Coordinatizing MV-Algebras (In honour of Prakash's 60th birthday) May 23-25, 2014

Philip Scott University of Ottawa & Informatics, U. Edinburgh (Joint work with Mark Lawson, Heriot-Watt)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Précis

- Mundici (1986) surprisingly connected up MV-algebras (arising from many-valued logics) with G. Elliott's program for classification of AF C*-algebras via countable dimension groups.
- In 1990's, the algebraic theory of quantum effects in physics led to *Effect Algebras* developed by Bennett & Foulis and the Eastern European school: Jencova, Pulmannova, et. al.

Theorem [J & P, 2008] There are three categorical equivalences: unital AF C*-algebras \cong countable dimension effect algebras \cong countable dimension groups.

What do we want to do?

• Find a setting that encompasses both frameworks, based on Inverse Semigroup Theory.

• Connect this work up with recent works on noncommutative Stone-Duality, étale groupoids, pseudogroups, tilings, formal language theory, etc. (Lawson, Lenz, Resende, et. al.)

• Generalize AF C*-algebra techniques (Bratteli diagrams) to develop a theory of AF inverse monoids (e.g. the dyadic or CAR Inverse Monoid) and connect it up with effect algebras.

• cf. von Neumann's coordinatization of projective geometry

Theorem (Coordinatization Theorem, L-S)

Let \mathcal{A} be a denumerable MV algebra. Then there exists a boolean inverse "coordinatizing" monoid S s.t. Ideals $(S) = S/\mathcal{J} \cong \mathcal{A}$.

Here \mathcal{J} is the standard relation: $a\mathcal{J}b$ iff SaS = SbS

Some Mundici Examples (1991)

Denumerable MV Algebra	AF C*-correspondent
{0,1}	\mathbb{C}
Chain \mathcal{M}_n	$Mat_n(\mathbb{C})$
Finite	Finite Dimensional
Dyadic Rationals	CAR algebra of a Fermi gas
$\mathbb{Q}\cap [0,1]$	Glimm's universal UHF algebra
Real algebraic numbers in [0,1]	Blackadar algebra <i>B</i> .
Generated by an irrational $ ho \in [0,1]$	Effros-Shen Algebra \mathfrak{F}_p
Finite Product of Post MV-algebras	Continuous Trace
Free on \aleph_0 generators	Universal AF C*-algebra ${\mathfrak M}$
Free on one generator	Farey AF C*-algebra \mathfrak{M}_1 .
	Mundici (1988)

Some Mundici Examples (1991): Coordinatizations

Denumerable MV Algebra	AF C*-correspondent
$\{0,1\}$	C
Chain \mathcal{M}_n	$\mathit{Mat}_n(\mathbb{C})$
Finite	Finite Dimensional
Dyadic Rationals	CAR algebra of a Fermi gas
$\mathbb{Q}\cap [0,1]$	Glimm's universal UHF algebra
Real algebraic numbers in [0,1]	Blackadar algebra <i>B</i> .
Generated by an irrational $ ho \in [0,1]$	Effros-Shen Algebra \mathfrak{F}_p
Finite Product of Post MV-algebras	Continuous Trace
Free on \aleph_0 generators	Universal AF C*-algebra ${\mathfrak M}$
Free on one generator	Farey AF C*-algebra \mathfrak{M}_1 .
	Mundici (1988)

Łukasiewicz (1878-1956) introduced many-valued logics in the 1920's. What are they? In brief:

▶ "Fuzzy" logics \mathcal{L} with truth values in [0,1] (also related ones with truth values in $\mathbb{Q} \cap [0,1]$ or $\mathbb{Q}_{Dyad} \cap [0,1]$).

Finite Łukasiewicz logics \mathcal{L}_n , with truth values in $\{0, \frac{1}{n-1}, \frac{2}{n-1}, \cdots, \frac{n-2}{n-1}, 1\}.$

Łukasiewicz Logics and their Algebras

- Studied by Polish logicians in 1920's, including Lesniewski, Tarski (in parallel with Post (1921) in U.S.)
- ▶ 1940's & early 1950's: Rosenbloom, Rosser, McNaughton.
- Mid-1950's: major advances by CC. Chang: MV-algebras, Chang Completeness Thm, lattice ordered abelian groups.
- From mid-1980's: large body of work by D. Mundici, et.al.
 - MV-Algebras & AF C*-algebras.
 - Connections to works of Elliott, Effros, Handleman: dimension groups and Grothendieck's K₀ functor.
 - States & probability distributions.
- Sheaf Representation of MV-Algebras: Dubuc/Poveda (2010)
- Łukasiewicz μ -calculus, Matteo Mio and Alex Simpson (2013)
- Morita Equivalence of MV-algebras (Caramello, 2014)

What are MV Algebras?

MV algebras are structures $\mathcal{M} = \langle M, \oplus, \neg, 0 \rangle$ satisfying:

- $\langle M, \oplus, 0 \rangle$ is a commutative monoid.
- ▶ ¬ is an involution: ¬¬x = x, for all $x \in M$.
- ▶ $1 := \neg 0$ is absorbing: $x \oplus 1 = 1$, for all $x \in M$.

$$\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x.$$

Writing $x \multimap y := \neg x \oplus y$, we can rewrite the last equation:

$$(x \multimap y) \multimap y = (y \multimap x) \multimap x$$

What are MV Algebras?

MV algebras are structures $\mathcal{M} = \langle M, \oplus, \neg, 0 \rangle$ satisfying:

- $\langle M, \oplus, 0 \rangle$ is a commutative monoid.
- ▶ ¬ is an involution: ¬¬x = x, for all $x \in M$.
- ▶ $1 := \neg 0$ is absorbing: $x \oplus 1 = 1$, for all $x \in M$.

$$\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x.$$

Writing $x \multimap y := \neg x \oplus y$, we can rewrite the last equation:

$$(x \multimap y) \multimap y = (y \multimap x) \multimap x$$

Notation: $x \otimes y := \neg (\neg x \oplus \neg y)$ $x \leq y$ iff for some $z, x \oplus z = y$ iff $x \multimap y = 1$

Facts:(i) \leq is a partial order.(ii) \otimes is left adjoint to \neg , i.e. $x \otimes y \leq z$ iff $x \leq (y \neg z)$

Further MV Lattice Structure

Further Facts:

(i) Let
$$x \ominus y := x \otimes \neg y$$
. Then
 $x \leq y$ iff $x \ominus y = 0$ iff $y = x \oplus (y \ominus x)$
(ii) \ominus is left adjoint to \oplus , i.e. $x \ominus z \leq y$ iff $x \leq y \oplus z$

Lattice Structure ("Additives")

The order on an MV algebra determines a distributive lattice structure with 0, 1:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$x \lor y := (x \otimes \neg y) \oplus y = (x \ominus y) \oplus y x \land y := \neg (\neg x \lor \neg y)$$

Fundamental Example of an MV Algebra: [0,1]

For
$$x, y \in [0, 1]$$
, define:
1. $\neg x = 1 - x$
2. $x \oplus y = min(1, x + y)$
3. $x \otimes y = max(0, x + y - 1)$

Other models: similarly consider the same operations on:

•
$$\mathbb{Q} \cap [0, 1]$$
 and $\mathbb{Q}_{dyad} \cap [0, 1]$.

 ▶ Finite MV algebras M_n = {0, 1/(n-1), 2/(n-1), ..., n-2/(n-1), 1} (subalgebras of [0,1]). Note: M₂ = {0,1}.

Fact (Barr)

 $([0, 1], \otimes, \oplus, 1, 0, \neg)$ also forms a *-autonomous poset. Moreover, it has products (\land) and thus coproducts (\lor) .

Example 2: Lattice-Ordered Abelian Groups

- Let (G, +, -, 0, ≤) be a partially ordered abelian group, i.e. an abelian group with translation invariant partial order.
- ▶ If G is lattice-ordered, call G an ℓ -group, G⁺ its positive cone.
- ▶ If G is an ℓ -group and $t \in G$, then t + () preserves \vee and \wedge .
- If G is an ℓ-group, an order unit u ∈ G is an Archimedian element: ∀g ∈ G, ∃n ∈ N⁺ s.t. g ≤ nu.
- ▶ If G is an ℓ -group with order unit u, define the G-interval

 $[0, u]_G = \{g \in G \mid 0 \leqslant g \leqslant u\}$ (just a poset)

G-interval MV algebras

Example: $\Gamma(G, u) = ([0, u]_G, \oplus, \otimes, *, 0, 1)$ is an MV algebra, via: $x \oplus y := u \wedge (x + y)$ $x^* := u - x$ $x \otimes y := (x^* \oplus y^*)^*$ All previous examples $0 := 0_G$ and 1 := u are special cases

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G-interval MV algebras

Example: $\Gamma(G, u) = ([0, u]_G, \oplus, \otimes, *, 0, 1)$ is an MV algebra, via: $x \oplus y := u \wedge (x + y)$ $x^* := u - x$ $x \otimes y := (x^* \oplus y^*)^*$ All previous examples $0 := 0_G$ and 1 := u are special cases

Let \mathcal{MV} = the category of MV-algebras and MV-morphisms. Let $\ell \mathcal{G}_u$ be the category of ℓ -groups and order-unit preserving homs.

Theorem (Mundici, 1986)

 Γ induces an equivalence of categories $\ \ell \mathcal{G}_u \cong \mathcal{MV}$

... For every MV algebra A, there exists an ℓ -group G with order unit u, unique up to isomorphism, s.t. $A \cong \Gamma(G, u)$, and $|G| \leq max(\aleph_0, |A|)$.

Completeness Theorems for Łukasiewicz logic

Theorem (Chang Completeness, 1955-58)

- 1. Every MV algebra is a subdirect product of MV Chains.
- 2. An MV equation holds in [0, 1] iff it holds in all MV algebras.

Corollary (Existence of Free MV-Algebras)

The free MV algebra \mathcal{F}_{κ} on κ free generators is the smallest MV-algebra of functions $[0,1]^{\kappa} \rightarrow [0,1]$ containing all projections (as generators) and closed under the pointwise operations.

Theorem (McNaughton, 1950: earlier than Chang!)

The free MV algebra \mathcal{F}_n is exactly the algebra of McNaughton Functions: continuous, piecewise linear polynomial functions (in n vbls, with integer coefficients): $[0,1]^n \rightarrow [0,1]$.

Matrix algebras and AF C*-algebras:

(Notes on Real and Complex C*-algebras by K. R. Goodearl.)

- A finite dimensional C*-algebra is one isomorphic (as a *-algebra) to a direct sum of matrix algebras over C:
 ≃ M_{m(1)}(C) ⊕ · · · ⊕ M_{m(k)}(C).
- ► The ordered list (m(1), · · · , m(k)) is an invariant and determines A. We write A ≅ (m(1), · · · , m(k)).
- Any categories arise, with many notions of map!

Matrix algebras and AF C*-algebras:

(Notes on Real and Complex C*-algebras by K. R. Goodearl.)

- A finite dimensional C*-algebra is one isomorphic (as a *-algebra) to a direct sum of matrix algebras over C:
 ≃ M_{m(1)}(C) ⊕ · · · ⊕ M_{m(k)}(C).
- ► The ordered list (m(1), · · · , m(k)) is an invariant and determines A. We write A ≅ (m(1), · · · , m(k)).
- Any categories arise, with many notions of map!
- (Bratteli, 1972) An AF C*-algebra (approximately finite C*-algebra) is a countable colimit

$$\varinjlim (\mathcal{A}_1 \xrightarrow{\alpha_1} \mathcal{A}_2 \xrightarrow{\alpha_2} \mathcal{A}_3 \xrightarrow{\alpha_3} \cdots)$$

of finite-dimensional C*-algebras and *-algebra maps.

Bratteli showed AF C*-algebras have a standard form:

Matrix C*-algebras: standard maps

Consider matrix C*-algebras $\mathcal{A} = M_{m(1)}(\mathbb{C}) \oplus \cdots \oplus M_{m(k)}(\mathbb{C}).$

$$(A_1, \cdots, A_k) \mapsto (DIAG_{n(1)}(\cdots), \ldots, DIAG_{n(l)}(\cdots))$$

determined by $l \times k$ matrix (s_{ij}) s.t. $\sum_{j=1}^{k} (s_{ij}m(j)) = n(i)$, $1 \leq i \leq l$. The s_{ij} are sometimes called *partial multiplicities*.

Theorem (Bratteli)

Any AF C*-algebra is isomorphic (as a C*-algebra) to a colimit of a system of matricial C*-algebras and standard maps.

Bratteli introduced an important graphical language to handle the difficult combinatorics: Bratteli Diagrams.

Bratteli's Diagrams: a combinatorial structure

A Bratteli diagram as an infinite directed multigraph B = (V, E), where $V = \bigcup_{i=0}^{\infty} V(i)$ and $E = \bigcup_{i=0}^{\infty} E(i)$.

- Assume V(0) has one vertex, the *root*.
- Edges are only defined from V(i) to V(i+1). Vertices have weights on them.

 V(i) m(1) m(2) \cdots m(k)

 V(i+1) n(1) n(2) \cdots n(l)

Draw s_{ij} -many edges between m(j) to n(i). (Of course, for adjacent levels, the s_{ij} must satisfy the combinatorial conditions.)

Bratteli associated groups to labels m(i); the diagrams generate so-called dimension groups. We shall associate certain inverse semigroups.

K_0 : Grothendieck group functor **Ring** \rightarrow **Ab**

- ► A general functorial construction K₀(−). Gives a pre- or p.o.-abelian group K₀(A) for classes of structures A.
- ► Roughly, we construct a commutative monoid on isomorphism classes of idempotents in a category of idempotents (a kind of Karoubi envelope/A). E.g. say idempotents e ~ f iff there exists maps x : e → f and y : f → e in Karoubi(A) such that xy = e and yx = f. But how to add classes [e] + [f] =?
- ▶ E.g. $\mathcal{A} = \operatorname{ring.}$ Move to matrix ring over \mathcal{A} . Define "gen. idempotents" $E(\mathcal{A}) = \bigcup_{n=1}^{\infty} \{ \operatorname{idempotents} \text{ in } M_n(\mathcal{A}) \}$. If $e \in M_k$, $f \in M_n$, then $e \oplus f = Diag(e, f) \in M_{k+n}$ is an idempotent. $E(\mathcal{A})/\sim$ is commutative monoid. Want cancellative monoid (why?). Use *stably equiv. idempotents*: $e \approx f$ iff $e \oplus g \sim f \oplus g$ for some $g \in E(\mathcal{A})$. Get cancellative abelian monoid. Apply now the formal INT construction (like building \mathbb{Z} from \mathbb{N}). Get functor K_0 : **Rings** \rightarrow **Ab**.

K_0 : Grothendieck group for C*-algebras A

- Suppose A is a *-algebra. Now use self-adjoint idempotents (= projections): e = e^{*} = e². (Note if e ≠ 0, ||e|| = ||e^{*}|| = ||e||², so ||e|| = 1).
- For projections e, f ∈ A, e ^{*} f if for some w ∈ A, f ^w→ e in Karoubi(A), w^{*}w = f, ww^{*} = e. Note: e ^{*} f implies e ~ f.
- For C*-algebras A, again use matrices, using ^{*}, ^{*}⇒, and P(A) = ∪[∞]_{n=1}{projections in M_n(A)}. Next facts are increasingly hard to prove: see Goodearl's text:
- Prop: K₀ : C*-alg → Preord-Ab_u is a functor preserving colimits.
- ▶ Prop: If start with AF C*-algebra, K_0 : **AF** → **Po-Ab**_{*u*}.
- Prop: If A is an AF C*-algebra, then K₀(A) is a countable dimension group with an order unit.

(日) (同) (三) (三) (三) (○) (○)

AF C*-algebras & Mundici's Work

Approx. finite (AF) C*-algebras classified in deep work of G. Elliott (studied further by Effros, Handelman, Goodearl, et. al).

Theorem (Mundici)

Let $\ell AF_u = category \text{ of } AF\text{-}algebras, \text{ st } K_0(\mathcal{A}) \text{ is lattice-ordered}$ with order unit. Let $\mathcal{MV}_\omega = countable MV\text{-}algebras.$

We can extend $\Gamma : \ell \mathcal{G}_u \cong \mathcal{MV}$ to a functor $\hat{\Gamma} : \ell \mathbf{AF}_u \to \mathcal{MV}_\omega$,

$$\hat{\Gamma}(\mathcal{A}) := \Gamma(\mathcal{K}_0(\mathcal{A}), [1_{\mathcal{A}}])$$
(i) $\mathcal{A} \cong \mathcal{B}$ iff $\hat{\Gamma}(\mathcal{A}) \cong \hat{\Gamma}(\mathcal{B})$
(ii) $\hat{\Gamma}$ is full.

Introduced by Foulis & Bennet (1994) as an abstraction of the algebraic structure of self-adjoint operators with spectrum in [0,1] (called *quantum effects*). (See recent work of Bart Jacobs)

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (Using Kleene directed equality \succeq)

1.
$$a \oplus b \succeq b \oplus a$$
.

Introduced by Foulis & Bennet (1994) as an abstraction of the algebraic structure of self-adjoint operators with spectrum in [0,1] (called *quantum effects*). (See recent work of Bart Jacobs)

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (Using Kleene directed equality \succeq)

1.
$$a \bigoplus b \succeq b \bigoplus a$$
.
2. If $a \bigoplus b \downarrow$ then $(a \bigoplus b) \bigoplus c \succeq a \bigoplus (b \bigoplus c)$

Introduced by Foulis & Bennet (1994) as an abstraction of the algebraic structure of self-adjoint operators with spectrum in [0,1] (called *quantum effects*). (See recent work of Bart Jacobs)

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (Using Kleene directed equality \succeq)

1. $a \stackrel{\sim}{\oplus} b \succeq b \stackrel{\sim}{\oplus} a$. 2. If $a \stackrel{\sim}{\oplus} b \downarrow$ then $(a \stackrel{\sim}{\oplus} b) \stackrel{\sim}{\oplus} c \succeq a \stackrel{\sim}{\oplus} (b \stackrel{\sim}{\oplus} c)$ 3. $0 \stackrel{\sim}{\oplus} a \downarrow$ and $0 \stackrel{\sim}{\oplus} a = a$

(日) (同) (三) (三) (三) (○) (○)

Introduced by Foulis & Bennet (1994) as an abstraction of the algebraic structure of self-adjoint operators with spectrum in [0,1] (called *quantum effects*). (See recent work of Bart Jacobs)

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (Using Kleene directed equality \succeq)

1.
$$a \oplus b \models b \oplus a$$
.
2. If $a \oplus b \downarrow$ then $(a \oplus b) \oplus c \models a \oplus (b \oplus c)$
3. $0 \oplus a \downarrow$ and $0 \oplus a = a$
4. $\forall_{a \in F} \exists !_{a' \in F}$ such that $a \oplus a' = 1$.

Introduced by Foulis & Bennet (1994) as an abstraction of the algebraic structure of self-adjoint operators with spectrum in [0,1] (called *quantum effects*). (See recent work of Bart Jacobs)

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (Using Kleene directed equality \succeq)

Introduced by Foulis & Bennet (1994) as an abstraction of the algebraic structure of self-adjoint operators with spectrum in [0,1] (called *quantum effects*). (See recent work of Bart Jacobs)

An *Effect Algebra* is a partial algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (Using Kleene directed equality \succeq) Various axiomatizations, e.g.:

`

Some Examples of Effect Algebras

► Interval Effect Algebras: Let (G, G⁺, u) be an ordered abelian group with order unit u. Consider

$$G^+[0,u] = \{a \in G \mid 0 \leqslant a \leqslant u\}.$$

For $a, b \in G^+[0, u]$, set $a \stackrel{\sim}{\oplus} b := a + b$ if $a + b \leq u$; otherwise undefined. Also set a' := u - a.

- ▶ E.g.: Standard Effect Algebra $\mathcal{E}(H)$ of quantum system.
 - $G := \mathcal{B}_{sa}(H)$, (self-adj) bnded linear operators on H, $G^+ :=$ the positive operators. Let $\mathbb{O} =$ constant zero , $\mathbb{I} =$ identity. $\mathcal{E}(H) := G^+[\mathbb{O}, \mathbb{I}]$.
 - $A \in \mathcal{E}(H)$ represent unsharp measurements
 - ▶ Projections $\mathcal{P}(H) \subset \mathcal{E}(H)$ represent sharp measurements

(cf. S. Gudder: Sharp & Unsharp Quantum Effects): 4 kinds of prob./measurement theories

Effect Algebras of Predicates (B. Jacobs, 2012)

▶ Predicates in C: let C be a category with "good" coprods. Define Pred_C(X) := C(X, 1 + 1).

Proposition (Jacobs)

If C has coproducts satisfying some reasonable p.b. conditions, $Pred_{\mathcal{C}}(X), X \in C$, forms an effect algebra

Examples: (Discrete Distribution Monads, **SRel**_{*fin*}, etc.) $\mathcal{D}(X) = \{m \in [0,1]^X \mid m \text{ has finite support } \& \sum_x m(x) = 1\}$ $\cong \text{ formal sums } \{\sum_{i=1}^n r_i x_i \mid r_i \in [0,1] \& x_i \in X \& \sum_i r_i = 1\}$

Effect Algebras: Additional Properties

Let *E* be an effect algebra. Let $a, b, c \in E$. Denote a' by a^{\perp} or a^* .

1. Partial Order: $a \leq b$ iff for some c, $a \stackrel{\sim}{\oplus} c = b$.

2.
$$0 \leq a \leq 1, \forall a \in E$$

- 3. $a^{\perp\perp} = a$.
- 4. (Cancellation) $a \stackrel{\sim}{\oplus} c_1 = a \stackrel{\sim}{\oplus} c_2$ implies $c_1 = c_2$.
- 5. (Positivity) $a \stackrel{\sim}{\oplus} b = 0$ implies a = b = 0

6.
$$0^{\perp} = 1$$
 and $1^{\perp} = 0$.

7. $a \leq b$ implies $b^{\perp} \leq a^{\perp}$

Define a *partial* operation $b \stackrel{\sim}{\ominus} a$ by: $b \stackrel{\sim}{\ominus} a = c$ iff $a \stackrel{\sim}{\oplus} c = b$. So

$$b \stackrel{\sim}{\ominus} a \downarrow \text{ iff } a \leqslant b$$

•
$$a \stackrel{\sim}{\oplus} (b \stackrel{\sim}{\ominus} a) = b$$

• $a' = a^{\perp} = 1 \stackrel{\sim}{\ominus} a$

MV versus MV-Effect Algebras

An MV-Effect Algebra is a lattice-ordered effect algebra satisfying

$$(a \lor b) \stackrel{\sim}{\ominus} a = b \stackrel{\sim}{\ominus} (a \land b)$$

Proposition (Chovanec, Kôka, 1997)

There is a natural 1-1 correspondence between MV-effect algebras and MV-algebras.

 $\mathsf{Idea:} \ \mathsf{MV}\text{-}\mathsf{Effect} \ \mathsf{algebras} \ \longleftrightarrow \ \mathsf{MV}\text{-}\mathsf{Algebras}$

 $\begin{array}{ll} \langle E,0,1,\widetilde{\oplus}\rangle &\longmapsto \langle E,0,1,\oplus\rangle, \text{ where } x\oplus y=x \widetilde{\oplus} (x'\wedge y) \\ \langle E,0,1, \ \widetilde{\oplus}\rangle &\longleftrightarrow \langle E,0,1,\oplus\rangle, \text{ where } x \ \widetilde{\oplus} \ y=x \oplus y \\ & (\text{i.e. restrict to } (x,y) \text{ s.t. } x \leqslant \neg y); \end{array}$

Equivalences of MV- and MV-Effect Algebras

Various facts (mostly due to Bennett & Foulis (1995))

- ► For lattice-ordered effect algebras *E*, *E* is MV $\Leftrightarrow \forall a, b \in E, a \land b = 0 \Rightarrow a \oplus b \downarrow$.
- An effect algebra satisfies RDP (*Riesz Decomposition Property*) iff

$$\begin{array}{ll} a \leqslant b_1 \oplus b_2 \oplus \cdots \oplus b_n & \Rightarrow \\ a = a_1 \oplus a_2 \oplus \cdots \oplus a_n & \text{with} & a_i \leqslant b_i, i \leqslant n \end{array}$$

Proposition (B& F)

An effect algebra is an MV-effect algebra iff it is lattice ordered and has RDP.

Universal Groups

Let *E* be an effect algebra, *K* an abelian group. A map $E \to K$ is a *K*-valued measure if $a \oplus b \downarrow$ then $\varphi(a \oplus b) = \varphi(a) + \varphi(b)$.

Theorem (Bennet-Foulis, 1997)

If E is an interval effect algebra, $\exists ! p.o.$ abelian group G with positive generating cone G^+ , and order unit $u \in G^+$ so that

- $E \cong G^+[0, u]$ and $G^+[0, u]$ generates G^+
- ► Every K-valued measure E → K extends uniquely to a group hom G →^{φ*} K. G is called the universal group of E

Theorem (Ravindran, 1996)

Let E be an effect algebra with RDP. Then

- The universal group E → G_E satisfies: (i) it's partially ordered, (ii) u = γ(1) is an order unit and (iii) E ≅ G_E[0, u].
- If E is an MV-algebra, then G_E is an ℓ -group.

Inverse Semigroups and Monoids

Definition (Inverse Semigroups)

Semigroups (resp. monoids) satisfying: "Every element x has a unique pseudo-inverse y."

 $\forall x \exists ! y (xyx = x \& yxy = y)$

Fact (Preston-Wagner): Equivalent axiomatization, (i) & (ii): (i) Existence of pseudo-inverses: $\forall x \exists y (xyx = x \& yxy = y)$ (ii) Idempotents commute: $\forall x, y [(x^2 = x \& y^2 = y) \Rightarrow xy = yx].$

We denote the unique pseudo-inverse of x by x^{-1} . So the equations of an inverse semigroup/monoid are:

$$xx^{-1}x = x \& x^{-1}xx^{-1} = x^{-1}$$

Ref: M.V. Lawson *Inverse semigroups: the theory of partial symmetries*, World Scientific Publishing Co., 1998.

1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})

- 1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- 2. Fundamental Example: $\mathcal{I}_X = \mathbf{PBij}(X)$, partial bijections on the set X. These are partial functions $f : X \to X$ which are bijections $dom(f) \to ran(f)$. We have:

- 1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- 2. Fundamental Example: $\mathcal{I}_X = \mathbf{PBij}(X)$, partial bijections on the set X. These are partial functions $f : X \to X$ which are bijections $dom(f) \to ran(f)$. We have:
 - ► For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.

- 1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- 2. Fundamental Example: $\mathcal{I}_X = \mathbf{PBij}(X)$, partial bijections on the set X. These are partial functions $f : X \rightarrow X$ which are bijections $dom(f) \rightarrow ran(f)$. We have:
 - ▶ For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X.

- 1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- 2. Fundamental Example: $\mathcal{I}_X = \mathbf{PBij}(X)$, partial bijections on the set X. These are partial functions $f : X \to X$ which are bijections $dom(f) \to ran(f)$. We have:
 - ▶ For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X.
 - For partial bijections $f, g \in \mathcal{I}_X$, we have:

$$(f = f \circ g \circ f \text{ and } g = g \circ f \circ g) \Leftrightarrow g = f^{-1}$$

- 1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- 2. Fundamental Example: $\mathcal{I}_X = \mathbf{PBij}(X)$, partial bijections on the set X. These are partial functions $f : X \to X$ which are bijections $dom(f) \to ran(f)$. We have:
 - ▶ For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X.
 - For partial bijections $f, g \in \mathcal{I}_X$, we have:

 $(f = f \circ g \circ f$ and $g = g \circ f \circ g) \Leftrightarrow g = f^{-1}$

3. *Pseudogroups* (arising in differential geometry): inverse semigroups of partial homeomorphisms between open subsets of a topological space (Veblen-Whitehead, Ehresmann).

- 1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- 2. Fundamental Example: $\mathcal{I}_X = \mathbf{PBij}(X)$, partial bijections on the set X. These are partial functions $f : X \rightarrow X$ which are bijections $dom(f) \rightarrow ran(f)$. We have:
 - ▶ For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X.
 - For partial bijections $f, g \in \mathcal{I}_X$, we have:

 $(f = f \circ g \circ f$ and $g = g \circ f \circ g) \Leftrightarrow g = f^{-1}$

- 3. *Pseudogroups* (arising in differential geometry): inverse semigroups of partial homeomorphisms between open subsets of a topological space (Veblen-Whitehead, Ehresmann).
- 4. Tiling semigroups associated with tilings of \mathbb{R}^n .

- 1. Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- 2. Fundamental Example: $\mathcal{I}_X = \mathbf{PBij}(X)$, partial bijections on the set X. These are partial functions $f : X \to X$ which are bijections $dom(f) \to ran(f)$. We have:
 - ▶ For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X.
 - For partial bijections $f, g \in \mathcal{I}_X$, we have:

 $(f = f \circ g \circ f$ and $g = g \circ f \circ g) \Leftrightarrow g = f^{-1}$

- 3. *Pseudogroups* (arising in differential geometry): inverse semigroups of partial homeomorphisms between open subsets of a topological space (Veblen-Whitehead, Ehresmann).
- 4. Tiling semigroups associated with tilings of \mathbb{R}^n .
- 5. Connections with topological groupoids (vast area of modern mathematics).

Inverse Monoids: Basic Definitions

Let S be an inverse monoid with zero element 0. Let E(S) be the set of idempotents of S.

- ▶ For $a, b \in S$, define $a \leq b$ iff a = be, for some $e \in E(S)$.
- ► E(S) is always a ∧-semi-lattice.
- ▶ *S* is \land -inverse monoid if $a \land b$ exists, $\forall a, b \in S$.
- \leq on *S* is compatible with multiplication.
- Note $a \leq b$ implies $a^{-1} \leq b^{-1}$!
- For a ∈ S, define dom(a) := a⁻¹a, ran(a) := aa⁻¹ ∈ E(S), so dom(a) → ran(a).
- (Compatibility) For a, b ∈ S, define a ~ b iff a⁻¹b & ab⁻¹ ∈ E(S). This is necessary for a ∨ b to exist.
- (Orthogonality) $a \perp b$ iff $a^{-1}b = 0 = ab^{-1}$.
- S is boolean if: (i) E(S) is a boolean algebra, (ii) compatible elements have joins, (iii) multiplication distributes over ∨'s.

Non-Commutative Stone Duality

Boolean Inverse monoids arise in various recent areas of noncommutative Stone Duality.

Theorem (Lawson, 2009,2011)

The category of Boolean inverse \land -semigroups is dual to the category of Hausdorff Boolean groupoids.

Theorem (Kudryavtseva, Lawson 2012)

The category of Boolean inverse semigroups is dual to the category of Boolean groupoids.

Green's Relations

Let S be an inverse monoid. Define:

- 1. \mathcal{J} on S: $a\mathcal{J}b$ iff SaS = SbS (i.e. equality of principal ideals).
- 2. \mathcal{D} on E(S): $e\mathcal{D}f$ iff $\exists_{a\in S}(e = dom(a), f = ran(a), e \stackrel{a}{\longrightarrow} f)$
- 3. For the classes of inverse semigroups we study, $\mathcal{J} = \mathcal{D}$.
- 4. *S* is completely semisimple if $e\mathcal{D}f \leq e$ implies e = f.

Consider $E(S)/\mathcal{D}$, S boolean. For idempotents $e, f \in E(S)$, define $[e] \stackrel{\sim}{\oplus} [f]$ as follows: *if* we can find orthogonal idempotents $e' \in [e], f' \in [f]$, let $[e] \stackrel{\sim}{\oplus} [f] := [e' \lor f']$. Otherwise, undefined.

Proposition

Let S be a Boolean inverse monoid.

- $(E(S)/\mathcal{D}, \stackrel{\sim}{\oplus}, [0], [1])$ is a well-defined PCM satisfying (RDP).
- If D preserves complementation and S is completely semisimple then (E(S)/D, ⊕, [0], [1]) is an effect algebra w/ RDP.

Coordinatizing MV Algebras: Main Theorem

- Consider such completely semisimple Boolean inverse monoids
 S where D preserves complementation. Call them Foulis monoids.
- For Foulis monoids S as in the Proposition, $\mathcal{D} = \mathcal{J}$.
- We can identify $E(S)/\mathcal{D}$ with the poset of principal ideals S/\mathcal{J} .
- ► We say S satisfies the lattice condition if S/J is a lattice. It is then in fact an MV-algebra (by Bennet & Foulis).

Theorem (Coordinatization Theorem for MV Algebras: L& S) For each countable MV algebra A, there is a Foulis monoid S satisfying the lattice condition such that $S/\mathcal{J} \cong A$.

Bratteli Diagrams & AF inverse monoids: Rook Matrices

- ► A rook matrix in Mat_n({0,1}) is one where every row and column have at most one 1. Let R_n := rook matrices.
- ▶ There's bijection $\mathcal{I}_n \xrightarrow{\cong} R_n$: $f \mapsto M(f)$, where $M(f)_{ij} = 1$ iff i = f(j).

Up to isomorphism, it's possible to redo the entire theory of Bratteli diagrams for rook matrices. We get:

Bratteli Diagrams of Inverse Monoids and colimits of $\mathcal{I}_n s$

Recall B = (V, E) a Bratteli diagram, where $V = \bigcup_{i=0}^{\infty} V(i)$ and $E = \bigcup_{i=0}^{\infty} E(i)$. We assume V(0) has one vertex, the *root*. Edges are only defined from V(i) to V(i + 1). Vertices have weights.

$$V(i)$$
 $m(1)$
 $m(2)$
 \cdots
 $m(k)$
 $V(i+1)$
 $n(1)$
 $n(2)$
 \cdots
 $n(l)$

Draw s_{ij} -many edges between m(j) to n(i).

Monomorphisms $\sigma_i : S_i \to S_{i+1}$ are induced by standard maps. Combinatorial Conditions are true

An AF Inverse Monoid $I(B) := colim(S_0 \xrightarrow{\sigma_0} S_1 \xrightarrow{\sigma_1} S_2 \xrightarrow{\sigma_2} \cdots),$ for Bratteli diagram B.

AF Inverse Monoids and colimits of $\mathcal{I}_n s$

Lemma

(1) Colimits of ω -chains $(S_0 \xrightarrow{\sigma_0} S_1 \xrightarrow{\sigma_1} S_2 \xrightarrow{\sigma_2} \cdots)$ of boolean inverse \wedge -monoids with monos inherit all the nice features of the factors. In particular, the groups of units are direct limits of groups of units of the S_i .

(2) Given any ω -sequence of semisimple inverse monoids and injective morphisms, the colim (S_i) is isomorphic to I(B), for some Bratteli diagram B.

Theorem

AF inverse monoids are completely semisimple Boolean inverse monoids in which \mathcal{D} preserves complementation. Their groups of units are direct limits of finite direct products of finite symmetric groups.

Example 1: Coordinatizing Finite MV-Algebras

Let $\mathcal{I}_n = \mathcal{I}_X$ be the inverse monoid of partial bijections on nletters, |X| = n. One can show that all the \mathcal{I}_n 's are Foulis monoids. The idempotents in this monoid are partial identities $\mathbf{1}_A$, where $A \subseteq X$. Two idempotents $\mathbf{1}_A \mathcal{D} \mathbf{1}_B$ iff |A| = |B|. Indeed we get a bijection $\mathcal{I}_n/\mathcal{J} \xrightarrow{\cong} \mathbf{n+1}$, where $\mathbf{n+1} = \{0, 1, \dots, n\}$. This induces an order isomorphism, where $\mathbf{n+1}$ is given its usual order, and lattice structure via *max*, *min*.

The effect algebra structure of $\mathcal{I}_n/\mathcal{J}$ becomes: let $r, s \in \mathbf{n+1}$. $r \oplus s$ is defined and equals r + s iff $r + s \leq n$. The orthocomplement r' = n - r. The associated MV algebra: $r \oplus s = r + min(r', s)$, which equals r + s if $r + s \leq n$ and $r \oplus s$ equals n if r + s > n.

We get an iso $\mathcal{I}_n/\mathcal{J} \cong \mathcal{M}_n$, the Łukasiewicz chain. But every *finite* MV algebra is a product of such chains, which are then coordinatized by a product of \mathcal{I}_n 's.

Example 2: Coordinatizing Dyadic Rationals-Cantor Space

Cuntz (1977) studied C*-algebras of isometries (of a sep. Hilbert space). They have also arisen in wavelet theory. Associated formal inverse monoids also arose in formal language theory (Nivat, Perrot). We'll describe C_n the *n*th Cuntz inverse monoid.

Cantor Space A^{ω} , A finite. For C_n , pick |A| = n. For C_2 , pick $A = \{a, b\}$. Given the usual topology, we have:

- 1. Clopen subsets have the form XA^{ω} , where $X \subseteq A^*$ are *Prefix* codes : finite subsets s.t. $x \preceq y$ (y prefix of x) $\Rightarrow x = y$.
- 2. Representation of clopen subsets by prefix codes is not unique. E.g. $aA^{\omega} = (aa + ab)A^{\omega}$.
- 3. We can make prefixes X in clopens uniquely representable: define weight by $w(X) = \sum_{x \in X} |x|$. Every clopen is generated by unique prefix codes X of minimal weight.

Cuntz and *n*-adic AF-Inverse Monoids

Definition (The Cuntz inverse monoid, Lawson (2007))

 $C_n \subseteq \mathcal{I}_{A^{\omega}}$ consists of those partial bijections on prefix sets of same cardinality: $(x_1 + \cdots + x_r)A^{\omega} \longrightarrow (y_1 + \cdots + y_r)A^{\omega}$ such that $x_i u \mapsto y_i u$, for any right infinite string u.

Proposition (Lawson (2007))

 C_n is a Boolean inverse \wedge -monoid, whose set of idempotents $E(C_n)$ is the unique countable atomless B.A. Its group of units is the Thompson group V_n .

Definition (*n*-adic inverse monoid $Ad_n \subseteq C_n$)

 Ad_n = those partial bijections in C_n of the form $x_i \mapsto y_i$, where $|x_i| = |y_i|$, $i \leq r$. Ad_2 = the dyadic inverse monoid.

Cuntz and Dyadic AF-Inverse Monoids

Theorem

The MV-algebra of dyadic rationals is co-ordinatized by Ad_2 .

The proof takes a small detour through aspects of Bernoulli measures on prefix sets.

Proposition (Characterizing Ad₂)

The dyadic inverse monoid is isomorphic to the direct limit of the sequence of symmetric inverse monoids (partial bijections)

$$\mathcal{I}_2 \rightarrow \mathcal{I}_4 \rightarrow \mathcal{I}_8 \rightarrow \cdots$$

called the CAR inverse monoid. The group of units is a colimit of symmetric groups: $Sym(1) \rightarrow Sym(2) \rightarrow \cdots Sym(2^r) \rightarrow \cdots$.

The General Coordinatization Theorem

Theorem (Coordinatization Theorem for MV Algebras: L& S) For each countable MV algebra A, there is a Foulis monoid S satisfying the lattice condition such that $S/\mathcal{J} \cong \mathcal{A}$. Proof sketch: We know from Mundici every MV algebra \mathcal{A} is isomorphic to an MV-algebra [0, u], which is an interval effect algebra for some order unit u in a countable ℓ -group G. It turns out that G is a countable dimension group. Thus there is a Bratteli diagram B yielding G. Take then I(B), the AF inverse monoid of B. It turns out that $I(B)/\mathcal{J}$ is isomorphic to [0, u] as an MV effect-algebra, and the latter will be a lattice, thus a Foulis monoid. So, we have coordinatized \mathcal{A} .

Open Questions

- Coordinatize all the countable examples from Mundici.
- Can we coordinatize larger cardinality MV-algebras (related to (hard!) open problems in operator algebras).