’s double gluing construction [41] to an arbitrary
polarized category C+,− so as to yield again a categorical framework GC+,−. We assume the
reader is familiar with the definition of double gluing (we review the notions in Appendix
2).

Let C+,− be a polarized ∗-autonomous category in the sense of Definition 3.1. For ease
of reading we use the notation in our proof of Soundness (Proposition 4.2): let G : C− ↪→ C
be the inclusion Inj−, and F : C → C− be its left adjoint ↑.

Definition 5.25 (positive and negative subcategories of GC) The subcategory GC−
(resp. GC+) of GC consists of objects A of GC such that U(A) are objects in C− (resp. in
C+).

Definition 5.26 (functors ↑) A functor ↑: GC −→ GC− is defined by
(↑ on objects of C) For an object A = (A,Ap,Acp) in GC, we define;

↑A := (↑A, (↑A)p, (↑A)cp)

where
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• (↑A)p is defined to be a subset of a homset C(1, ↑A) obtained from every α : 1 −→ A
in Ap as follows: its arrows are of the form F (α)oη1, where

1
η1- GF1

=−→ F1
Fα

- ↑A

• (↑A)cp is defined to be a subset of a homset C(↑A,⊥) obtained from every α′ : A −→ ⊥
in Acp as follows: its arrows are of the form ε⊥oF (α′), where

FA
Fα′

- F⊥ =−→ FG⊥
ε⊥ - ⊥

(↑ on morphisms of C) For a morphism f : A −→ B, the morphism F (f) satisfies the points
and copoints condition to be a morphism: ↑f :↑A −→↑B directly as follows:

- (point condition for ↑ f) This is a condition that for all F (α)oη1 ∈ (↑A)p, it holds
that F (f)oF (α)oη1 ∈ (↑B)p: First the point condition of f tells us that f oα = β for
some β ∈ Bp. Thus, F (f)oF (α)oη1 = F (β)oη1, which is an element of (↑B)p from the
definition.

- (copoint condition for ↑f) Dually to the above.

Proposition 5.27 (An adjunction ↑a Inj−) For every object A ∈ GC and B ∈ GC−,
there is a natural isomorphism

GC−(FA,B) ∼= GC(A, GB)

where F =↑ and G = Inj−.

Proof. We shall show an adjunction ↑a Inj− of C can be lifted up to GC to retain
point/copoint conditions.
(⇐) Given f : A → GB from the R.H.S, we shall show that its adjunction εB o Ff in C

FA
Ff

- FGB
εB - B

satisfies the point/copoint conditions of the L.H.S for GC−:

(point-condition) For f : A → GB = B, the point condition for R.H.S is

1
∀α ∈ Ap- A

f
- B ∈ Bp.

The condition for the assertion is that the following morphism belongs to Bp;

1
η1- GF1

=−→ F1
Fα

- FA
Ff

- FB
=−→ FGB

εB - B

But the above two morphisms are equal by properties of the units and counits, 3which implies
the assertion.

3This is the same equation of morphisms as the last diagram of Soundness 4.2
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(copoint-condition) For A → GB = B, the copoint condition for the R.H.S is

A
f

- B
∀β ∈ Bcp- ⊥ ∈ Acp.

The condition for the assertion is that the following top-most horizontal arrow belongs to
(↑A)cp for all β ∈ Bcp, which is derived from the commutativity of the following diagram by
the naturality of ε and the above condition:

FA
Ff

- FB
=−→ FGB

εB - B
β

- ⊥

F⊥ = FG⊥

ε⊥

-

Fβ
-

(⇒) Given g : FA → B from the L.H.S, we shall show that its adjunction ηAog in C

A
ηA - GFA

Gg = g
- GB

satisfies the point condition and the copoint condition for the R.H.S.

(point-condition)
For g : FA → B, the point condition for the L.H.S assures that the top-most horizontal
arrow of the following diagram belongs to Bp for all α ∈ Ap. The condition for the assertion
is directly derived from the commutativity of the diagram which is naturality of η;

1
η1 - F1

F (α)
- F (A)

g
- B

A

ηA

-

α

-

(copoint-condition)
For g : FA → B, the copoint condition for L.H.S is described by commutativity of the upper
triangle of the following diagram; i.e., ∀ β ∈ Bcp ∃α ∈ Acp β o g = ε⊥oF (α).

F⊥ = FG⊥

FA
g

-

F
α

-

B
β

- ⊥

ε⊥

-

A

α

-
�

η
A
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The condition for the assertion is that βogoηA belongs to Acp. Since ε⊥ o Fα o ηA = α 4, as
shown by commutativity of the outermost square of the above diagram, the condition is
derived from the commutativity of the lower triangle. 2

Proposition 5.28 (Polarized Category GC+,−) GC+,− is a polarized category whenever
C+,− is.

Example 5.29 GHCoh+,− is a polarized category built from HCoh+,− as studied in Sec-
tion 5.1. GHCoh+,− does not validate the Mixp inference (see Remark 7.18 below). One goal
of this paper is to prove MLLP full completeness in a dinatural framework over GHCoh+,−
(cf. Theorem 7.21).

5.4 Iterated Double Gluing G2C and Polarities (G2C)+,−
In this subsection, we show that a simple notion of polarity arises through iterations G2C
of Hyland-Tan’s double gluing construction over an arbitrary ∗-autonomous category C. We
assume the reader is familiar with the definition of double gluing (we review the notions in
Appendix 2).

An object A of an iterated double gluing category G2C = G(GC) is of the following
form, by the definition of double gluing:

A := (UA,Ap,Acp)

where UA is an object of GC and{
Ap ⊆ GC(1, UA) ∼= (UA)p

Acp ⊆ GC(UA,⊥) ∼= (UA)cp

Again by the definition of double gluing GC, UA is of the following form:

UA := (U2A, (UA)p, (UA)cp)

where U2A is an object of C and {
(UA)p ⊆ C(1, U2A)
(UA)cp ⊆ C(U2A,⊥)

From the above, any object A of G2C is written as a triple as follows:

A := (U2A, Ap ⊆ (UA)p, Acp ⊆ (UA)cp)

where U2A is an object of C, (UA)p ⊆ C(1, U2A) and (UA)cp ⊆ C(U2A,⊥).

More generally an object A of GnC is written as a triple as follows:

A := (UnA, Ap ⊆ (UA)p ⊆ · · · ⊆ (Un−1A)p, Acp ⊆ (UA)cp ⊆ · · · ⊆ (Un−1A)cp)

where the first element is an object of C and the second (resp. third) element is an increasing
sequence of length n of subsets of the homset C(1, UnA) (resp. C(UnA⊥,⊥)).
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A
� @

UA
� @

U2A (UA)p (UA)cp

Ap Acp

UkA
� @

Uk+1A (UkA)p (UkA)cp

Un−1A
� @

UnA (Un−1A)p (Un−1A)cp

p p p

p p p

Figure 1: An object A of GnC

In the following Figure 1 we represent an object of GnC by means of a tree using 3-tuples
UkA = (Uk+1A, (UkA)p, (U

kA)cp) ∈ Gn−kC as the (leftmost) ternary nodes.

The morphisms from A to B in GnC are morphisms f from UnA and UnB in C such that the
following conditions with 0 ≤ k < m hold:

(k-th point condition:) ∀α ∈ (UkA)p [α]f ∈ (UkB)p

(k-th copoint condition:) ∀β ∈ (UkB)cp f [β] ∈ (UkA)cp

We wish to discuss how positive and negative subcategories arise quite simply in the
framework of the iterated double gluing category G2C.

Definition 5.30 (positive and negative subcategories of G2C)
- (G2C)+ is a subcategory of G2C consisting of objects A satisfying Ap = (UA)p.

- Dually, (G2C)− is a subcategory of G2C consisting of objects A satisfying Acp =
(UA)cp.

The definition yields that (G2C)+ (resp. (G2C)−) is positive (resp. negative) in the
following sense.

Proposition 5.31 (G2C)+ (resp. (G2C)−) is closed under ⊗ and ⊕ (resp. .................................................
............
.................................. and &).

Proof. In the double gluing construction, points (resp. copoints) of ⊗ (resp. .................................................
............
.................................. ) are con-

structed componentwise from points (resp. copoints) of each component (cf. Appendix 2 for
∗-autonomy in double gluing categories). Hence closedness of ⊗ (resp. .................................................

............
.................................. ) in (G2C)+ (resp.

(G2C)−) is easily derived. Closedness under additives is more direct. 2

Next we shall define functors ↑ and ↓ from G2C to the subcategories (G2C)− and (G2C)+,
respectively.

Definition 5.32 (functors ↑ and ↓) The functors ↑: C → C− and ↓: C → C+ are defined
by the following data:

4Again, this is the same equation of morphisms as the last diagram of Soundness 4.2
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(On objects) For an object A = (U2A, Ap ⊆ (UA)p, Acp ⊆ (UA)cp) of G2C,

we define
↑A := (U2A, Ap ⊆ (UA)p, Acp = Acp)

That is {
(↑A)p := Ap and (U(↑A))p := (UA)p

(↑A)cp := (U(↑A))cp := Acp

Dually, we define
↓A := (U2A, Ap = Ap, Acp ⊆ (UA)cp)

That is {
(↓A)p := (U(↓A))p := Ap

(↓A)cp := Acp and (U(↓A))cp := (UA)cp

(On morphisms) ↑ and ↓ act on morphisms as the identity; i.e., for f ∈ G2C(↑A, ↑B), we
define ↑f ∈ G2C(↑A, ↑B) and ↓f ∈ G2C(↓A, ↓B) by

↑f := f :=↓f

It can be directly checked that the above is well-defined; i.e., for f ∈ G2C(A,B), it holds
that f ∈ G2C(↑A, ↑B) and f ∈ G2C(↓A, ↓B).

Now we have adjunctions on the functors ↑ and ↓ defined above.

Proposition 5.33 (Adjunctions Inj+ a ↓ and ↑a Inj−)
For all objects A ∈ (G2C)+ and B ∈ G2C,

G2C(A,B) = (G2C)+(A, ↓B)

Dually for all objects A ∈ G2C and B ∈ (G2C)−,

G2C(A,B) = (G2C)−(↑A,B)

Proof. Straightforward as follows: for the first adjunction, for every morphism whose domain
is positive A, the first and the second point conditions for f collapse to be the same since
Ap = (UA)p. Dually for the second adjunction. 2

From the above, we have

Proposition 5.34 (G2C)+,− is a polarized category.

Finally, we end this section on examples of models with the following observation, which
follows from a detailed examination of their structure.

Remark 5.35 (Strictness of the structure of models) The above 4 classes of models
all have strict polarized structure, not just up-to-isomorphism. That is, the ∗-autonomous
de Morgan structure is strict and the functors ↑ and ↓ are (strictly) de Morgan dual as well
as being strict monoidal functors (in the case of double gluing categories GC+,−, this assumes
that C+,− is strictly polarized and the appropriate definition of points and copoints is used.)
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6 Dinatural Frameworks
6.1 Polarized Functoriality
In this subsection we shall introduce a polarized version of functoriality for our polarized
category C+,−. A polarized multivariant functor is a functor F : (Cop

− )n × (C−)n → C. Recall
that (C−)op ∼= C+ , so equivalently a polarized multivariant functor is a functor F : (C+)n ×
(C−)n → C. A polarized multivariant functor is called positive (resp. negative) if its range is
contained in C+ (resp. C−).

We extend functorial polymorphism for linear logic (see [11, 12]) to the polarized case by
interpreting polarized formulas as usual but using polarized functors, (note that variables
are positive, thus interpreted as covariant projections as always), with the following added
rules obtained by using the adjoint functors ⇑a⇓ between C− and C+ (recall Diagram (7)
and the notation below it), as follows:

Let F : (C+)n × (C−)n → C. Define

• ↑ F = (C+)n × (C−)n F−→ C ↑−→ C−

• ↓ F = (C+)n × (C−)n F−→ C ↓−→ C+

A polarized dinatural transformation between polarized functors is a family of morphisms
in C− (or dually in C+) or in a module in Ĉ satisfying the usual hexagonal condition for all
~f : ~A → ~B in (C−)n as follows:

Definition 6.1 (polarized dinatural transformation) For polarized multivariant func-
tors E, F : (Cop

− )n × (C−)n → C, a polarized dinat

θ ∈ pDinat-C+,−

is a family of morphisms θ ~A in C− (or dually in C+) or in a module in Ĉ

θ := {θ ~A : E( ~A; ~A) → F ( ~A; ~A) | ~A ∈ (C−)n}

such that for all ~f : ~A → ~B in (C−)n, the following hexagonal diagram commutes:

E( ~A; ~A)
θ ~A - F ( ~A; ~A)

E( ~B; ~A)

E
(
~f ;

~A
) -

F ( ~A; ~B)

F
( ~A

; ~f)
-

E( ~B; ~B)
θ ~B -

E
( ~B

; ~f) -

F ( ~B; ~B)

F
(
~f ;

~B
)

-
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In usual non-polarized functorial frameworks, we sometimes introduce the notion of re-
stricting dinaturals to a subcategory by allowing variables and morphisms in multivariant
functors to range over the subcategory (see [6]). This framework is used in Hamano [23] for
multiplicative full completeness. In the polarized case, we show this provides an important
bridge between the polarized and the usual notion of dinatural.

Definition 6.2 (DinatD-C) Let C be a ∗-autonomous category and D a subcategory. For
multivariant functors E, F : (Dop)n×Dn → C, define dinaturality with respect to D as follows:

a family θ ∈ DinatD-C(E, F ) is a family of C-morphisms θ := {θ ~A : E( ~A; ~A) → F ( ~A; ~A) |
~A ∈ Dn} such that for all ~f : ~A → ~B in Dn, the following hexagonal diagram commutes:

E( ~A; ~A)
θ ~A - F ( ~A; ~A)

E( ~B; ~A)

E
(
~f ;

~A
) -

F ( ~A; ~B)

F
( ~A

; ~f)
-

E( ~B; ~B)
θ ~B -

E
( ~B

; ~f) -

F ( ~B; ~B)

F
(
~f ;

~B
)

-

If θ ∈ Dinat-C(E, F ), then for any subcategory D of C (as above), we obtain an induced fam-

ily θD of morphisms by restricting θ to D; i.e. define θD := {θ ~D : E( ~D, ~D) → F ( ~D, ~D) | ~D ∈
Dn}. Observe θD ∈ DinatD-C(E, F ), hence {θD | θ ∈ Dinat-C(E, F )} ⊆ DinatD-C(E, F ),
so there is an induced canonical map Dinat-C(E, F ) → DinatD-C(E, F ) given by θ 7→ θD.

In our Full Completeness Theorems (in Sections 7.2 and 7.3 below) we will restrict our-
selves to dinats between definable functors.

Proposition 6.3 (From Polarized to NonPolarized) There is a canonical map

U : pDinat-C+,− - DinatFixε-C

which is a canonical “depolarizing” map from a polarized category C+,− to a ∗-autonomous
category C.
Proof. U is the restriction of a C−-indexed dinatural family ρ of C+,−-morphisms from the
L.H.S. into a subcategory Fixε of C− as follows:

U(ρ) := {ρ ~A : E( ~A; ~A) −→ F ( ~A; ~A) | ~A ∈ Fixε}

Since in a subcategory Fixε, ↑ and ↓ act as the identity on objects (hence on morphisms), it

holds that G( ~A; ~A) ∼=|G | ( ~A; ~A) for every polarized definable multivariant functor G( ~X; ~X),
where |G | denotes G by erasing ↑ and ↓. Thus we conclude that U(ρ) is in the R.H.S. 2
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In particular, if C+,− is HCoh+,− in the above proposition, we have moreover the follow-
ing:

Proposition 6.4 (From HCoh+,− to Coh) If C+,− is HCoh+,− in Proposition 6.3 above,
then in this case U acts as an identity map between dinats as follows:

U : pDinat-HCoh+,− - Dinat-Coh

That is, U is a canonical “depolarizing” map satisfying U(ρ) = ρ.

Proof. First, we shall show that the target of U is Dinat-Coh. This is because Fixε is
isomorphic to the category of coherent spaces Coh (see Proposition 5.15), which happens to
be ∗-autonomous, together with the fact that

DinatCoh-HCoh ∼= Dinat-Coh .

Second, we must show that U acts as the identity on dinats, i.e. that U(ρ) = ρ. This means

that for all ~A ∈ HCoh− , ρ ~A and U(ρ)U ~A are the same relation. This holds because Fixε
coincides with ↑↓HCoh (see Proposition 5.15), hence the target of U is Dinat↑↓HCoh-HCoh.
On the other hand, there is a canonical morphism for every object N ∈ HCoh−

↑↓N −→ N,

which is the counit (9) of the adjunction ⇑a⇓ and is the identity of |N | in the case of
HCoh+,− (see Propositions 5.11 and 5.12). Then the hexagonal diagrams of Definition 6.1
with respect to these morphisms yield that an ↑ ↓HCoh indexed family of morphisms is
enough to determine a HCoh− indexed family of morphisms for a polarized dinat of L.H.S.

2

Example 6.5 We illustrate the above Proposition:

1. Dinat-Coh is fully complete for MLL + Mix, which was proved by Tan [41] (see also
Proposition 3.7 of [10]). Hence in Proposition 6.4 if a dinat ρ is definable from an
MLLP formula, its depolarization U(ρ) is a denotation of an MLL + Mix proof.

2. In Proposition 7.25 in Subsection 7.4 below it is shown how to define a polarized
Gustave function, with an associated dinatural family R which is definable from a
MALLP formula. Then its depolarization U(R) is the usual dinat of a 3-ary Gustave
function (cf. Proposition 2.11 of [10]). This will be used in Subsection 7.4 below to
show that HCoh+,− is not fully complete for MALLP.

Proposition 6.4 above is critical to our main Full Completeness Theorem for MLLP+Mixp

(see Theorem 7.15 below).

7 Completeness Theorems
7.1 Completeness, Full Completeness and Polarized Softness
We now consider completeness theorems for our formalism. Here “completeness” can mean
one of two things: “completeness with respect to provability” (called “weakly full complete-
ness” in the terminology of Harnik and Makkai’s paper on Läuchli semantics. [26]), versus
“completeness with respect to proofs” (often called full completeness, see Blute and Scott’s
Linear Läuchli semantics [11]).
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Remark 7.1 Let L be a theory, i.e. a language with associated logical and nonlogical
axioms. In categorical logic, we think of the syntax (and axioms) of L as forming a free,
structured category F given by generators and relations. Here the objects of F are the
formulas and a morphism from A to B is an equivalence class of proofs of the entailment
A ` B, modulo some appropriate notion of “equivalence of proofs” (see [26, 33]). We often
identify L with this free category F . In this case, to say that HomF(A, B) 6= ∅ simply means
that the sequent A ` B is provable in L. From this viewpoint, the usual logicians’ notion of
interpretation of a theory L in a model categoryM arises immediately from the freeness of F
([33]). Namely, with respect to some interpretation of the basic generators, an interpretation
− : L →M is simply the (unique) structure-preserving functor − : F →M guaranteed

by the freeness of the category F (i.e. the syntax L) in some appropriate category of models.

Definition 7.2 Let M be a categorical model for a language (L,`). An interpretation

L
−
−→ M is weakly full if HomM( A , B ) 6= ∅ implies A ` B is provable in L, i.e.

− is a surjective function from provable sequents to the homsets of M. M is weakly
fully complete (w.f.c) if the canonical (free) interpretation of L in M (wrt an interpretation
of the generators) is weakly full. An interpretation is fully complete (f.c.) if − is a
surjective map from proofs of sequents to the homsets of M. This means: every morphism
in HomM( A , B ) is the image of some proof of a sequent A ` B in L. Finally, an
interpretation is faithful if − is injective on the set of proofs (with respect to some notion
of equality of proofs in L).

In the case of L = MALLP and M = C+,− in the definitions above, we interpret them as
follows. We first note that any sequent A ` B in L is assumed to be in a legal pattern (as in
Remark 3.2 ). Then HomM( A , B ) is equal to C( A , B ) for any such legal pattern,

since C+ and C− are full subcategories of C and the module Ĉ is given by the usual hom
functor of the ambient C. Second, we interpret weak fullness as follows, based upon the form
of MALLP sequents. We say C+,− is weakly fully complete (w.f.c.) if:

1. If C−(N1, N2) 6= ∅ then N1 ` N2 is provable in MALLP.

2. Dually, if C+(P1, P2) 6= ∅ then P1 ` P2 is provable in MALLP.

3. If Ĉ(P, N) 6= ∅ then P ` N is provable in MALLP.

Notice in all cases 1–3, we can uniformly replace C−, C+ and Ĉ by C, for the same reasons
that HomM( A , B ) = C( A , B ) above.

By results in Subsection 7.4 below (see also Example 6.5 (2) above), HCoh+,− is not
fully complete for MALLP. This suggests we consider the dinatural framework. However the
problem is not so simple. First, HCoh+,− has a polarized Gustave function (see Proposition
7.25) and this function also lives in the (polarized) dinatural framework. Unfortunately,
Gustave functions are incompatible with full completeness, as we show below (see Proposition
7.26). However such Gustave functions only exist in the additive case, i.e. for MALLP. Hence
we shall restrict ourselves to MLLP in our discussions below.
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7.1.1 Polarized ↑-Softness

Definition 7.3 (Polarized Softness of C+,−) A polarized category C+,− is called n-ary
↑-soft for n ≥ 1 if every module

ρ : 1 −→↑P1
.................................................

............
.................................. · · · .................................................

............
.................................. ↑Pi

.................................................
............
.................................. · · · .................................................

............
.................................. ↑Pn ∈ Ĉ

factors through some unit ηi : Pi −→↑Pi ∈ Ĉ of the adjunction (2) as follows, where ρ′ ∈ C−:

↑P1, . . . , Pi, . . . , ↑Pn

1
ρ
-.....

.....
.....

.....
.....

.....
.....

.....
..

ρ
′

-

↑P1, . . . , ↑Pi, . . . , ↑Pn

ηi

?

We note that (though ↓ is a reversible connective) ↑ is far from reversible in general. In
this sense, polarized softness gives a partial reversibility of the ↑ connective.

Remark 7.4 (n-dimensional push out condition) In our framework of positive/negative
subcategories C+/C− of a ∗-autonomous category C, the condition of polarized n-ary softness
can be characterized by means of an n-dimensional weak pushout (cf. Joyal [31]). E.g., when
n = 3 the condition is equivalent to the fact that the following cube is a 3-dimensional weak
pushout, where each D denotes the functor Ci×Cj×Ck → Set for appropriate i, j, k ∈ {+,−}
defined by D(A, B, C) := C(1, A .................................................

............
.................................. B .................................................

............
.................................. C). Each arrow of the cube come from unit(s)

P −→↑P of the adjunction (2).

D(A, B, C) - D(↑A, B, C)

D(A, ↑B, C) -
-

D(↑A, ↑B, C)

-

D(A, B, ↑C)

?
- D(↑A, B, ↑C)

?

D(A, ↑B, ↑C)

?
-

-

D(↑A, ↑B, ↑C)

?
-

We observe that originally Joyal required the above diagram to be a pushout, not just a
weak pushout. The weak notion suffices for our purposes here, and corresponds closer to the
syntax, as in the following remark.

Remark 7.5 (Necessity of Softness for Full Completeness) ↑-Softness is a necessary
condition for a MALLP full completeness theorem. First, observe that the syntax is “soft” in
the following sense: if we consider a cut-free proof of a sequent as representing a morphism,
say ↓A1 ⊗ · · ·⊗ ↓Am−1 `↑Am

.................................................
............
.................................. · · · .................................................

............
.................................. ↑An, it must end with either a ↓-left, or a ↑-right

rule5. This guarantees softness for any fully complete categorical model as follows: by abuse

5Strictly speaking, proof theorists would replace the ⊗’s on the left side and .................................................
............
.................................. ’s on the right side of the

sequent by commas.
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of notation, if in a model we have a morphism ↓A1 ⊗ · · ·⊗ ↓Am−1 →↑Am
.................................................

............
.................................. · · · .................................................

............
.................................. ↑An,

by fullness this arises from a (cut-free) proof of a sequent as above. Hence by the softness
of the syntax, the proof factors through either a counit ↓A → A of the adjunction (1) on
the left or a unit A →↑A of the adjunction (2) on the right. By the Soundness Theorem,
this factorization is transformed (by the interpretation of the syntax in the model) into a
factorization of the original morphism.

Remark 7.6 (Polarized Proof-Structures are Polarized Soft) Let us consider the
proof-structure counterpart of the notion of polarized softness. One may observe directly that
Laurent’s MALLP proof-structures [35] are soft; i.e., if a polarized MALLP proof-structure Θ
has conclusions ↑P1, . . . , ↑Pn, then some ↑-link with conclusion ↑Pi can be removed to yield
a proof structure with conclusions ↑P1, . . . , Pi, . . . , ↑Pn. In the graph-theoretical framework
of proof-structures (not only proof-nets), this polarized softness holds more directly than in
general categorical frameworks, since it is graph theoretically straightforward to check that
among the ↑-links of conclusions, there exists at least one which is not among the (auxiliary)
conclusions of ↓-boxes (hence it is removable). Moreover this polarized softness is still quite
trivial compared to usual additive ⊕-softness for nonpolarized MALL proof structures, which
was studied in Hamano [24].

In the next subsection we study an appropriate multiplicative version of polarized soft-
ness in the concrete framework of pDinat-HCoh+,−. This is done by making a connection
between this property and multiplicative full completeness of Dinat-Coh (cf. the above
Example 6.5 (1)). By using softness of pDinat-HCoh+,−, we shall obtain MLLP full com-
pleteness.

7.1.2 An aside: ⊕-Softness in Polarized Categories
In this brief subsubsection, we discuss in our polarized case what becomes of the usual ⊕-
softness in MALL studied in Blute-Hamano-Scott [10]. In our polarized category, because
of the constraint of focalization, the outermost ⊕ connective always occurs focused; hence
there is at most one such connective. So in the polarized case, the usual n-ary softness for
⊕ (cf. Definition 2.7 of [10]) for a natural number n is reduced to the following very special
form of unary-softness.

Definition 7.7 (focalized unary-softness for ⊕ in MALLP) Every morphism of the form

1 - P1 ⊕ P2, ↑ P

where ↑ P denotes ↑ Q1, . . . , ↑ Qn,X with X variables, factors through a coproduct injection
of the focalized ⊕.

We call this softness unary-softness in analogy with the MALL case (cf. Definition 2.7 of
[10]). Hence such a factorized ⊕ is deterministic because of the focalization property.

Moreover we should point out that this version of polarized ⊕ softness has exactly the
same form as a splitting ⊗ in MALLP defined as follows:

Definition 7.8 (splitting a focalized ⊗) Under the same notation for ↑ P as in Defini-
tion 7.7, every morphism of the form

1 - P1 ⊗ P2, ↑ P
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splits through the focused ⊗.

Remark 7.9 The above two Definitions 7.7 and 7.8 are exactly the semantical counterpart
of the focalization property for positives connectives ⊕ and ⊗ in MALLP. Note that such
properties are necessary for any fully complete model.

In the next subsection, we begin by studying a multiplicative version of this splitting ⊗.
This is done by making a connection between this property and multiplicative nonpolarized
full completeness of Dinat-Coh.

7.2 Full Completeness of pDinat-HCoh+,− for MLLP + Mixp

Recall, our dinats are of the form ρ : 1 → F , where F (called the type of ρ) is a definable
multivariant functor. A dinat is called multiplicative if its type is defined from an MLL
formula. Similarly, a polarized dinat is called multiplicative if its type is an MLLP formula.
If ρ is of type P1 ⊗ P2, Γ, we say the ⊗ in ρ is splitting if we can write ρ = ρ1 ⊗ ρ2 where Pi

is in the type of ρi (i = 1, 2); i.e., ρi is of type Pi, Γi such that Γ is Γ1, Γ2.
The next Theorem makes crucial use of the depolarizing map U in Proposition 6.4 as well

as Tan’s full completeness theorem for MLL + Mix [41] in the structure Dinat-Coh. We shall
also need the following particular canonical morphism of HCoh−, which we call “polarized
Mix map” (since its depolarization becomes A⊗B → A .................................................

............
.................................. B, which is an equivalent version

of Mix in the nonpolarized case).

Lemma 7.10 (Polarized Mix map in HCoh−) In HCoh−, the identity induces a map

pMix := ↑ (E ⊗ F )
id|E|×|F |- ↑ E .................................................

............
.................................. ↑ F .

Proof. Suppose u ∈ Γ∗(↑ (E ⊗ F )). This means for some v ∈ Γ∗(E ⊗ F ) u ⊇ v. Since
#v ≥ 2, we have either v1 ∈ Γ∗(E) or v2 ∈ Γ∗(F ). Obviously ∀i ui ⊇ vi, thus either
u1 ∈ Γ∗(↑E) or u2 ∈ Γ∗(↑F ), which means u ∈ Γ∗(↑E .................................................

............
.................................. ↑F ). 2

Remark 7.11 (pMix and Mixp) In the polarized setting the morphism pMix is not an equiv-
alent form of Mixp defined below Definition 7.14, which is the natural adaptation of the Mix
rule to MALLP; i.e., pMix is derived from the rule Mixp in MALLP, but not vice-versa. See
Remark 7.18 below for further information.

Theorem 7.12 (splitting a focalized ⊗ in MLLP dinats) Let ρ be a multiplicative
pDinat-HCoh+,− of the form

ρ : 1 −→ P1 ⊗ P2, ↑Q1, . . . , ↑Qn,X

where Pi (i = 1, 2) and Qj (j = 1, . . . , n) are positive and X are variables. Then every such
ρ splits via the focalized P1 ⊗ P2.

Proof. By induction on the number of connectives in ↑ Q1, . . . ↑ Qn and by using Tan’s
MLL + Mix full completeness of Dinat-Coh. In the proof, U denotes the depolarizing map
of Proposition 6.4.

(Case 0). Here n = 0. Hence ρ : 1 −→ P1 ⊗ P2,X . Then U(ρ) : 1 −→ U(P1)⊗ U(P2),X is
a multiplicative Coh dinat with an outermost tensor. Note that U(ρ) is a denotation of a
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MLL + Mix proof by MLL + Mix full completeness of Dinat-Coh. Recall the sequenatiality
of MLL. This says that if in a sequent Γ of a proof, if every outermost connective is a tensor,
then one of them can be split. This is still valid in the presence of Mix for MLL + Mix. In
the case U(ρ) considered here (which is a denotation of a proof), there is only one outermost
connective. So by MLL + Mix sequentiality, U(ρ) factors through this tensor. Thus by virtue
of the type of ρ, it is direct to observe that the original ρ factors through the tensor.

(Case 1) The case where some Qi is of the form ↓ N . In this case, ↑ Qi =↑↓ N . By composing
with the co-unit ε :↑↓ N −→ N of the adjunction (7), we have

ε ◦ ρ : 1 −→ P1 ⊗ P2, ↑ Q1, . . . , ↑ Qi−1, N, ↑ Qi−1, . . . , ↑ Qn,X .

Note that ε here is the identity in HCoh+,−. Also, a natural transformation of the co-unit
composes with a dinat to obtain a dinat. Thus ε ◦ ρ is a dinat and its type has a smaller
number of connectives than that of ρ. Thus, by induction hypothesis, ε ◦ ρ = ρ splits, since
ε is the identity.

(Case 2) Negation of Case 1: i.e., for all i, Qi = Qi1 ⊗ Qi2. Hence ↑ Qi =↑ (Qi1 ⊗ Qi2) to
have

1
ρ−→ P1 ⊗ P2, ↑(Q11 ⊗Q12), . . . , ↑(Qn1 ⊗Qn2),X .

Applying the depolarizing map U (of above Proposition 6.4) we have

1
U(ρ)−→ U(P1)⊗ U(P2), U(Q11)⊗ U(Q12), . . . , U(Qn1)⊗ U(Qn2),X .

So by MLL + Mix full completeness in Dinat-Coh, we know one of the tensors can be split:

(Case 2.1) The case where the splitting ⊗ of U(ρ) is the first one. In this case the corre-
sponding ⊗ in ρ also splits by virtue of the type of U(ρ) since U acts (by restriction) as the
identity on ρ. Thus we are done.

(Case 2.2) Negation of Case 2.1: Suppose without loss of generality, the splitting tensor is
U(Q11) ⊗ U(Q12). Then we write U(ρ) = τ1 ⊗ τ2. Note that U(ρ) = ρ since U acts as the
identity on ρ (but now considered as a family of Coh morphisms.) We consider the canonical
“polarized Mix map” pMix :↑(Q11 ⊗Q12) →↑ Q11

.................................................
............
.................................. ↑ Q12 in Lemma 7.10, which is given by

the identity in HCoh− and determines a natural transformation. After composing with this
natural transformation, we have

pMix ◦ ρ : 1 −→ P1 ⊗ P2, ↑ Q11, ↑ Q12, ↑ Q2, . . . , ↑ Qn,X

considered as a dinatural family in HCoh−. It is important to remark that as a family of
maps, pMix ◦ ρ = ρ; however in what follows its type will change.

Applying the depolarization map U to pMix ◦ ρ, we obtain U(pMix ◦ ρ) in HCoh−.
But since the family U(ρ) = U(pMix ◦ ρ) but with different types, we know we can write
U(pMix ◦ ρ) = τ1

.................................................
............
.................................. τ2 since the original splitting tensor U(Q11) ⊗ U(Q12) has (under the

pMix map) become a .................................................
............
.................................. . Moreover since U is the identity on dinaturals, we have that

pMix ◦ ρ = τ1
.................................................

............
.................................. τ2. Here without loss of generality, we may suppose P11 ⊗ P12 is contained

in τ1, say
τ1 : 1 → P11 ⊗ P12, ↑ Q11, ↑ R1, τ2 : 1 →↑ Q12, ↑ R2,
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where the disjoint union of ↑ R1 and ↑ R2 equals ↑ Q2, . . . , ↑ Qn,X . Now we apply the
induction hypothesis to τ1 to split the outer tensor; say τ1 = τ11 ⊗ τ12. Without loss of
generality, we may assume ↑Q11 is contained in τ11, say τ11 : 1 → P11, ↑Q11, ↑ R11, hence
τ12 : 1 → P12, ↑R12, where the disjoint union of ↑R11 and ↑R12 equals ↑R1. Thus ↑ Q11 and
↑ Q12 occur together in the target of τ11

.................................................
............
.................................. τ2 : 1 → P11, ↑Q11

.................................................
............
.................................. ↑Q12, ↑R11, ↑R2. Hence

we may write pMix ◦ ρ = (τ11
.................................................

............
.................................. τ2) ⊗ τ12. Finally, since pMix is the identity (see Lemma

7.10), we observe by virtue of the type τ11
.................................................

............
.................................. τ2 that the original ρ also splits on the same

P11 ⊗ P12. 2

The following is another theorem which makes crucial use of MLL + Mix full complete-
ness of Dinat-Coh. This theorem and the above Theorem 7.12 will lead us to a proof of
multiplicative full completeness of pDinat-HCoh+,− (Theorem 7.15 below). The proof is
very similar to the previous theorem (although independent of it).

Theorem 7.13 (Polarized Softness of pDinat-HCoh+,− in MLLP dinats) In MLLP,
pDinat-HCoh+,− is polarized n-soft for all natural numbers n; i.e., every multiplicative
polarized dinat ρ : 1 −→↑ P1

.................................................
............
.................................. · · · .................................................

............
.................................. ↑ Pi

.................................................
............
.................................. · · · .................................................

............
.................................. ↑ Pn

.................................................
............
.................................. X in HCoh+,− factors through

some unit ηi : Pi −→↑Pi of the adjunction (2) as follows to yield ρ = ηi ◦ ρ′:

↑P1, . . . , Pi, . . . , ↑Pn,X

1
ρ
-.....

.....
.....

.....
.....

.....
.....

.....
....

ρ
′

-

↑P1, . . . , ↑Pi, . . . , ↑Pn,X

ηi

?

Proof. By induction on the length of ρ’s type:
(Base Case) Since U(ρ) is a denotation of an MLL + Mix proof (cf. Example 6.5), this is the
case where ρ is of the following form:

ρ : 1 −→↑X⊥, ↑↓X

where X is a variable. The proof is a special case of the following (Case 1) of the Induction
Case in which we do not require the (I.H.).

(Induction Case)
(Case 1) 6 : The case where some Pi is ↓N , hence ↑Pi is ↑ ↓N . By composing ρ with the
co-unit ε :↑↓N −→ N of the adjunction (7), we have

ε ◦ ρ : 1 −→↑P1, . . . , N, . . . , ↑Pn,X .

Then from the adjunction (1), we have

(ε ◦ ρ)′ : 1 −→↑P1, . . . , ↓N, . . . , ↑Pn,X .

6The argument for this case depends on the fact that the adjunctions (1) and (2), hence (7) of HCoh+,−
are given by =.
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In this case it is crucial to observe that in pDinat-HCoh+,− the co-unit ε is Id|N| and the
adjunction for (1) is the identity; i.e., (ε ◦ ρ)′ = ε ◦ ρ. Thus we have the following equation
on morphisms:

ρ = ηi ◦ (ε ◦ ρ)′

This concludes the assertion.

(Case 2): Negation of (Case 1): In this case the outermost connective of Pi is ⊗: i.e., every
Pi is of the form Pi1 ⊗i Pi2; thus,

ρ : 1 −→ ↑(P11 ⊗1 P12), . . . , ↑(Pi1 ⊗i Pi2), . . . , ↑(Pn1 ⊗n Pn2),X .

By applying the forgetful functor U to the dinat ρ, we have U(ρ) ∈ Dinat-Coh

U(ρ) : 1 −→ U(P11)⊗1 U(P12), . . . , U(Pi1)⊗i U(Pi2), . . . , U(Pn1)⊗n U(Pn2),X

The multiplicative full completeness of Dinat-Coh means that U(ρ) is a denotation of a
MLL + Mix proof. Hence there is a splitting ⊗-connective for the U(ρ); i.e., for some i, the
tensor ⊗i splits in U(ρ). Without loss of generality, we may assume that ⊗1 is a splitting
connective; i.e.,

U(ρ) : 1 −→ U(P11)⊗ U(P12), . . . , U(↑Pi), . . . , U(↑Pn),X

factors through the first ⊗.
First of all, to the original ρ by applying pMix :↑ (P11 ⊗ P12) →↑P11

.................................................
............
.................................. ↑P12 of Lemma

7.10, we have the following:

pMixoρ : 1 −→ ↑P11
.................................................

............
.................................. ↑P12, ↑P2, . . . , ↑Pn,X (12)

Since U(ρ) factors through the first ⊗, so does ρ of (12) via the first .................................................
............
.................................. to obtain the following

ρ1 and ρ2 such that ρ = ρ1
.................................................

............
.................................. ρ2:

ρ1 : 1 −→ ↑P11, ↑Pi11
, . . . , ↑Pi1n1

,X1

ρ2 : 1 −→ ↑P12, ↑Pi21
, . . . , ↑Pi2n2

,X2 where X1, X2 is X

The I.H.’s for ρ1 and for ρ2 state that ∀k ∈ {1, 2}, ρk factors either through Pikm
for some m

or through P1k. We divide into the following two cases:

(Case 2.1) The case where both ρk’s factor through P1k:
After these factorizations we obtain

ρ′1 : 1 −→ P11, ↑Pi11
, . . . , ↑Pi1n1

,X1

ρ′2 : 1 −→ P12, ↑Pi12
, . . . , ↑Pi2n2

,X2

Then we have by applying ⊗

ρ′1 ⊗ ρ′2 : 1 −→ P11 ⊗ P12, ↑P2, . . . , ↑Pn,X

This means that ρ factors through P1 = P11 ⊗ P12.
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(Case 2.2) The case where some ρk factors through Pikm
:

After the factorization of ρk, we obtain

ρ′k : 1 −→ ↑P1k, . . . , Pikm
, . . . , ↑Piknk

,Xk

By making a .................................................
............
.................................. with ρk+1 w.r.t ↑P11 and ↑P12, where k + 1 is used mod 2, we have

ρ′k
.................................................

............
.................................. ρk+1 : 1 −→ ↑P11

.................................................
............
.................................. ↑P12, ↑P2, . . . , Pikm

, . . . , ↑Pn,X

This means that ρ of (12) factors through the Pikm
. Then we conclude that ρ of the assertion

factors through Pikm
since ρ = pMixoρ. 2

The following full completeness theorem is the main theorem of this subsection. In order
to state it, we will need a polarized version of the Mix rule. In the next section, by applying
double gluing, we prove full completeness for pure MLLP by eliminating Mixp.

Definition 7.14 (Mixp-rule)
` Γ1 ` Γ2

` Γ1, Γ2
Mixp

where at most one positive formula occurs in the conclusion of the rule.

Theorem 7.15 (MLLP + Mixp full completeness of pDinat-HCoh+,−)
pDinat-HCoh+,− is fully complete for MLLP + Mixp, i.e., every polarized dinat in
pDinat-HCoh+,− is the denotation of an MLLP + Mixp proof.

Proof. The proof is by the method of proof search to find a last rule, by induction on the
type of ρ. Before beginning the proof, we first note that the polarized dinats considered in
this paper are assumed to be between definable functors and that the types of dinats are
legal patterns (cf. Remark 3.2). Thus in the following cases, each type of ρ is legal, which

determines whether ρ is a family of morphisms in C− (or dually in C+) or in a module Ĉ.

(Base Case): The type of ρ is an axiom, say ρ : 1 → X⊥, X. Since this ρ is a dinat of Coh,
the result is immediate from Tan’s full completeness theorem for MLL + Mix.

(Case 1): The case where ρ is a family of bimodule elements; i.e., ρ : 1 −→ N1, N2, . . . , Nk

in pDinat-HCoh+,−. In this case, we may assume Ni =↑ Pi, since if not, we may replace
any outermost .................................................

............
.................................. ’s by commas. Then from polarized softness of Theorem 7.13, we know we

can factor ρ through some Pi to obtain some dinat ρ′; then use the I.H.

(Case 2): The case where ρ is a family of C−-maps; i.e., ρ : P⊥ −→ N1, N2, . . . , Nk in
pDinat-HCoh+,−.

(Case 2.1): P is ↓N . In this case, ↓ is always removable, since if ρ : ↑N⊥ → N , we may
precompose with the unit η : N⊥ →↑N⊥ of (5) to obtain a dinat family of type N⊥ → N ,
and then use the I.H.

(Case 2.2): P is P1⊗P2, so ρ has type 1 −→ P1⊗P2,N . Then by Theorem 7.12 on splitting
a focalized ⊗, we can split ρ and apply the I.H.

(Case 2.3): P is X⊥ with X a variable, so ρ has type 1 −→ X⊥,N . Without loss of
generality we may assume that N does not have any outermost .................................................

............
.................................. . By virtue of the fact
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that U(ρ) of Proposition 6.4 is a denotation of an MLL + Mix proof (see Example 6.5 (1)),
N has exactly one occurrence of X. We instantiate every variable Y except X in N by ⊥.
Since ↓⊥ = ⊥ = 1 =↑1, the instantiation gives rise to a dinat ρ̂ : 1 → X⊥, (↑↓)mX, where
m ≥ 0. Note that (↑↓)m is a sequence of polarity changing connectives which binds X in N .
But Remark 5.14 yields that m = 0, which tells us that ρ̂ : 1 → X⊥, X. Hence this implies
that ρ : 1 −→ X⊥, X,N0, where X,N0 is N . Then by using a rule Mixp, ρ factors into two
dinats 1 −→ X⊥, X and ρ′ : 1 −→ N0. 2

This MLLP + Mixp full completeness implies the following corollary, which will be used
in the proof of Main Theorem 7.21 in the next subsection:

Corollary 7.16 (From dinats to MLLP proof-structures) Every multiplicative
pDinat-HCoh+,− is associated with a Laurent MLLP proof-structure.

Proof. Every MLLP + Mixp proof is directly shown to be associated with an MLLP proof-
structure of Laurent by induction on the length of a proof. In particular, the Mixp-rule
corresponds to taking a disjoint union of two proof-structures for the two premises of the
rule. 2

The HCoh+,− model is very special, in that although it is nondegenerate, it is also not
faithful (i.e. it identifies the two proofs in Example 2.2; see also Remark 4.4 ). Hence, we wish
to point out that full completeness implies a Läuchli-style weakly full completeness theorem,
which is an important property of models, independently of questions of faithfulness:

Corollary 7.17 (w.f.c. of pDinat-HCoh+,−) Given a sequent A ` B in a legal pattern,
if pDinat-HCoh+,−( A , B ) 6= ∅, then A ` B is provable in MLLP + Mixp.

7.3 The Main Theorem: Full Completeness of pDinat-GHCoh+,− for MLLP
In this section we extend Theorem 7.15 to obtain our main theorem: the full completeness of
pDinat-GHCoh+,− for the theory MLLP of polarized MLL. The main idea is to use double
gluing to kill-off the Mixp rule. We assume the reader has read Subsection 5.3 on polarized
double gluing categories.

7.3.1 Elimination of Polarized Mix
A crucial property of the double gluing construction GC is that while many properties of
the underlying category C are preserved (e.g. being a MALL category), some unwanted
morphisms of the base category C are killed off. A typical example of such a morphism is
the Mix map of C. In our previous work [10], double gluing over HCoh is used mainly to
kill the Mix rule, in order to obtain a pure MALL category. We remark that this situation
will also hold in the polarized case under an appropriate adaptation of the Mix rule.

Remark 7.18 (GC+,− and Mixp) GC+,− does not necessarily support the Mixp-rule of Def-
inition 7.14 even if C+,− does:

As an example of the above remark, let us consider a MLLP provable sequent `↑ 1G

as premises of Mixp, where 1G denotes the tensor unit for GC+,− given by 1G =
(1, {id1}, C(1,1)). Then the interpretation `↑1G, ↑1G of the lower sequent of Mixp is
given by the following module

1G−→o ↑1G
.................................................

............
.................................. ↑1G = (↑1 .................................................

............
.................................. ↑1, GC(↓⊥G, ↑1G), C(1,1)⊗ C(1,1))
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If this module is empty, then Mixp is not valid for these premises. Consider a sufficient
condition for emptiness: first, if the set of copoints GC(↓ ⊥G, ↑ 1G) of the above target is
empty, then the module is empty. Second, given that (↓⊥G)p = C(1,1) and (↑1G)p = {id1},
the copoint is empty if the following holds:

C(1,1) 6= {id1} (13)

In the non-polarized case the condition (13) is known to be also a necessary condition for a
double gluing category to not support Mix. This is known from one of the equivalent forms
of Mix, for example, one of A⊗ B ` A .................................................

............
.................................. B or ⊥ ` 1. However in the polarized case, both

of these equivalent forms violate polarized restrictions on provable sequents.

7.3.2 The Main Theorem: MLLP Full Completeness of pDinat-GHCoh+,−
In what follows, we concentrate our attention on GC+,− with C+,− = HCoh+,−. First note
that GHCoh+,− does not support Mixp since it satisfies the sufficient condition (13). Starting
from this, we shall refine the previous full completeness of Theorem 7.15 for HCoh+,− to
GHCoh+,−.

Second, we note that the canonical depolarization U of Proposition 6.4 is lifted via double
gluing; i.e.,

Proposition 7.19 (From GHCoh+,− to GCoh) There is always a canonical “depolariz-
ing” map U which acts as an identity map such that U(ρ) = ρ:

U : pDinat-GHCoh+,− - Dinat-GCoh

Then we remark

Remark 7.20 Dinat-GCoh is fully complete for MLL (without Mix) (see Proposition 3.17
of Blute-Hamano-Scott [10]). Hence in Proposition 7.19 if a dinat ρ is definable from MLLP
formula, its depolarization U(ρ) is a denotation of an MLL proof.

The following full completeness theorem is the main theorem of this paper. It refines
Theorem 7.15 of the previous subsection by eliminating the Mixp rule:

Theorem 7.21 (MLLP full completeness of pDinat-GHCoh+,−)
pDinat-GHCoh+,− is fully complete for MLLP, i.e. every polarized dinat in pDinat-GHCoh+,−
is the denotation of an MLLP proof.

Proof. We shall prove that every polarized dinat ρ is a denotation of an MLLP proof by
double induction on (mρ, nρ) where mρ is the number of ↓’s and ↑’s in the type of ρ and
nρ is the number of connectives outside any scopes of ↓ in the type of ρ. In the proof U
denotes the canonical depolarization of Proposition 7.19. Note that as in Theorem 7.15, the
polarized dinats are assumed to be between definable functors with legal patterns.
(Base Case) This is the case where the type of ρ is MLL. Since U(ρ) is ρ in this case, the
theorem is by MLL full completeness of Dinat-GCoh (see Remark 7.20).

For the induction case below, we begin by observing the following:
Every polarized dinat ρ in pDinat-GHCoh+,− is also in pDinat-HCoh+,− via the canonical
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forgetful functor on double gluing. Thus Proposition 7.12 holds for ρ. Moreover from Corol-
lary 7.16, every ρ is associated with an MLLP proof-structure Θρ.

7 Let U(Θρ) denote the
resulting MLL proof-structure from a MLLP p-s Θρ by forgetting {↑, ↓}-links together with
↓-boxes. Then U(Θρ) coincides with the MLL p-s ΘU(ρ) associated with GCoh-dinat U(ρ).
In particular ΘU(ρ) is connected since U(ρ) is a denotation of an MLL proof.

(Induction case) Let Θ1, . . . , Θn be outermost ↓-boxes or axioms in Θρ so that Θρ is obtained
from a union of Θ1, . . . , Θn by drawing {.................................................

............
.................................. ,⊗, ↑}-links hereditarily below some Θi: If there

is no such link hereditarily below, then since ΘU(ρ), which is U(Θρ), is connected, n must be
1 and Θ1 (which is Θρ itself) is a ↓-box. In this case we can always eliminate the principal
↓-link to obtain a dinat of a smaller size. Hence in what follows, we assume there must exist
at least one such link hereditarily below some Θi (outside of all Θ1, . . . , Θn). The proof goes
through the following three steps:
(Step 1) If there is a bottom-most .................................................

............
.................................. -link, we can eliminate it to obtain a dinat of smaller

size.
(Step 2) If there is a bottom-most ⊗-link after Step 1, Proposition 7.12 says that the ⊗ splits
to obtain two dinats of smaller sizes.
(Step 3) After Step 1 and 2, all bottom-most links hereditarily below Θ1, . . . , Θn are ↑.
Since these ↑-links are outside Θ1, . . . , Θn, any of them can be removed to obtain a dinat of
a smaller size. 2

Finally, we wish to point out that full completeness implies a Läuchli-style weakly full
completeness theorem, which is an important property of models independently of faithful-
ness:

Corollary 7.22 (w.f.c. of pDinat-GHCoh+,−) If pDinat-GHCoh+,−( A , B ) 6= ∅,
then A ` B is provable in MLLP.

7.4 Polarized Gustave functions in HCoh+,− and the failure of full completeness
for MALLP

This section proves a curious property of HCoh+,−, in contrast to ordinary hypercoherences
HCoh, which directly implies that our full completeness theorems Theorem 7.15 and The-
orem 7.21 for polarized dinaturals cannot be extended to include additives; i.e., our results
cannot be extended to larger fragments of MALLP than just MLLP.

Ehrhard’s category HCoh is a refinement of Girard’s original Coh. One of the most
important reasons for this is that HCoh kills Gustave functions in Coh (See [10]). Gustave
functions are analogs of parallel-or in domain theory (see [3]) and are intimately related to
studies of sequentiality [18]. But contrary to this phenomenon in usual linear logic, in the
polarized hypercoherences defined in previous subsections, a polarized version of a Gustave
function turns out to be a morphism of HCoh+,−. This directly implies that HCoh+,− is
not fully complete for MALLP (cf. Corollary 7.27).

Let us start this subsection by considering the functor ↓↑ :

Proposition 7.23 The functor ↓↑ :HCoh−→ HCoh+ satisfies:

7Our use of proof-structures is not essential in that we do not use O. Laurent’s correctness criterion. We
also have an alternative direct proof without associating p-s’s, similar to the proof of Theorem 7.15.
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• ↓↑ preserves linear connectives ⊗, .................................................
............
.................................. ,⊕, &.

• ↓↑ forgets the polarity change connectives ↓ and ↑: i.e., for all E ∈ HCoh,

↓↑(↓E) = ↓↑(E) (14)

↓↑(↑E) = ↓↑(E) (15)

Proof. The preservation of linear connectives is directly checked by using Proposition 5.15,
in particular the characterization (11) for u to belong to Γ(↓↑E). Thus we go to:

Proof of (14):
(⊆) Obvious by applying the functor ↓↑ to the counit ↓E −→ E of the adjunction (1).
(⊇) Let us apply the adjunction (1) to the assertion:

↓↑(E) −→↓↑(↓E)

↓↑(E) −→↑(↓E)
Inj+a ↓

Thus the assertion is equivalent to

Γ∗(↓↑E) ⊆ Γ∗(↑↓E)

Let us calculate (where we write ⊆≥2 to mean “subset of cardinality ≥ 2”).

u ∈ Γ∗(↓↑E) ⇔ ∀u′ ⊆≥2 u u′ ∈ Γ∗(↑E)
⇔ ∀u′ ⊆≥2 u ∃u′′ ⊆ u′ u′′ ∈ Γ∗(E)

v ∈ Γ∗(↑↓E) ⇔ ∃v′ ⊆≥2 v v′ ∈ Γ∗(↓E)
⇔ ∃v′ ⊆≥2 v ∀v′′ ⊆≥2 v′ v′′ ∈ Γ∗(E)

From this u ∈ Γ∗(↓ ↑E) implies that ∀u′ ⊆ u(#u = 2 ⇒ u′ ∈ Γ∗(E)). But this implies
u ∈ Γ∗(↑↓E) by taking (in the above expression) v, v′ to be u itself. End of Proof of (14)

Proof of (15): This is obvious since ↑ ↑ =↑ , which implies the assertion by applying the
functor ↓ . End of Proof of (15)

2

The following lemma is crucial in showing that Polarized Gustave is in HCoh+,−.

Lemma 7.24 For every hypercoherence E ∈ HCoh,

Coh(1, ↓↑E) ⊆ HCoh(1, ↑E)

Proof. From Proposition 5.15 and of the following natural transformation

↓↑ −→ ↑

which is derived from the counit (4) of the adjunction (1)

↓ −→ id

by applying the functor ↑ . 2
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Proposition 7.25 (3-ary Polarized Gustave in HCoh+,−) The following is a morphism
in HCoh+,−

R : 1 −→ ↑(↓(X&Y )⊕ Z), ↑(↓(Y & ↑Z)⊕ ↓X), ↑(↓(↑Z&X)⊕ ↓Y )

where Z = X⊥ ⊗ Y ⊥ and X, Y ∈ HCoh−.

R := {((1, a1), (2, a3), (3, a2)) | a1 ∈|E1 | ∧ a2 ∈|E2 | ∧ a3 = (a1, a2)}
∪

{((3, a3), (1, a2), (2, a1)) | a1 ∈|E1 | ∧ a2 ∈|E2 | ∧ a3 = (a1, a2)}
∪

{((2, a2), (3, a1), (1, a3)) | a1 ∈|E1 | ∧ a2 ∈|E2 | ∧ a3 = (a1, a2)}
∪

{((1, a1), (1, a2), (1, a3)) | a1 ∈|E1 | ∧ a2 ∈|E2 | ∧ a3 = (a1, a2)}
∪

{((2, a2), (2, a3), (2, a1)) | a1 ∈|E1 | ∧ a2 ∈|E2 | ∧ a3 = (a1, a2)}

Proof. First, the codomain of R is of the form

↑E1
.................................................

............
.................................. ↑E2

.................................................
............
.................................. ↑E3,

which is equal to the following, by Lemma 5.16:

↑(E1
.................................................

............
.................................. E2

.................................................
............
.................................. E3)

Second, on the other hand, by Proposition 7.23, we have the following for X, Y, Z ∈ Coh;

↓↑(E1
.................................................

............
.................................. E2

.................................................
............
.................................. E3) = ((X&Y )⊕ Z) .................................................

............
.................................. ((Y &Z)⊕X) .................................................

............
.................................. ((Z&X)⊕ Y ).

It is known in MALL that R is a Gustave function in Coh (See Proposition 2.11 and the
following paragraph in Blute-Hamano-Scott [10]); i.e.,

R ∈ Coh(1, ((X&Y )⊕ Z) .................................................
............
.................................. ((Y &Z)⊕X) .................................................

............
.................................. ((Z&X)⊕ Y ))

So the assertion follows from Lemma 7.24. 2

We then have

Proposition 7.26 The Gustave R in Proposition 7.25 is not the denotation of a MALLP
proof.

Proof. Suppose for contradiction that R is a denotation of a MALLP proof π. From the cut-
elimination theorem of MALLP and Proposition 4.2 (2), we may assume that π is cut-free.
Thus the last rule of π must be ↑, hence its premise must have a focalized ⊕. Then, from
the focalization property of MALLP (Proposition 2.4), the second last rule of π must be ⊕i

with some i ∈ {1, 2} in order to introduce the focalized ⊕. However this contradicts the fact
that R contains both elements from the 1st and 2nd components of any possible focalized ⊕
(i.e. R cannot factor through any ⊕i). 2
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This proposition implies the following corollary:

Corollary 7.27 HCoh+,− is not fully complete for MALLP.

Remark 7.28 (Extending Gustave to dinaturals and double gluing) The above Gus-
tave R is also a morphism of the double gluing category GHCoh+,− of Section 5.3. On the
otrher hand, the above Gustave R extends to the stronger framework of functoriality of
Section 6, in that R = RX,Y actually determines a polarized dinatural family for HCoh+,−.
Moreover this is still the case for the double gluing category.

From this remark, similarly as above, we have more generally

Corollary 7.29

• Neither HCoh+,− nor pDinat-HCoh+,− is fully complete for MALLP +Mixp.
• Neither GHCoh+,− nor pDinat-GHCoh+,− is fully complete for MALLP.

8 Some Remarks on Faithfulness
We say that a polarized category C+,− is faithful when π1 6= π2 for “different” MALLP
proofs π1 and π2. Of course, to make this problem precise, we need a good theory of equations
between MALLP proofs. In what sense do proofs form (the morphisms of) a category? Let
us consider the problem of categories of additive proof nets. These have been looked at in
various works of Cockett and Seely [9, 15] as well as recent work on multiplicative unitless
categories of proof nets of Hughes, Houston and Schalk [27] (and the literature cited there)
aiming towards the additive case. See also the recent book of Došen and Petrić ([17], Chapter
4).

At the additive level, the advantage of MALLP to nonpolarized MALL is that O. Laurent’s
nets do form a category (using composition as cut) since they obey both Church-Rosser and
Strong Normalization, as well as having a good theory of units. In fact they form a pre-
∗-autonomous polarized framework in our sense, although they do not form a polarized
∗-autonomous category. Even here, however, the exact notion of equations is delicate; for
example, to have genuine products we must insist on the equations of surjective pairing.
However, once having agreed on such equations, this permits us to precisely define the
problem of faithfulness of the interpretation − of a syntactic proof net category into any
concrete polarized model C+,−.

We are interested in faithfulness of − and finding conditions guaranteeing it, especially
when the categories C+,− are the concrete examples of the previous sections. Let us begin by
presenting a necessary criterion for faithfulness. This criterion is concerned with descending
sequences of subcategories of C− and C+ containing Fixε and Fixη respectively.

Definition 8.1 (Decreasing sequence { (↓↑)nC }n≥1 of subcategories containing Fixη)
In C+ (resp. C−), starting from ↓↑C (resp. ↑↓C), there is a decreasing sequence of subcate-
gories containing Fixη (resp. Fixε):

↓↑C ⊇ (↓↑)2C ⊇ · · · ⊇ (↓↑)nC ⊇ · · · · · · ⊇ Fixη

(resp. ↑↓C ⊇ (↑↓)2C ⊇ · · · ⊇ (↑↓)nC ⊇ · · · · · · ⊇ Fixε)
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The above sequence is said to terminate if the following holds;

(↓↑)nC = (↓↑)n+1C for some n. (16)

Equivalently,

(↓↑)n = (↓↑)n+1 for some n,

where (↓↑)m is a functor (↓↑)m : C → C+ defined inductively on m.

We should note that the sequence in Definition 8.1 does not terminate in general, because
in the syntax of MALLP there is no “provable isomorphism” between the two formulas (↓↑
)n+1P and (↓↑)nP ; this means no cut-free proof of an η-expansion of the identity axiom
P ` P can be obtained from the composition of any two proofs π1 : (↓↑)n+1P ` (↓↑)nP and
π2 : (↓↑)nP ` (↓↑)n+1P using cut-elimination. This in particular implies that Fix η (resp.
Fix ε) does not coincide with any (↓↑)nC (resp. (↑↓)nC ), hence with C+ (resp. C−)

Proposition 8.2 (A criterion for faithfulness) A necessary condition for a categorical
model C+,− to be faithful for MALLP is that the above infinite sequence of operations (↓↑)n

does not terminate, i.e. the negation of the above condition (16) holds. In particular, the
criterion is sufficient to distinguish the two proofs of Example 2.2.

Unfortunately all our concrete models in the previous sections are not faithful since they fail
to satisfy this criterion. More precisely we have:

Remark 8.3 (↑↓-Sequences in our examples terminate)

- ↑ and ↓ act as the identity on morphisms of HCoh+,−, GHCoh+,− and (G2C)+,−,
hence the sequence is trivial.

- (↑↓)2 = (↑↓)1 for Chu+,−, hence the sequence terminates.

This remark leads to the question of whether one can find any syntax-free example of a
polarized (or even multiplicative fragment) category which is faithful. This question will be
studied in our paper [25] in preparation. The fundamental idea of [25] is to first find a ∗-
autonomous category C with (co-)products so as to interpret ↓ and ↑ by products/coproducts:

↓N := ⊥&N and ↑P := 1⊕ P (17)

Second, we then impose a certain uniformity condition on C-morphisms so as to build an
MLLP subcategory in C, in particular to obtain adjunctions Inj+ a ↓ and ↑ a Inj− under the
interpretation (17). In [25] this will be done when C is HCoh and we impose a uniformity
condition from the (external use of) additive softness of HCoh. We note that under the
interpretation of (17), there is a direct correspondence between ⊕-softness of MALL and
↑-softness in MLLP.

9 Conclusion, Other Results and Open Problems

We have given a general definition of polarized models for Olivier Laurent’s theory MALLP,
have introduced various concrete examples, and have begun investigating the problem of full
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completeness of such models. As a first step towards general full completeness theorems, we
have restricted ourselves in this paper to the multiplicative fragment MLLP, and shown the
full completeness for that fragment by using the polarized hypercoherence model.

The most important question is how to extend the above results to MALLP. On the
one hand, we know pDinat-GHCoh+,− cannot be fully complete for MALLP because of
the existence of polarized Gustave Functions (cf. Section 7.4). However since the type of
Gustave is a provable sequent for MALLP, there arises:

Question 9.1 Is pDinat-GHCoh+,− weakly fully complete for MALLP ?

We can also ask which other categorical structures pDinat- C are fully or weakly fully com-
plete for MALLP. This will be the subject of future work.

Let us also mention a fact we know about (G2C)+,− with C = HCoh:

Theorem pDinat-(G2HCoh)+,− is polarized n-soft for MALLP, for all n ≥ 1.

The proof is similar to the proofs of ↑-softness of pDinat-HCoh+,− for MLLP in Section 7.2,
but the proof is more involved in the presence of additives, as it uses the result of our paper
[10] that Dinat-GHCoh is fully complete for MALL. This will appear in a future paper.
Since polarized softness is a key property necessary for full completeness, the result suggests
the following:

Question 9.2 Given a fully complete model for MALL (e.g. Dinat-GHCoh), is there a
way of constructing from it a fully complete polarized model for MALLP ?

Our polarized multiplicative full completeness in C+,−:=HCoh+,− is carried out by reduc-
tion to non-polarized multiplicative full completeness in Coh, which in this case happens to
be a fixed point subcategory Fix ε for an adjoint equivalence ⇑a⇓. So there arises a natural
question:

Question 9.3 (reducing polarized full completeness to the non polarized case) Is
there an abstract proof of a polarized full completeness theorem (for either MALLP or MLLP)
for a general polarized category C+,− by reduction to a non-polarized full completeness the-
orem (for MALL or MLL, resp) using the associated structure Fix ε ?

An answer to this question may clarify how to understand abstractly our full complete-
ness proofs for HCoh+,− and GHCoh+,− and hence how to generalize our polarized full
completeness to a more abstract level.

Finally, the questions of faithfulness mentioned in the last section, and also their connections
to various categories of polarized proof nets, is the subject of future work.
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10 Appendices
10.1 Appendix 1: On Polarized Categories à la M. Barr
M. Barr’s original monograph [7] introduced ∗-autonomous categories by a slightly different
route than in the recent linear logic literature (e.g. [8, 12]). Ironically, his approach is much
closer to polarized linear logic and forms the basis of what we here call a polarized category.

The following definition is a slightly modified version of Barr’s pre-∗-autonomous situation
[7], pp. 15-16. (see the discussion in Remark 10.6 below).

Definition 10.1 A polarized category, denoted C+,−, consists of the following data:
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(i) A category C with two full subcategories C+ and C−, where C+ is called the positive
category and C− is called the negative category.

(ii) There is a contravariant equivalence of the two subcategories:

(−)⊥ : (C+)op ∼=−→ C−

If we denote the inverse of ( )⊥ by ( )#, the equivalence induces natural isomorphisms
P ∼= P⊥# and N ∼= N#⊥ for every positive object P ∈ C+ and every negative object
N ∈ C−.

(iii) There is a functor −◦
−◦ : (C+)op × C− −→ C−

and an object 1 ∈ C+ satisfying:

1−◦N ∼= N (18)

C(1, P −◦N) ∼= C(P, N) (19)

P1 −◦ (P2 −◦ P⊥
3 ) ∼= P3 −◦ (P2 −◦ P⊥

1 ) (20)

(iv) C− (resp. C+) form reflective (resp. coreflective) subcategories of C with ↑ (resp. ↓)
the reflector (resp. coreflector). That is, there are functors ↑: C → C− and ↓: C → C+

such that ↑ is left adjoint to the inclusion Inj− : C− ↪→ C and ↓ is right adjoint to the
inclusion Inj+ : C+ ↪→ C. Thus we have:

C(Inj+(P ), A) ∼= C+(P, ↓A) (21)

C(A, Inj−(N)) ∼= C−(↑A, N) (22)

where P ∈ C+, A ∈ C and N ∈ C−.

The units and counits of the adjunctions (21) and (22) are the same as in Definition
3.1 and so is the duality of the adjunctions.

The above (21) and (22) may be described by the following diagram:

C−
�

↑
⊥

⊂

Inj−
-
C

�
Inj+

⊃
⊥
↓

- C+ (23)

Let us write ⇑ for ↑ o Inj+ and ⇓ for ↓ o Inj− (composition of adjoints). Then we may
write the above diagram by:

C−
�

⇑
⊥
⇓

- C+

The units and the counits of this adjunction are the same as in Definition 3.1 and so
is the definability of the adjunctions.
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(v) The functors ⇑ and ⇓ are DeMorgan dual to each other; i.e. there are natural
isomorphisms

(⇓ N)⊥ ∼= ⇑ (N#)

(⇑ P )# ∼= ⇓ (P⊥)

for all N ∈ C− and P ∈ C+ .

Remark 10.2 We follow Barr’s notation in denoting the inverse of (−)⊥ by (−)#. In the
case of a polarized ∗-autonomous category as in Definition 3.1 (so the ambient category C is

∗-autonomous) the functor (−)⊥ : (C+)op
∼=−→ C− is induced by a contravariant duality (−)⊥

on C. In this case, (−)# : (C−)op
∼=−→ C+ is also induced by the same ambient (−)⊥ and

indeed we can identify # =⊥ in this case. This includes the case of the syntax of MALLP
(where we can define a strictly involutive negation on all formulas as in the remarks at the
end of Section 2) as well as the case of all the examples of Section 5 above. For more details,
see also Remark 10.6 below.

The functors −◦ together with ( )⊥ and ( )# induce monoidal structures ⊗ and .................................................
............
.................................. re-

spectively on C+ and C−:

Proposition 10.3 (monoidal structures on C+ and C−)

• On the positive category C+, the functors −◦, ( )⊥, and ( )# induce a symmetric
monoidal structure with tensor product ⊗ defined by:

P ⊗Q := (P −◦Q⊥)#

Note that 1 in C+ becomes a unit for the tensor.

• Dually, on the negative category C−, the functors −◦, ( )⊥ and ( )# induce a symmetric
monoidal structure with cotensor .................................................

............
.................................. defined by:

M .................................................
............
.................................. N := M# −◦N

Note that ⊥ := 1⊥ in C− becomes a unit for the cotensor.

This weaker form of pre-∗-autonomous situation in our definition of C+,− implies the follow-
ing:

Proposition 10.4 (closedness of ⊗ in the pattern + → −) For objects P, Q ∈ C+ and
N ∈ C−, there exists a natural bijection between hom-sets of C from positive to negative
objects:

C(P ⊗Q,N) ∼= C(Q, P⊥ .................................................
............
.................................. N) (24)

The above suffices for understanding MLLP. For MALLP, we adjoin additional structure.

Definition 10.5 (Polarized categories with Additives) Let C+,− be a polarized cat-
egory. We adjoin additives by assuming the following additional structure:
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• The negative category C− has products, denoted &, with unit T .

• C− has a natural distributive law

M .................................................
............
.................................. (N&L) ∼= (M .................................................

............
.................................. N)&(M .................................................

............
.................................. L) (25)

• C+ has a natural distributive law

P ⊗ (Q⊕R) ∼= (P ⊗Q)⊕ (P ⊗R) (26)

where ⊕ denotes the induced coproduct in C+ via the dualizing functor, given by
P1 ⊕ P2 := (P⊥

1 &P⊥
2 )# with its unit 0 = T#.

Finally we remark that in the case when the ambient category C is ∗-autonomous, as in our
paper above, we may take ⊥= # and the distributive laws in C− and C+ are consequences
of ∗-autonomy.

Remark 10.6 (On Barr’s pre-∗-autonomous situations) Let us compare our defini-
tion of polarized category to Barr’s pre-∗-autonomous situation (cf. Def 4.6 of pg. 16 of
[7]). Condition (i) is the same. Conditions (ii) and (iii) of the above definition of polarized
category are a slightly weaker form of Barr’s, which we explain below. Finally, conditions (iv)
and (v) are slightly stronger, since we demand the full subcategories of negative and positive
objects be reflective (resp. coreflective). This latter condition corresponds to the polarity
changing operations of O. Laurent’s polarized logics, and is crucial to our framework.

Re conditions (ii) and (iii), the only one of Barr’s conditions missing here is C(P⊥, Q) ∼=
C(Q⊥, P ) for P, Q ∈ C+, which is not necessary in our framework since the pattern of
these maps is − → +, which is illegal, i.e. is not allowed (by the focussing property) in
MALLP proofs (See Remark 3.2). Barr [7], pp. 15-16, extends the contravariant equivalence

(−)⊥ : (C+)op
∼=−→ C− to the union C+∪C−. In particular, using Barr’s notation, if we denote

the inverse of (−)⊥ by (−)# : (C−)op
∼=−→ C+, Barr proves that (−)⊥ and (−)# coincide on

C+ ∩ C−, using various coherence conditions (see (4.7) of [7]) which use the illegal pattern
above in their proof. The coincidence of (−)⊥ and (−)# on C+ ∩ C− is necessary for the

equivalence (−)⊥ : (C+)op
∼=−→ C− to extend to the union C+ ∪C−. In our setting, the functor

( )⊥ and its inverse ( )# need not coincide on the intersection of the two subcategories C+

and C−. However, for the purposes of modelling MALLP in this paper (where the ambient
category C is ∗-autonomous), we do not need this additional structure.

Notice this does suggest more general polarized categories, with two “negations”, satis-
fying P⊥# ∼= P and N#⊥ ∼= N , along with a more general polarized logical syntax. This
also suggests that some of the more concrete topological examples from Barr’s monograph
may serve as models of polarized logics. These issues are currently under investigation.

10.2 Appendix 2: Double Gluing
We recall the definition of double gluing from our paper [10], following Tan and Hyland-
Schalk [41, 30].

Let C = (C,⊗,1, (−)⊥) be a ∗-autonomous category. Let H denote the covariant
points functor C(1,−) : C −→ Set and K denote the contravariant copoints functor
C(−,1⊥) ∼= C(1, (− )⊥) : Cop −→ Set.
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Definition 10.7 The category GC, the double gluing category of C, has objects triples A =
(A,Ap,Acp) where A := |A| is an object of C, where Ap ⊆ H(|A|) = C(1, A) is a set of
points of A and Acp ⊆ K(|A|) = C(A,1⊥) ∼= C(1, A⊥) is a set of copoints of A .

A morphism f : A −→ B in GC is a morphism f : |A| −→ |B| in C such that Hf : Ap −→
Bp and Kf : Bcp −→ Acp are well-defined Set-maps so that f(Ap) ⊆ Bp and f⊥(Bcp) ⊆ Acp;
i.e., the following conditions hold:

(point condition:) ∀α ∈ Ap [α]f ∈ Bp

(copoint condition:) ∀β ∈ Bcp f [β] ∈ Acp

Given f : A −→ B and g : B −→ C in GC, the composition gf : A −→ C is induced
from the underlying composition in C. Similarly, the identity morphism on A is given by the
identity morphism on |A| in C.

Fact 10.8 For any ∗-autonomous category C, GC is a ∗-autonomous category.

Proof. We define ( )⊥ (linear negation) by the formula:

A⊥ = (|A|⊥,Acp,Ap)

We define the tensor product A⊗ B as follows:

A⊗ B = (|A| ⊗ |B|, (A⊗ B)p, (A⊗ B)cp)

where
(A⊗ B)p = {α⊗ β|α ∈ Ap, β ∈ Bp}
(A⊗ B)cp = GC(A,B⊥)

Note that this last equality makes sense, because:

GC(A,B⊥) ⊆ C(|A|, |B|⊥) ∼= C(|A| ⊗ |B|,1⊥)

We also define the unit for the tensor product by 1G = (1, {id1}, C(1,1)).
We thus obtain that GC is ∗-autonomous. 2

In fact, if C has products (thus coproducts), so does GC, as follows:

Definition 10.9 (Products and Coproducts in GC)
Product

A&B = (|A|&|B|, (A&B)p, (A&B)cp)

where
|A|&|B| is the product in C
(A&B)p = {α + β | α ∈ Ap and β ∈ Bp}
(A&B)cp = Acp + Bcp where + denotes the disjoint union

Coproduct
A⊕ B = (|A| ⊕ |B|, (A⊕ B)p, (A⊕ B)cp)

where
|A| ⊕ |B| is the coproduct in C
(A⊕ B)p = Ap + Bp

(A⊕ B)cp = {α + β | α ∈ Acp and β ∈ Bcp}

Finally, the evident forgetful functor U : GC → C is ∗-autonomous with left and right
adjoints.
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