
Category Theory for Linear Logicians

Richard Blute ∗ Philip Scott †

September 10, 2003

Abstract

This paper presents an introduction to category theory with an emphasis on those
aspects relevant to the analysis of the model theory of linear logic. With this in mind,
we focus on the basic definitions of category theory and categorical logic.

An analysis of cartesian and cartesian closed categories and their relation to intu-
itionistic logic is followed by a consideration of symmetric monoidal closed, linearly
distributive and ∗-autonomous categories and their relation to multiplicative linear
logic. We examine nonsymmetric monoidal categories, and consider them as models
of noncommutative linear logic. We introduce traced monoidal categories, and discuss
their relation to the geometry of interaction. The necessary aspects of the theory of
monads is introduced in order to describe the categorical modelling of the exponen-
tials. We conclude by briefly describing the notion of full completeness, a strong form
of categorical completeness, which originated in the categorical model theory of linear
logic.

No knowledge of category theory is assumed, but we do assume knowledge of linear
logic sequent calculus and the standard models of linear logic, and modest familiarity
with typed lambda calculus.

0 Introduction

Category theory arose as an organizing framework for expressing the naturality of certain
constructions in algebraic topology. Its subsequent applicability, both as a language for
simply expressing complex relationships between mathematical structures and as a math-
ematical theory in its own right, is remarkable. Categorical principles have been put to
good use in virtually every branch of mathematics, in most cases leading to profound new
understandings.

Roughly a category is an abstraction of the principle that the morphisms between objects
of interest are just as important as the objects themselves. So a category will consist of two
classes, the class of objects and the class of morphisms between objects. One must have a

∗Department of Mathematics, University of Ottawa, Ottawa, Ontario, K1N 6N5, CANADA
rblute@mathstat.uottawa.ca
†Department of Mathematics, University of Ottawa, Ottawa, Ontario, K1N 6N5, CANADA

phil@site.uottawa.ca

1

composition law, and each object must come equipped with a specified identity morphism.
This data must satisfy some evident axioms. From this simple definition, an enormous theory
follows. For example, one next defines morphisms between categories; these are functors.
One can go on to define morphisms between functors; these are natural transformations, and
on and on. There is a remarkably rich interaction between these structures. As expositions
of this theory, we highly recommend [Mac, Borc].

Categorical logic begins with the idea that, given a logic, one can form a category whose
objects are formulas and whose morphisms are (equivalence classes of) proofs. The question
of the proper notion of equivalence is extremely important and delicate. We will examine
it in some detail below. There are several benefits to the formation of this category. First,
under this interpretation, the logic’s connectives are naturally exhibited as functors, and
the logic’s inference rules are exhibited as natural transformations. Then models of the
logic can be simply defined as structure-preserving functors from this syntactic category to
a category with the appropriate structure. Second, the category so formed will typically be
freely generated in a certain sense, and can thus be used to derive general information about
all categories of the same structure. The most well-developped examples of this idea are
the relations between intuitionistic logic and cartesian closed categories, and between linear
logic and ∗-autonomous categories. Both of these relationships will be described below.

The goal of this paper is to establish sufficient categorical background to understand
these relationships and their consequences. We will introduce cartesian closed categories
(cccs) and describe the translation between cccs and intuitionistic logic. This is the most
well-established example of categorical logic, and is the subject of the book [LS]. This
is followed by a consideration of monoidal, symmetric monoidal closed, linearly distributive
and ∗-autonomous categories and the translation between these structures and multiplicative
linear logic. One of the most intriguing aspects of linear logic is that it is sufficiently flexible
as a logical system to allow one to define noncommutative versions. With this in mind, we
examine nonsymmetric monoidal categories, and consider them as models of noncommutative
linear logic. We will especially focus on examples arising from the representation theory of
Hopf algebras.

We also introduce traced monoidal categories, which arose independently of linear logic,
but were subsequently seen to provide the appropriate framework for the analysis of Girard’s
geometry of interaction. Computationally, the most important fragment of linear logic is
the exponential fragment, and its categorical structure leads one to the notion of Seely
model. The necessary aspects of the theory of monads is introduced in order to describe the
categorical modelling of the exponentials. We conclude by briefly describing the notion of full
completeness, a strong form of categorical completeness, which originated in the categorical
model theory of linear logic [AJ]. Full completeness is an excellent example of the influence
of categorical principles on logical semantics, not just for linear logic, but for general logics.

No knowledge of category theory is assumed, but we do assume knowledge of linear logic
sequent calculus and the standard models of linear logic. Also it would help to have a modest
familiarity with typed lambda calculus (as in Girard’s [GLT]). This paper may be considered
a companion to the article [Sco], but stressing the linear logic aspects. We note that we only
focus on aspects of category theory of immediate relevance to linear logic. So important
topics like limits and colimits are omitted.

2

1 Categories, Functors, Natural Transformations

1.1 Basics of Categories

A category C consists of two classes, Objects and Arrows, together with two functions

Arrows
dom-

cod
- Objects satisfying the following properties (we write A

f- B for: f ∈ Ar-

rows, dom(f) = A and cod(f) = B):

• There are identity arrows A
idA- A, for each object A,

• There is a partially-defined binary composition operation on arrows, denoted by jux-
taposition,

A
f−→ B B

g−→ C

A
gf−→ C

(defined only when dom(g) = cod(f)) satisfying the following equations:

(i) fidA = f = idBf , where A
f−→ B,

(ii) h(gf) = (hg)f , where A
f−→ B

g−→ C
h−→ D.

A category is called large or small depending upon whether its class of objects is respec-
tively a proper class or a set, in the sense of Gödel-Bernays set theory. We denote by C(A,B)
the collection of arrows A → B in the category C. A category is locally small if C(A,B) is
a set, for all objects A,B. It is convenient to represent arrows graphically. Equations in
categories are also typically represented graphically and are called commutative diagrams.

Many familiar classes of structures in mathematics and logic can be organized into cat-
egories. Here are some basic examples. Verification that the set of arrows is closed under
composition as well as satisfying the axioms of a category is left as an exercise.

Set: This (large) category has the class of all sets as Objects, with all set-theoretic
functions as Arrows. Identity arrows and composition of arrows are defined in the
usual way.

Rel: This has the same objects as Set, but an arrow A
R−→ B is a binary relation

R ⊆ A×B. Here composition is given by relational product, i.e. given A
R−→ B

S−→ C,

A
SR−→ C = {(a, c) ∈ A× C | ∃b ∈ B such that (a, b) ∈ R & (b, c) ∈ S}

while the identity arrows A
idA−→ A are given by the diagonal relations: idA =

{(a, a) | a ∈ A}.

Universal Algebras: Here Objects can be any equational class of algebras (e.g. semi-
groups, monoids, groups, rings, lattices, heyting or boolean algebras, · · ·). Arrows are
homomorphisms, i.e. set-theoretic functions preserving the given structure. Compo-
sition and identities are induced from Set. We use boldface notation for the names
of the associated categories, e.g. Group, Lat, Heyt, for the categories of groups,
lattices, and Heyting algebras, resp.

3

Veck: Here Objects are vector spaces over a field k, and Arrows are k-linear maps.
We usually omit the subscript k, and write Vec for short. An important subcategory
of Vec is the category Vecfd of finite dimensional vector spaces and linear maps. Of
course, one can also consider various classes of topological vector spaces and normed
spaces, with appropriate notions of map.

Top: Here objects are topological spaces and morphisms are continuous maps. One
can also consider various homotopy categories, i.e. where the morphisms are homotopy
equivalence classes of continuous maps. It is from this sort of example that category
theory originally arose.

Poset: Here the objects are partially-ordered sets and morphisms are monotone maps.
A particularly important example arising in theoretical computer science is the category
ω-CPO of posets in which ascending countable chains · · · ai ≤ ai+1 ≤ ai+2 ≤ · · · have
suprema, and in which morphisms are poset maps preserving suprema of countable
chains. Composition and identities are inherited from Set. For an introduction to this
and other aspects of domain theory, see [AC].

Of course, those areas of mathematics that heavily use category theory, e.g. algebraic topol-
ogy, algebraic geometry, and homological algebra, are replete with many more sophisticated
examples.

The previous examples were large categories, i.e. in which the collections of objects form
proper classes in the sense of set theory. We now present some “small” categories, based on
much smaller collections of objects and arrows:

One: The category with one object and one (identity) arrow.

Discrete categories: These are categories where the only arrows are identities. A
set X becomes a discrete category, by letting the objects be the elements of X, and
adding an identity arrow x → x for each x ∈ X. All (small) discrete categories arise
in this way.

A monoid: A monoid M gives a category with one object, call it CM , as follows: if
the single object is ∗, we define CM(∗, ∗) = M . Composition of maps is multiplication
in the monoid. Conversely, note that every category C with one object corresponds to
a monoid, namely C(∗, ∗).

A preorder: A preordered set P = (P,≤) (where ≤ is a reflexive & transitive relation)
may be considered as a category, whose objects are just the elements of P and in which
we define P(a, b) = {∗} if a ≤ b and P(a, b) = ∅ if a 6≤ b. Thus, given two objects
a, b ∈ P, there is at most one arrow from a to b; moreover, there is an arrow a→ b in P
exactly when a ≤ b. In this case, the category laws are exactly the preorder conditions.

Graphs and finite categories: A graph (more precisely, a directed multigraph),
consists of a pair of sets, called Objects and Arrows, together with two functions

Arrows
dom-

cod
- Objects. Every (small) category has an underlying graph, obtained by

4

simply ignoring the other data beyond dom, cod. In particular, any finite category can
be represented by simply drawing its underlying graph and assuming the existence of
all well-defined compositions of arrows. Notice that all vertices in the underlying graph
of a category have loops (given by identity arrows). Indeed, another way of looking
at a category is as a kind of graph with additional structure (i.e. identity edges, a
composition law and equations).

Graphs form a category Graph whose objects are graphs and whose arrows are pairs of

functions Arrows0
f−→ Arrows1 and Objects0

g−→ Objects1 such that gdom0 = dom1f
and gcod0 = cod1f .

1.2 Deductive systems as categories

In the 1960’s, Lambek introduced the novel idea of using Gentzen’s methods in category
theory and linguistics. His new approach involved the use of proof-theoretical methods in
constructing free categories and for solving coherence (i.e. decision) problems. At the same
time he emphasized a fundamental new idea: arrows in (freely generated) categories are
equivalence classes of proofs. Lambek’s work raises a question of particular relevance to
linear logicians: what should the equations between proofs be? There is no ultimate answer
except that Lambek’s work would seem to say that the equations should be elegant and
natural from the viewpoint of category theory. This section will follow [LS] closely. For
more on the history of this area, see [LS] and the references therein.

Definition 1.1 A deductive system is a labelled directed graph (whose objects are called
formulas and whose arrows are called labelled sequents). There are certain specified arrows

(called axioms) among which are arrows A
idA−→ A, for all formulas A, and certain specified

rules (called “inference rules”) for generating new arrows from old ones, among which is the

composition rule called “cut”:

A
f−→ B B

g−→ C

A
gf−→ C

cut
, for all formulas A,B,C.

A deductive system freely generates “labelled proof trees” by the following procedure:

• Axioms are proof trees.

• The set of proof trees must be closed under the inference rules.

The root of a proof tree is called a “provable sequent”, or “proof” for short, while the leaves
of the tree are axioms.

Example 1.2 Let G be a graph. The deductive system freely generated from G is defined as
follows:

1. The formulas are the objects of G (also called atomic formulas).

2. The axioms consist of a distinguished identity axiom A
idA−→ A, for each formula A,

together with all the arrows of G (the latter are sometimes called nonlogical axioms).

5

3. Cut is the only rule of inference.

A deductive system freely generated from G forms a category F (G), the category freely
generated from G, whose objects are all the formulas and whose arrows are equivalence classes
of proofs. Namely, we impose equations between proof trees by taking the congruence relation
generated by the following equations:

A
f−→ B B

idB−→ B

A
idBf−→ B

= A
f−→ B

A
idA−→ A A

f−→ B

A
fidA−→ B

= A
f−→ B

A
f−→ B

B
g−→ C C

h−→ D

B
hg−→ D

A
(hg)f−→ D

=

A
f−→ B B

g−→ C

A
gf−→ C C

h−→ D

A
h(gf)−→ D

An important special case is the following:

Example 1.3 (Deductive systems generated by discrete graphs) A graph G0 is dis-
crete if it has no arrows: it may be identified with a set (of objects). The deductive system
generated from the set G0 has only atomic formulas (objects of G0) and for axioms it has only

identity axioms A
idA−→ A, for atomic formulas A. F (G0) is called the free category generated

from the set of objects G0.

We will later consider freely generated categories with additional structure (i.e. with
additional operations on formulas, and additional axioms and rules of inference). It is possible
conversely to define a category as a certain kind of deductive system, although in that case
it will not necessarily be freely generated: the class of objects may simply be specified and
the class of arrows merely closed under appropriate operations and equations (see [LS]).
Moreover, if the category is large, like Set, the objects and arrows form proper classes,
which is not exactly what logicians are familiar with.

1.3 Operations on categories

There are many ways of forming new categories out of old ones. Two basic operations are
the following:

Dualization: If C is a category, so is its dual Cop, with the same objects, but whose arrows
are reversed (i.e. interchange dom and cod). Clearly (Cop)op = C and reversing all
arrows changes commutative diagrams in C to commutative diagrams in Cop. In other
words, we have the following bijective correspondence:

f :A→B in C
f :B→A in Cop

6

Products: If C, D are categories, so is their cartesian product C × D, with the obvious
structure: objects are pairs of objects, arrows are pairs of arrows, composition and
identities are defined componentwise.

Finally, we end with a useful notion:

Definition 1.4 A subcategory C of a category B is any category whose class of objects and
arrows are contained in those of B, respectively, and which is closed under the “operations”
in B of domain, codomain, composition, and identity. C is a full subcategory of B if for all
objects A,B ∈ C, C(A,B) = B(A,B). In other words, a full subcategory is determined by
just restricting the class of objects, since the arrows are predetermined by B.

For example, we often consider small subcategories whose objects are of “bounded size”
within the large examples above: e.g. the full subcategories of (i) finite sets and (ii) finite
dimensional vector spaces, and more generally, for a fixed infinite cardinal κ, sets (resp.
vector spaces) of cardinality (resp. dimension) bounded by κ.

1.4 Functors

If C,D are categories, a functor F : C → D is a pair F = (Fob, Farr), where Fob : Objects(C)→
Objects(D), and similarly for arrows, satisfying the following (we omit the subscripts ob, arr):

if A
f−→ B then FA

F (f)−→ FB with: F (gf) = F (g)F (f) and F (idA) = idFA. A functor
F : Cop → D is sometimes called contravariant. From the definition of the opposite category,
a contravariant functor F preserves the identity arrows, but reverses composition: F (gf) =
F (f)F (g).

Examples 1.5

1. Forgetful (also called Underlying) Functors. These include forgetful functors U :
Posets → Set, U : Top → Set, U : Alg → Set (where Alg is any category of
universal algebras and homomorphisms between them). U maps objects and arrows
to their underlying set (omitting the other structure).

Sometimes, one only forgets part of the structure, e.g. there are several forgetful
functors on TopGrp; we have U1 : TopGrp→ Grp which maps a topological group
and a continuous group homomorphism to its underlying group (and the underlying
group homomorphism), and similarly there is U2 : TopGrp→ Top.

2. Representable (or Hom) Functors. If A ∈ C, we have the dual co- and contravariant
homs:

1. Covariant hom : C(A,−) : C → Set given by:

B 7→ C(A,B)

B
f−→ C 7→ C(A, f) : C(A,B)→ C(A,C)

where C(A, f)(g) = fg.

7

2. Contravariant hom: C(−, A) : Cop → Set given by:

B 7→ C(B,A)

B
f−→ C 7→ C(f, A) : C(C,A)→ C(B,A)

where C(A, f)(g) = gf.

3. Powerset Functors. There are co- and contravariant powerset functors on Set:

1. Covariant P : Set→ Set given by:

A 7→ P(A) = {X | X ⊆ A}

A
f−→ B 7→ P(f) : P(A)→ P(B) where P(f)(X) = f [X]

2. Contravariant P : Setop → Set given by:

A 7→ P(A) = {X | X ⊆ A}

A
f−→ B 7→ P(f) : P(B)→ P(A) where P(f)(Y) = f−1[Y]

4. Free Algebra Functors. F : Set → Alg, where F (X) = the free algebra generated
by set X (e.g. Alg can be Mon, Grp, Vec, etc.)

5. Identity and Inclusion Functors: For example, Id : Set → Set, and the evident
inclusion Inc : Vecfd ↪→ Vec of finite dimensional vector spaces among all vector
spaces.

6. Dual Spaces: Let V ∈ Vec and V ⊥ = Lin(V,k), the dual space of V . Exercise: show
there are two functors: (−)⊥ : Vecop → Vec and (−)⊥⊥ : Vec→ Vec.

Typically, this functor would be denoted V ∗, but we will suggest that in some settings,
this notion of linear dual actually models linear negation quite successfully, hence our
choice of notation.

7. Let P and P ′ be posets, viewed as categories. We leave it to the reader to verify
that a functor F :P→P ′ is the same thing as an order-preserving function from P to
P ′.

1.5 Natural Transformations

Given functors F,G : C → D, a natural transformation is a family of arrows, indexed by
the objects of C, {θC : FC → GC | C ∈ C} such that for every f : C → D, the following
diagram commutes:

FC
θC- GC

FD

Ff
? θD- GD

G
?
f

8

Given n-ary functors F,G : Cn → D, a family of arrows, indexed by n-tuples of objects
of C, αA1,···,An : F (A1, · · · , An) → G(A1, · · · , An) is said to be natural in Ai if fixing all the
other arguments Aj, j 6= i, the resultant family α···,Ai··· : F (· · · , Ai, · · ·)→ G(· · · , Ai, · · ·) de-
termines a natural transformation between functors C → D with respect to the ith argument
as variable.

Examples 1.6

1. Double Dual: Define θ : Id→ (−)⊥⊥ : Vec→ Vec, where θV : V → V ⊥⊥ is given
by:

θV (x)(f) = f(x) for f ∈ V ⊥, x ∈ V.

Exercise: Verify that θ is well-defined, and that the appropriate natural transformation
diagram commutes. It may be shown that θV is an isomorphism if and only if V is
finite dimensional. However, note that if V is indeed finite dimensional, there is no
natural isomorphism η : Id → (−)⊥, even though for each V , V ∼= V ⊥ in this case.
The reason is that any such isomorphism depends on a choice of basis.

2. Functor Categories: Let C,D be categories, with C small. Let Funct(C,D) be the
category whose objects are functors from C to D, and whose arrows are natural trans-
formations between them, where we compose natural transformations as follows: given
F,G,H ∈ Funct(C,D), define

FA
(ψθ)A−→ HA = FA

θA−→ GA
ψA−→ HA

for each object A ∈ C. In particular, if C is small, and D = Set, the category
Funct(Cop,D) = SetC

op

is called the category of presheaves on C.
If C is the small category with two objects and two non-identity arrows, •−→−→•, one

can identify SetC
op

with the category Graph of small graphs.

3. There is a category Cat of small categories and functors between them. There is
a forgetful functor U : Cat → Graph which associates to every small category C its
underlying graph.

1.6 Adjoints and Equivalences

An arrow in a category is an isomorphism or iso if it has a two-sided inverse. This corresponds
to the usual mathematical notion of “isomorphism” in most familiar categories. In the case
of functor categories, we obtain the following related notions:

• Natural Isomorphisms: A natural transformation F
θ−→ G is a natural isomorphism if,

for each A, FA
θA−→ GA is an iso. We often write F ∼= G (leaving θ implicit) to denote

such a natural isomorphism.

• Isos of Categories: A pair of functors C
F
-�

G
D is an isomorphism of categories if

GF = IdC and FG = IdD. This is much too strong and rarely occurs in mathematics.
A much more reasonable notion is the following:

9

• Natural Equivalence: A pair of functors C
F
-�

G
D is a natural equivalence of cate-

gories if there are natural isomorphisms GF ∼= IdC and FG ∼= IdD. We shall see many
examples of this notion below.

Most mathematical duality theories, as in the case of the famous representation theorems of
Stone, Gelfand, and Pontrjagin, amount to “contravariant” natural equivalences C ∼= Dop.
Barr’s book [Barr80] on ∗-autonomous categories, which analyzes such duality theories, is
an important source of concrete models for (fragments of) linear logic. We shall discuss this
later.

One of the most important concepts in category theory is that of adjoint functors. Given

functors D �
F

U
- C, we say F is left adjoint to U (denoted F a U) if there is a natural

isomorphism
D(FC,D) ∼= C(C,UD) .

That is, there is a family of arrows {αC,D : D(FC,D) → C(C,UD)} which determines a

natural isomorphism of functors (natural in C and D), α−,− : D(F−,−)
∼=−→ C(−, U−).

This isomorphism determines a natural bijection of arrows

FC → D in D
C → UD in C.

Indeed, the statement that F is left adjoint to U is equivalent to the following universal
mapping property of the functor F : for each object C ∈ C, there is an object FC ∈ D and
an arrow ηC : C → UFC, such that for any arrow f : C → UD ∈ C, there is a unique
f ∗ : FC → D ∈ D satisfying: U(f ∗)ηC = f , i.e.

UFC

@
@
@

U(f ∗)
R

C

ηC
6

f
- UD

Exercise 1.7 (Adjoints)

1. Prove the equivalence of F being left adjoint to U and the universal mapping property
above.

2. Given adjoints F a U as above, show there are natural transformations η : IdC → UF
and ε : FU → IdD satisfying (Uε)(ηU) = idU and (εF)(Fη) = idF , where id denotes
an identity natural transformation.

3. Show that there is a one-one correspondence between solutions (F, η, (−)∗) of the uni-
versal mapping problem in part (i) with quadruples (F,U, η, ε) satisfying the equations
in part (ii).

10

Notions defined by universal mapping properties are unique up to isomorphism. For example,
adjoint functors determine each other uniquely up to natural isomorphisms.

Adjoint functors abound in mathematics. Lawvere has used this in an attempted ax-
iomatic foundation for large parts of mathematics.

Examples 1.8 (Adjoints) 1. Galois Correspondences: Consider two pre-orders as
categories, with a pair of adjoint functors (order-preserving maps) between them :

(P,≤) �
F

G
- (Q,≤). Then F a G means: F (a) ≤ b iff a ≤ G(b), for all a ∈ P, b ∈ Q.

Let j = GF : Q→ Q. This gives a monotone closure operator satisfying: (i) a ≤ j(a)
and (ii) j2(a) ≤ j(a), for all a ∈ P

2. Free Algebras: In categories of universal algebras, the left adjoint to U exists, where

Alg �
F

U
- Set. Here F (X) is the free (universal) algebra generated by the set X

(for a still more concrete example, replace Alg by the category Mon of monoids.
Then F (X) = X∗, the free monoid on the set X.) In general, ηX : X → UFX is
the “inclusion of generators” which maps the set X into the underlying set of the
free algebra F (X). The universal property of adjoint functors reduces to the familiar
universal property of free algebras.

3. Topological examples There is an evident forgetful functor
U : Top→Set. This functor has both left and right adjoints. We leave it as an exercise
to find them.

4. Free Structures and Free Categories: Generalizing the previous examples, left ad-
joints to forgetful functors typically determine “free” structures. A special case funda-
mental to categorical logic is the construction of free (structured) categories on graphs

(see Exercise 1.9 below). We have an adjoint situation Cat �
F

U
- Graph in which

the forgetful functor U has a left adjoint F , where F (G) is the free (small) category
generated by a (small) graph G. More generally, we will later introduce free cartesian,
cartesian closed, and ∗-autonomous categories. The point is that categorical logic
allows us to construct such free categories directly from the formulas and proofs of
certain logics.

Exercise 1.9 Prove F a U , where Cat �
F

U
- Graph and F (G) is the free (small) category

generated by a (small) graph G. In particular describe the η and the ε of the adjointness.

The next exercise is important: it illustrates Lawvere’s slogan: many categorical notions
arise as adjoints to previously defined functors.

Exercise 1.10 (Categorical Structure via Adjoints) 1. For any category C, there

is a unique functor to the one-object category: C !−→ One. Postulating that C has

11

a left (resp. right) adjoint corresponds to saying C has an initial object ⊥ (resp. a
terminal object>). The universal properties say: for any object C ∈ C there is a unique

arrow C
!C−→ > (resp. a unique arrow ⊥ 0C−→ C). Letting {∗} be any one-element set,

this says: C(C,>) ∼= {∗} and C(⊥, C) ∼= {∗}.
E.g. In Set, ⊥= ∅ and > = {∗} (any one element set). In Vec, ⊥= > = {0}, the
trivial space.

2. Products and Coproducts : For any category C, there is a diagonal functor C ∆−→ C×C.
If we postulate a right adjoint ∆ a R, then for all C,A,B ∈ C, C ×C(∆(C), (A,B)) ∼=
C(C,R(A,B)). Writing R(A,B) = A×B, show that we have a natural isomorphism
C(C,A)×C(C,B) ∼= C(C,A×B). We say A×B is the cartesian product of A and B.
Dually, postulating a left adjoint L a ∆ determines a coproduct (= product in Cop).
Writing L(A,B) = A+B, show that this satisfies C(A+B,C) ∼= C(A,C)× C(B,C).

E.g. In Set, A×B exists and is the usual cartesian product, while A+B exists and is
the disjoint union. In Vecfd and Abelian Groups, products and coproducts exist and
coincide: V ×W ∼= V ⊕W . In Top, we obtain the usual product topology.

3. Exponentials: If C has products, prove that there is an induced functor C × C ×−→ C.
Fix an object A ∈ C. Consider the induced functor C −×A−→ C, given on objects by
C 7→ C × A. Suppose that − × A has a right adjoint (−)A. Show that this means
there is a natural isomorphism C(C × A,B) ∼= C(C,BA). This property is called
cartesian closedness, and will be considered in the next section. Verify that in Set,
the exponentials BA exist, where BA is the set of all functions from A to B. Investigate
cartesian closedness in some of the other categories we have mentioned. What does it
mean for a poset, considered as a category, to have products and exponentials? For
a difficult problem, which categories of topological spaces have exponentials? For a
discussion of the existence of topological cartesian closed categories, see [Mac].

1.7 Cartesian and Cartesian Closed Categories

We shall now begin a process of equationally axiomatizing categories with products and
function spaces, as introduced in Exercise (1.10) above. These categories have significant
connections to the proof theory of certain intuitionist propositional calculi.

Definition 1.11 A cartesian category is a category with finite products, i.e. binary products
together with a terminal object.

Thus we have natural bijections:

C(C,>) ∼= {∗} (1)

C(C,A)× C(C,B) ∼= C(C,A×B) (2)

We shall be interested in categories with a specified cartesian structure. The following is a
standard technique in categorical logic. Clearly we must postulate that there is a terminal
object > and a binary operation on objects denoted A× B. What about arrows? We shall

12

chase the identity arrow starting from the RHS of isomorphism (2), since this is the only
distinguished structure we have at hand. So, letting C = A × B, the identity arrow idA×B
on the RHS maps to a pair of arrows on the LHS, which we call projections A × B

π1−→
A,A× B π2−→ B. Conversely, going from the LHS to the RHS of (2), we wish to internalize

pairing: given a pair of arrows C
f−→ A and C

g−→ B, define a “pairing” C
〈f,g〉−→ A × B.

Using these operations, we will then impose equations specifying the bijections (1), (2).
So, on arrows we postulate the following distinguished structure, for all objects A,B,C:

• Terminal: An arrow C
!C−→ >

• Projections: A×B
πA,B1−→ A , A×B

πA,B2−→ B

• Pairing:

C
f−→ A C

g−→ B

C
〈f,g〉−→ A×B

The isomorphisms (1) , (2) above may be given equationally by imposing the following
identities (for all objects A,B,C):

!C = f, for any f : C → > (3)

π1〈f, g〉 = f , π2〈f, g〉 = g , 〈π1h, π2h〉 = h (4)
where f : C → A, g : C → B, h : C → A×B

Thus, a cartesian category with specified structure is given by the above data: an object >, a
binary operation × on objects, distinguished families of arrows !C , π

A,B
i , 〈f, g〉 for all objects

A,B,C, satisfying the above equations.

Exercise 1.12

1. Work out specified cartesian structure for Set, Vecfd and Top.

2. Show that a poset P, considered as a category, is a cartesian category iff it is a ∧-
semilattice with top element.

Example 1.13 (Deductive system for {∧,>} generated by G0) Let G0 be a discrete
graph (cf. Exercise 1.3). We will now give an explicit description of the deductive system
generated by G0. Formulas are freely generated from atoms (i.e. objects of G0), using {∧,>}.
Sequents are freely generated from the following “axioms” and “rules”:

Axioms: A
id−→ A, A ∧B π1−→ A, A ∧B π2−→ B, C

!C−→ >.

Rules: A
f−→ B B

g−→ C

A
gf−→ C

cut
C

f−→ A C
g−→ B

C
〈f,g〉−→ A ∧B

pairing

Finally, we obtain a cartesian category F (G0) (the free cartesian category generated by the
discrete graph G0) by letting the objects be the formulas and letting arrows be equivalence
classes of proofs, where we impose the smallest congruence relation forcing the equations
(3), (4) of a cartesian category to hold.

We generalize this example to arbitrary graphs in Exercise 1.15 below.

13

In general, categorical constructions given by universal mapping properties are only de-
termined up to isomorphism. However in categorical logic and proof theory, it is natural
to consider categories with specified structure (as above) and “strict” functors, i.e. those
preserving the structure on the nose [LS].

Definition 1.14 Cart is the category of cartesian categories and strict cartesian functors,
i.e. those preserving the structure on-the-nose: F (A×B) = F (A)× F (B), F (>) = >.

There is a forgetful functor Cart
U−→ Graph. This functor has a left adjoint Graph

F−→
Cart, where for any graph G, F (G) is the cartesian category freely generated from G.

Exercise 1.15 (Free Cartesian Categories) Let G be a graph. Following Examples 1.2
and 1.13, construct F (G) as a deductive system and prove that F a U . [Hint: Objects
of F (G) are formulas in the language {>,∧} freely generated from the objects of G (i.e.
consider the objects of G as atomic formulae). Proofs are freely generated from the Axioms

in Example 1.13 along with all the arrows A
f−→ B ∈ G (considered as nonlogical axioms)

using the rules. Finally, impose the smallest congruence relation on proofs making F (G) a
cartesian category.]

Definition 1.16 A cocartesian category is the dual of a cartesian category, i.e. a category
with binary coproducts and an initial object. A cocartesian category with distinguished struc-
ture is obtained by dualizing the cartesian case, i.e. we postulate the following distinguished
structure, for all objects A,B,C:

• Initial: An arrow ⊥ OC−→ C

• Injections: A
inA,B1−→ A+B , B

inA,B2−→ A+B

• Copairing:

A
f−→ C B

g−→ C

A+B
[f,g]−→ C

The relevant equations specifying the isomorphisms in Exercise 1.10(2) are obtained by
dualizing equations (3), (4). Free cocartesian categories may be obtained by setting up an
appropriate deductive system for {⊥,∨} using the above structure (cf. Exercise 1.15). It is
common to denote initial objects by 0, rather than ⊥.

Cartesian Closed Categories
We now wish to equationally axiomatize those cartesian categories with specified expo-

nentials (cf. Exercise 1.10).

Definition 1.17 A category C is cartesian closed (or a ccc) if it is cartesian and, for each

object A, the endofunctor C −×A−→ C has a right adjoint, denoted (−)A.

The adjointness says that for each A, we have an isomorphism C(C × A,B) ∼= C(C,BA),
natural in C and B.

To axiomatize specified exponential structure (on top of specified cartesian structure)
we specify: (i) there is also a binary operation BA on objects; (ii) on arrows we postulate

14

the following arrow schema and unary rule-schema for generating new arrows from old, in
addition to the cartesian structure (for all objects A,B,C).

• Evaluation: evAB : BA × A −→ B

• Currying:

C × A f−→ B

C
f∗−→ BA

Finally, we impose the following equations in addition to the cartesian equations:

• (Beta) ev〈f ∗π1, π2 〉 = f : C × A→ B
• (Eta) (ev〈gπ1, π2〉)∗ = g : C → BA.

Thus, a cartesian closed category with specified structure is given by the following data: a

specified object >, two binary operations × and (−)(−) on objects, the basic arrows A
idA−→ A,

A
!A−→ >, A × B

πA,B1−→ A, A × B
πA,B2−→ B, BA × A evA,B−→ B , the unary rule of Currying, and

two binary rules of composition and pairing. Finally we postulate the equations of cartesian
categories with (Beta) and (Eta).

Exercise 1.18 Check that the equations guarantee the bijection
C(C × A,B) ∼= C(C,BA), and this bijection is natural in C and B.

The category CCC is defined as follows: its objects are cartesian closed categories with
specified structure and its morphisms are functors preserving the structure on the nose.

There is a forgetful functor CCC
U−→ Graph.

Examples 1.19

1. Set (see Exercise 1.10) and more generally functor categories (presheaves) SetC
op

. In
the case of Set, BA is the set of all functions from A to B, ev is evaluation: ev(g, a) =
g(a), and currying is: f ∗(c)(a) = f(c, a), for all g ∈ BA, f ∈ BC×A, a ∈ A, c ∈ C.

2. ω-CPO: Objects are posets in which ascending ω-chains have suprema. Arrows are
functions preserving suprema of chains (hence, monotone). Products are cartesian
products, with pointwise order structure, > = {∗}, BA = ω-CPO(A,B) with order
and sups defined pointwise (e.g. (

∨
n fn)(a) =

∨
fn(a)). The rest of the structure is

induced from Set.

3. Heyting Semilattices: A cartesian closed poset = (P,≤,>,∧,⇒) is a poset satis-
fying, for all a, b, c ∈ P ,

a ≤ >

a ∧ b ≤ a a ∧ b ≤ b,

c ≤ a c ≤ b
c ≤ a ∧ b

c ∧ a ≤ b iff c ≤ a⇒ b

So, ba = a⇒ b is the largest element whose meet with a is less than or equal to b. A
Heyting Algebra (P,≤,>,∧,⇒,∨,⊥) is a cartesian closed poset with finite coproducts
and an initial object. These are the posetal models of intuitionistic propositional
calculus.

15

The canonical example is due to Stone and Tarski: LetX ∈ Top be a topological space.
Then O(X), the poset of open subsets of X, is a Heyting algebra: for U, V ∈ O(X),
U ∧ V = U ∩ V , U ∨ V = U ∪ V , U ⇒ V = int((X \ U) ∪ V), > = X, ⊥= ∅.

4. Cat: The category of (small) categories in Example 1.6 is cartesian closed. We
have already introduced the notion of product of two categories, and we leave it as an
exercise to verify that the appropriate functor category acts as an exponential in this
setting.

5. Deductive Systems for {∧,⇒,>} and free ccc’s: In general, ccc’s will corre-
spond to labelled deductions in intuitionistic {∧,⇒,>}-logic. We add to the cartesian
{∧,>}-fragment one new axiom schema evA,B (evaluation) and one new rule of infer-
ence (Currying):

(A⇒ B) ∧ A evA,B−→ B and

C ∧ A f−→ B

C
f∗−→ (A⇒ B)

Curry

.

We form F (G), the free ccc generated from graph G, as follows. Formulas are generated
from the atomic formulas (i.e. objects of G) using {>,∧,⇒}. Proofs are generated
from the nonlogical axioms (i.e. arrows of G) together with the axioms (identity),
(terminal), (projections), (evaluation) using the rules: (pairing), and (currying). We
impose the equations of ccc’s between proofs.

The operation F (−) is functorial. Indeed, the forgetful functor U has a left adjoint F ,

CCC �
F

U
- Graph, with F (G) the free ccc as described above.

Labels on proofs may be encoded by typed lambda terms, in the familiar manner. This
is detailed in [LS]. For example, in the currying rule above, f ∗ = λx:Af(〈z, x〉) where
z : C.

Finally, the universal property of F (G) says the following: for any ccc C and graph
morphism J : G → U(C), there is a unique extension to a strict ccc-functor − J :
F (G)→ C.

Exercise 1.20 (For λ-calculus hackers) Verify in what sense the equations (Beta)
and (Eta) above correspond to their λ-calculus counterparts. Actually, (Beta)–as
written–corresponds to a restricted version of β-conversion, where we substitute a
variable rather than an arbitrary term.

6. CCC’s = Typed Lambda Calculi: This example is basic to categorical logic and
proof theory. Cartesian closed categories are equivalent to typed lambda calculi (with
product types) in a strong sense. Let CCC be the category of ccc’s with specified
structure and strict ccc functors. Similarly, we may define the category of typed λ-
calculi, whose objects are (not necessarily freely generated) typed lambda-calculi, and
whose morphisms are translations, i.e. interpretations strictly preserving the lambda

16

structure (see [LS]). There is a natural equivalence of categories:

CCC �
C

L
- Typed λ-Calculus

Here, associated to every ccc C there is a typed lambda calculus L(C), the internal
language of C. Roughly speaking, the types of L(C) are the objects of C and the
terms are freely generated, using the arrows of C as new term-forming operations
(where currying corresponds to λ-introduction). The equations are generated by the
equalities in C. Conversely, C(L), the ccc syntactically generated by a lambda theory
L, is essentially the closed term model, viewed as a ccc (for details, see [LS]). We
remark that for this to go through, we require that our languages (in this case typed
λ-calculi) need not be freely generated (in the same sense that deductive systems can
be generalized). Moreover, F (G), the free ccc generated by graph G, is equivalent
to C(L(G)), where L(G) is the typed lambda calculus generated by the graph G (
analogous to L(C)).
This categorical equivalence of ccc’s, typed lambda calculi, and equivalence classes
of proofs in intuitionistic deductive systems is the ultimate categorical form of the
Curry-Howard isomorphism, and is due essentially to Lambek.

7. Presheaves SetC
op

, the category of presheaves on C, is the functor category
whose objects are contravariant functors Cop → Set and whose maps are natural
transformations between them. Set is the special case when C = One. The ccc
structure of presheaves is given as follows:

>(A) = {∗}
(F ×G)(A) = F (A)×G(A)

GF (A) = nat(C(−, A)× F,G)

GF × F ev−→ G is defined by:
evC(θ, c) = θC(idC , c) , c ∈ F (C).

θ∗ : H → GF is defined by:

θ∗A(a)C(h, c) = θC(H(h)(a), c),

where h : C → A, a ∈ H(A).

For some purposes, it is slightly more convenient to consider “covariant” presheaf
categories SetD, which of course are included in the previous case, by observing that
SetD = Set(D

op)op .

8. Special Case: G-Sets as presheaves.

Let G be a group, X a set. Let Sym(X) = the group of all bijections of X. A G-set
is a group homomorphism G → Sym(X). Equivalently, a G-set is a left action map
. : G×X → X, denoted (g, x) 7→ g.x satisfying:

(i) eG.x = x, for all x ∈ X;

(ii) g1.(g2.x) = (g1g2).x, for all gi ∈ G, x ∈ X.

17

The category G-Set of G-sets and G-set maps is defined as follows. Objects are G-sets.
A G-set arrow X → Y is an equivariant function, i.e. a Set-function f : X → Y such
that for all g ∈ G, x ∈ X, f(g.x) = g.f(x).

Exercise: G-Set ∼= SetG, where in the right-hand-side, the group G is considered as
a category with one object (in which all arrows are isos).

Hence G-Set is a ccc. The ccc-structure can be described as follows. Let X, Y be two
G-sets.

Product: X × Y , with action g.(x, y) = (g.x, g.y).

Exponentials: Y X (all set maps), with action (g.f)(a) = g.(f(g−1.a)). In particular,
we have ev(g.(f, x)) = g.ev(f, x) , for all f ∈ Y X , x ∈ X, g ∈ G.

9. Per(N)

A per (partial equivalence relation) is a symmetric, transitive relation on a set. We
shall consider the category of pers on a functionally complete partial combinatory
algebra. For example, consider the Kleene algebra (N, .), in which m.n = {m}(n) is
the application of the m partial recursive function to input n. We form the category
Per(N) as follows: the objects of Per(N) are the pers on N, denoted R, S, T, · · ·.
The arrows of Per(N) are equivalence classes of certain partial recursive functions,
denoted by their gödel number. Given a partial recursive function {e} : N ⇀ N,
e represents an arrow R → S iff ∀m,n[mRn ⇒ e.m ↓, e.n ↓ and e.mSe.n]. Two
indices representing arrows e, e′ : R → S are equivalent, denoted e ∼ e′ : R → S, iff
∀m,n[mRn→ e.m ↓, e′.n ↓ and e.mSe′.n] .

This structure forms a ccc. For products, the recursive bijection N×N ∼= N, induces a
pairing function 〈−,−〉. Define 〈a, b〉R× S〈a′, b′〉 iff aRa′ and bSb′. For exponentials,
define (SR,∼SR) = (Per(N)(R, S),∼), where ∼ is the above equivalence relation on
indices. Getting the ccc structure, notably the operation of Currying, requires some
elementary recursion theory (Kleene’s s-m-n theorem) [BFSS]. This example admits
many generalizations.

10. Coherence Spaces and Stable Maps. A coherence space A is a family of sets
satisfying:

• (i) a ∈ A and b ⊆ a implies b ∈ A.

• (ii) if B ⊆ A and if ∀c, c′ ∈ B(c ∪ c′ ∈ A) then ∪B ∈ A.

In particular, ∅ ∈ A. Morphisms are stable maps, i.e. monotone maps preserving
pullbacks and filtered colimits. That is, f : A → B is a stable map if (i) b ⊆ a ∈ A
implies f(b) ⊆ f(a), (ii) f(∪i∈Iai) = ∪i∈If(ai), for I directed, and (iii) a ∪ b ∈ A
implies f(a ∩ b) = f(a) ∩ f(b). This gives a category Coh. Every coherence space A
yields a reflexive-symmetric (undirected) graph (|A|,_^) where |A| = {a | {a} ∈ A}
and a_^b iff {a, b} ∈ A. Moreover, there is a bijective correspondence between such
graphs and coherence spaces.

18

Given two coherence spaces A,B their product A × B is defined via the associated
graphs as follows: (|A×B|,_^A×B) , with |A×B| = |A|+ |B| = ({1}×|A|)∪({2}×|B|)
where (1, a) _^A×B(1, a′) iff a _^Aa

′, (2, b) _^A×B(2, b′) iff b _^Bb
′, and (1, a) _^A×B(2, b)

for all a ∈ |A|, b ∈ |B|. The function space BA = Coh(A,B) of stable maps can be
given the structure of a coherence space, ordered by Berry’s order: f � g iff for all
a, a′ ∈ A, a′ ⊆ a implies f(a′) = f(a) ∩ g(a′). For details, see [GLT]. This class of
domains led to the discovery of linear logic (cf. Example 2.15).

A bicartesian closed category (biccc) is a ccc with binary coproducts and an initial object
(often denoted by 0). It corresponds to the proof theory of full intuitionistic propositional
logic, i.e. of the connectives {∧,∨,⇒,>,⊥}.

Exercise 1.21 A bicartesian closed category satisfies AB+C ∼= AB × AC , A0 ∼= 1 and the
distributive law: (A+B)× C ∼= (A× C) + (B × C).

Observe that until now we have been discussing the proof theory of intuitionistic logics.
What can we say about the proof theory of classical logic? Writing ¬A = 0A = A⇒ 0, notice
that in any biccc there is a canonical arrow or proof A → ¬¬A. A naive guess for a model
for classical logic is to demand that this arrow should be an isomorphism, so A ∼= ¬¬A. Let
us call such biccc’s Boolean categories.

The following surprising theorem about biccc’s also characterizes Boolean categories. For
a proof and discussion of this theorem, see [LS].

Theorem 1.22 (Joyal) In any biccc, there is at most one arrow A→ 0. In particular, in
the associated intuitionistic propositional calculus, there is at most one proof of A →⊥ and
hence at most one proof of ¬A, up to equivalence of proofs.

Thus Boolean categories are necessarily preorders and, up to equivalence of categories, the
only such are boolean algebras!

So to understand the proof theory of classical logic requires a more sophisticated ap-
proach. It turns out that this involves categorical versions of Parigot’s λµ-calculus and ideas
arising from the notion of continuations in programming language theory. The appropriate
categorical framework, called control categories, was developed by P. Selinger in [Sel].

2 Monoidal and ∗-Autonomous Structures

Definition 2.1 A monoidal (or tensored) category (C, I,⊗, α, `, r) is a category C, with

functor ⊗ : C × C → C, unit object I ∈ ob(C), and specified isos: αABC : (A ⊗ B) ⊗ C
∼=−→

A⊗(B⊗C), `A : I⊗A
∼=−→ A , rA : A⊗I

∼=−→ A satisfying the following: `I = rI : I⊗I → I
, as well as:

A⊗ (I ⊗ C)
α
- (A⊗ I)⊗ C

A⊗ C

1⊗ `C
?

= A⊗ C

rA ⊗ 1
?

A(B(CD))
α
- (AB)(CD)

α
- ((AB)C)D

A((BC)D)

1⊗ α
? α

- (A(BC))D

α⊗ 1
6

19

where we omit ⊗’s in the second diagram for typographical reasons. This diagram is known
as the Mac Lane pentagon.

A monoidal category is a very basic structure. There are any number of additional
structures one may add to this basic definition. The structures of relevance to this paper are
symmetric structure, closed structure, or traced structure. We now begin the description of
these structures.

Suppose first that there is a natural isomorphism sAB : A ⊗ B → B ⊗ A satisfying the
following three diagrams:

(1)

A⊗B
sA,B- B ⊗ A

@
@
@
@
@

id
R

A⊗B

sB,A

?

(2)

B ⊗ I
sB,I- I ⊗B

A
A
A
A
A
A

'
U ��
�
�
�
�
�

'

B

(3)

A⊗ (B ⊗ C)
α
- (A⊗B)⊗ C

sA⊗B,C- C ⊗ (A⊗B)

A⊗ (C ⊗B)

idA ⊗ sB ,C

? α
- (A⊗ C)⊗B

sA,C ⊗ id
- (C ⊗ A)⊗B

α

?

C is symmetric if diagrams (1), (2), and (3) commute.

Examples 2.2

1. Any cartesian category, with ⊗ = ×.

2. Any co-cartesian category (= finite coproducts), with ⊗ = +

3. Rel×. This is the category Rel whose objects are sets and whose arrows are binary
relations. The functor ⊗ : Rel×Rel→ Rel is defined as follows. On objects, ⊗ = ×,

while on maps, A ⊗ B R⊗S−→ C ⊗ D is given by: (a, b)R ⊗ S(c, d) iff aRc & bSd. The
tensor unit I = {∗}, any one element set.

4. Rel+. This is again the category Rel, except ⊗ = + (disjoint union), I = ∅, and

where A⊗B R⊗S−→ C ⊗D is given by:

(a, 0)R⊗ S(c, 0) if and only if aRc

(b, 1)R⊗ S(d, 1) if and only if bSd

where disjoint union in Set is given by: X + Y = X × {0} ∪ Y × {1}

20

5. Two important monoidal subcategories of Rel+ are:

1. Pfn: Sets and partial functions.
2. PInj: Sets and partial injective functions.

6. Vecfd and Vec: (finite dimensional) vector spaces over k, where k is a field. Here
V ⊗W is taken to be the usual tensor product, and I = k.

Next, it is natural to ask that the tensor product have an appropriate adjoint, and this
leads us to our next definition.

Definition 2.3 A symmetric monoidal closed category (smcc) C is a symmetric monoidal
category such that for all A ∈ C, −⊗ A : C → C has a right adjoint A −◦ −, i.e. there is an
isomorphism, natural in B,C, satisfying C(C⊗A,B) ∼= C(C,A −◦ B) . This is the monoidal
analog of cartesian closed category; A −◦ B is the “linear exponential” or “linear function
space”. In particular there are evaluation and coevaluation maps (A −◦ B) ⊗ A → B and
C → (A −◦ (C ⊗ A)), satisfying the adjoint equations.

Examples 2.4

1. Any ccc, with A⊗B = A×B and A −◦ B = A⇒ B.

2. A poset P = (P,≤) is an smcc iff there are operations ⊗,−◦: P 2 → P , 1 ∈ P
satisfying:

1. (P,⊗, 1) is a commutative monoid.

2. ⊗,−◦ are functorial in the posetal sense: i.e. x ≤ x′, y ≤ y′ implies x⊗y ≤ x′⊗y′
and x′ −◦ y ≤ x −◦ y′

3. (Closedness) x⊗ y ≤ z iff x ≤ y −◦ z.

3. Girard’s Phase Semantics: This is a posetal smcc, in the sense of Example 2 above.
Let M = (M, ., e) be a commutative monoid. Consider the poset P(M), the powerset
of M . We view P(M) as a poset ordered by inclusion. For X,Y ∈ P(M), define

X ⊗ Y = {x.y | x ∈ X, y ∈ Y } =def X .Y

X −◦ Y = {z ∈M | z.X ⊆ Y }
I = {e}

4. Vec, where V ⊗W is the usual algebraic tensor product and V −◦ W = Lin(V,W).
More generally, consider R-Modules over a commutative ring R, with the standard
algebraic notions of V ⊗RW and V −◦ W = Hom(V,W).

21

5. MOD(G). This example extends groups acting on sets to groups acting linearly
on vector spaces. Let G be a group and V a vector space. A representation of G
on V is a group homomorphism ρ : G → Aut(V); equivalently, it is a left G-action
G × V

.

−→ V (satisfying the same equations as a G-set) such that v 7→ g.v is a
linear automorphism, for each g ∈ G. The pair (ρ, V) is called a G-module or G-space.
MOD(G) has as objects the G-modules and as morphisms the linear maps commuting
with the G-actions. Define the smcc structure of MOD(G) as follows:

V ⊗W = the usual tensor product, with action determined by

g.(v ⊗ w) = g.v ⊗ g.w

V −◦ W = Lin(V,W), with action (g.f)(v) = g.f(g−1.v) ,

the contragredient action.

We recommend [FH] as an introduction to group representation theory.

Exercise 2.5 Formulate intuitionistic linear logic (ILL) as a deductive system, and show
(with appropriate equations between proofs) it forms an smcc.

We now come to the fundamental definition, which will correspond to the proof theory
of MLL. To model classical linear logic, we need an involutive negation. In what follows, ⊥
should not be confused with its use in the previous chapter (as an initial object). The idea is
that one chooses an object, which will be called ⊥, and then defines (linear) negation via the
formula A⊥ = A −◦⊥. However to make this negation involutive, we should have A = A⊥⊥,
or since we are approaching this categorically, A ∼= A⊥⊥. This leads to the definition of
∗-autonomous category.

Definition 2.6 A ∗-autonomous category (C,⊗, I,−◦,⊥) is an smcc with a distinguished
dualizing object ⊥, such that (letting A⊥ = A −◦⊥), the canonical map µA : A→ A⊥⊥ is an
iso, for all A (i.e. “all objects are reflexive”).

Facts about ∗-autonomous categories C:

• We get a dualizing functor Cop ()⊥−→ C s.t. C(A,B) ∼= C(B⊥, A⊥) which is a natural
iso.

• C is closed under duality of categorical constructions: e.g. C has products iff it has
coproducts, pullbacks iff pushouts, C is complete iff co-complete, etc.

• (A −◦ B)⊥ ∼= A⊗B⊥ and I ∼=⊥⊥ Also A −◦ B ∼= B⊥ −◦ A⊥.
• We may define A ...

............
.................................. B = (A⊥ ⊗ B⊥)⊥. In general, ⊗ 6=...

............
.................................. , and (in general) there is

not even a C-morphism A⊗B → A ...
............
.................................. B.

• As we shall see below, categorical models of MALL (multiplicative, additive linear
logic) will be ∗-autonomous categories with products (and hence coproducts).

Example 2.7 Sets and relations. The category Rel×, with its usual monoidal structure, is
probably the simplest ∗-autonomous category. The dualizing object is any one element set.
We leave the details as an exercise. We will consider this example further below when we
introduce compact closed categories.

22

Example 2.8 Finite-dimensional vector spaces. The category Vecfd, with its usual
monoidal structure, is also a ∗-autonomous category. The dualizing object is the base field.
We will also consider this example further when we introduce compact closed categories.

Example 2.9 ∗-autonomous posets and lattices. Girard’s phase semantics [G1] gives ex-
amples of ∗-autonomous lattices, i.e. structures (P,≤,⊗, I,−◦,⊥,∧,∨) which are pose-
tal ∗-autonomous categories. One method of construction is to consider closure operators
j : P → P such that j(x) ⊗ j(y) ≤ j(x ⊗ y) . We consider the j-closed elements, i.e. the
fixed points Fix(j) = {p ∈ P | j(p) = p}. We then seek to define a ∗-autonomous structure
on Fix(j).

For example, consider Girard’s phase semantics (Example 2.4). Observe that the powerset
of a monoid P(M) has both a lattice as well as a phase semantics structure. Pick an arbitrary
⊥∈ P(M), and consider (−)⊥ : P(M) → P(M) given by: X⊥ = {p | p.X ⊆⊥}. Let
j = (−)⊥⊥. On the set Fix(j) = (−)⊥⊥-closed elements of P(M) (Girard calls them facts),
we define: G⊗H = (G.H)⊥⊥, G ...

............
.................................. H = (G⊥.H⊥)⊥,

G ∧H = G ∩H, G ∨H = (G ∪H)⊥⊥.

Example 2.10 Finiteness spaces. This example is due to T. Ehrhard [Ehr3]. It is an
elaboration of the category Rel. Let X be a set and u, v ⊆ X subsets of X. Say that u
and v are orthogonal, written u ⊥ v, if u ∩ v is finite. If F is a set of subsets of X, write
F⊥ = {v ⊆ X|u ⊥ v for all u ∈ F}.

Ehrhard defines a finiteness space to be a pair (X,F) where X is a set and F is a set of
subsets of X such that F⊥⊥ = F . A morphism R: (X,F)→(Y,G) is a subset R ⊆ X × Y
such that for all u ∈ F we have R(u) ∈ G, and for all v ∈ G we have Rop(v) ∈ F . Here
Rop is the reciprocal of R. It is straightforward to verify that this is indeed a category, with
composition the usual relational composition. Then define:

• (X,F)⊥ = (X,F⊥)

• (X,F)⊗ (Y,G) = (X × Y, {u× v|u ∈ F , v ∈ G}⊥⊥)

• ⊥= (∅, {∅})

The rest of the details that we indeed have a ∗-autonomous category are straightforward.

Example 2.11 Poset-valued sets. This is a class of models constructed by de Paiva and
Schalk [PS], which can also be thought of as a generalization of Rel. One considers a ∗-
autonomous poset, P , for example a Girard quantale or a phase space, as described above.
Then a P -valued set is defined to be a pair (A, f) where A is a set and f :A→P is a function.
A morphism between P -valued sets R: (A, f)→(B, g) is a relation R:A→B such that xRy
implies f(x) ≤ g(y). Then one defines (A, f)⊗(B, g) = (A×B, f⊗g), where f⊗g is defined
using the monoidal structure of P . The rest of the ∗-autonomous structure of P similarly
lifts to the category.

Example 2.12 Topological vector spaces. We have already mentioned that the category of
finite-dimensional vector spaces is ∗-autonomous, with the usual notion of dual space acting

23

as negation. If one only wishes to consider discrete vector spaces, this is the best one can
do. Indeed it is a standard result that a vector space is isomorphic to its second dual if
and only if it is finite-dimensional, the problem being that the second dual of an infinite-
dimensional space is substantially larger than the original space. If one wishes to consider
infinite-dimensional spaces, one must add an additional topological structure.

So one passes to a category in which the objects are topological vector spaces and the
morphisms are linear continuous maps. The hope in doing this is that in requiring continuity,
one will decrease the size of the dual space to such an extent that one will be able to obtain
additional objects isomorphic to their second dual and still retain the closed structure. It
was the consideration of such spaces by Barr that led to the original axiomatization of
∗-autonomy. One appropriate notion of topology, introduced by Lefschetz, is the linear
topology. This is the notion that led Barr to his axiomatization. See [Barr80, Bl96] for the
details of the following.

Definition 2.13 Let V be a vector space. A topology τ on V is a linear topology if it
satisfies the following three properties:

• τ is hausdorff.

• The topology τ makes V a topological vector space, i.e. addition and scalar multipli-
cation are continuous.

• The origin has a neighborhood basis of open linear subspaces.

We get a category TVec when one takes as morphisms the linear, continuous maps. It can
be shown that this is a symmetric monoidal closed category. The tensor product in TVec
is given by an appropriate topology on the tensor of the underlying spaces, and the internal
hom is given by the space of linear, continuous maps, again with an appropriate topology.
This notion of topology is ideal in that one can show that the usual embedding of V into its
second dual is always a bijection. So we have indeed reduced the second dual space to the
appropriate size. If one restricts to the category of objects for which the embedding is also
a homeomorphism, one obtains a category RTVec, and Barr demonstrates:

Theorem 2.14 RTVec is a complete, cocomplete ∗-autonomous category.

Example 2.15 Coherence spaces and linear maps. This example led to linear logic. Recall
the ccc Coh of coherence spaces and stable maps was discussed at the end of Section 1.7,
Example 10. A morphism f : A → B in Coh is linear if for any X ⊆ A such that for all
b, c ∈ X, b ∪ c ∈ A, we have f(

⋃
X) =

⋃{f(b) | b ∈ X}. Let Cohlin be the subcategory of
Coh consisting of coherence spaces and linear maps. This is ∗-autonomous, via the familiar
constructions [GLT].

Example 2.16 And many more.... The above list is by no means comprehensive. ∗-
autonomous categories appear in many guises, in many branches of mathematics. There
are at least three additional examples which should certainly be mentioned.

24

• Game semantics. An extremely important class of examples arises from game theory,
with important computational properties. We recommend [Abr97] as an introduction.
• The Chu construction. This is a simple construction, which applied to a symmetric

monoidal closed category (with pullbacks) canonically yields a ∗-autonomous cate-
gory. Despite being straightforward, it would seem to have a number of remarkable
properties. The construction is due to Barr and Chu [Barr80], and has been studied
extensively by Pratt. See [DHPP] for one example of the applicability of Chu spaces.
• Recent work of Ehrhard and Regnier on Köthe spaces and the differential lambda-

calculus suggests a whole new avenue to explore in the categorical semantics of linear
logic. See [Ehr2, ER].

Summary of necessary structure

To aid comparison with proof theory, let us finally sum up the situation so far:

SMCC’s with Products

Arrow-generating Rules Equations

A
id−→ A

A
f−→ B B

g−→ C

A
gf−→ C equations of a category

A
f−→ B A′

g−→ B′

A⊗ A′ f⊗g−→ B ⊗B′
⊗ is a functor : ff ′ ⊗ gg′ = (f ⊗ g)(f ′ ⊗ g′)

id⊗ id = id

A⊗ (B ⊗ C)
α−→ (A⊗B)⊗ C α, s, ` are natural isos

A⊗B s−→ B ⊗ A and equations for smcc’s

I ⊗ A `−→ A

A⊗B f−→ C

A
f∗−→ (B −◦ C)

−◦R
equations for monoidal closedness

(A⊗B)⊗ A ev−→ B

Γ
f−→ A Γ

g−→ B

Γ
〈f,g〉−→ A×B cartesian products

A×B π1−→ A A×B π2−→ B

A
!A−→ >

This gives us symmetric monoidal closed categories (smcc’s) with products. At this point we
could also add coproducts, denoted + (or in linear logic ⊕), and their associated equations,

25

dual to products. But as mentioned previously, once we have ∗-autonomous categories, we
get duality for free, essentially by De Morgan duality.

Adding Negation

Arrow-generating Rules Equations

A
f−→ B

B⊥
f⊥−→ A⊥ (−)⊥ is contravariant functor

A⊥ −→ (A −◦⊥) These are natural isos
(A −◦⊥) −→ A⊥

(A −◦ B)→ (B⊥ −◦ A⊥) Natural strength iso

A→ ((A −◦⊥) −◦⊥) natural iso

These equations specify that the action of the functor (−)⊥ is given by a dualizing object
⊥, and a natural iso (−)⊥⊥ ∼= id.

The next notion is much more familiar mathematically, although logically it corresponds to
a rather degenerate case of linear logic: the case where ⊗ = ...

............
.................................. :

Definition 2.17 A compact closed category [KL] is a symmetric monoidal category such
that for each object A there exists a dual object A∗, and canonical morphisms:

ν: I → A⊗ A∗
ψ:A∗ ⊗ A→ I

such that evident equations hold. In the case of a strict monoidal category, these equations
reduce to the usual adjunction triangles.

Lemma 2.18 • Compact closed categories are ∗-autonomous, with the tensor unit as
dualizing object.

• As in any ∗-autonomous category in which the tensor unit is the dualizing object, there
is a canonical morphism A ⊗ B→A ...

............
.................................. B. (This is an instance of a more general

observation. Such categories validate the Mix rule, which states:

` Γ ` ∆
` Γ,∆

Mix

This rule is not valid in linear logic, but the theory with Mix added is of great interest.)
For compact closed categories, this map is an isomorphism.

Examples 2.19

26

• Rel× is compact. On objects, define A ⊗ B = A −◦ B = A × B, I =⊥= {∗} (any 1-

element set) and A⊥ = A. On morphisms, if A
R−→ B, define B⊥

R⊥−→ A⊥ = B
Rop−→ A.

It is easy to check that

Rel×(C ⊗ A,B) ∼= Rel×(C,A −◦ B) ∼= P(C × A×B)

Rel×(A,B) ∼= Rel×(B⊥, A⊥)

(A⊗B)⊥ = A×B = A⊥ ⊗B⊥

• Vecfd (finite dimensional vector spaces over field k) is also compact: Here ⊥= k,
V −◦ W = Lin(V,W), so V ⊥ = V −◦⊥= Lin(V,k) = V ∗, the dual space of V . There
is a natural isomorphism V ∼= V ∗∗ given by the canonical map V → V ∗∗. Indeed,
an arbitrary vector space is finite dimensional iff this canonical map V → V ∗∗ is an
isomorphism.

• Let P and P ′ be posets. An order ideal from P to P ′ is a relation R ⊆ P×P ′ satisfying

x1 ≤P x2 & x2Ry2 & y2 ≤P ′ y1 =⇒ x1Ry1

One readily verifies that order ideals do indeed form a category with the inequality
itself, viewed as a binary relation, acting as identity. The compact closed structure of
Rel× extends readily, except now P⊥ = P op. See [RW] for a detailed discussion of this
category.

What are monoidal functors between monoidal categories? Here there may be several
notions. Let us pick an important one:

Definition 2.20 A monoidal functor between monoidal categories is a 3-tuple (F,mI ,m)
where F : C → D is a functor, together with two natural transformations mI : I −→ F (I)
and mUV : F (U)⊗F (V) −→ F (U⊗V) satisfying some coherence diagrams (which we omit).
F is strict if mI ,mUV are identities. A monoidal functor is symmetric if m commutes with
the symmetries: mB,AsFA,FB = F (sA,B)mA,B, for all A,B.

Finally, we need an appropriate notion of natural transformation for monoidal functors.

Definition 2.21 A natural transformation α : F → G is monoidal if it is compatible with
both mI and mUV , for all U, V , in the sense that the following equations hold:

αI omI = mI

mUV o(αU ⊗ αV) = αU⊗V omUV

Let ∗-Autst be the category of ∗-autonomous categories and strict ∗-autonomous func-
tors. We wish to construct free such categories, i.e. to find a left adjoint F to the forgetful
functor U : ∗-Autst → Graph, so F (G) will be the free ∗-autonomous category generated
by the graph G. The procedure is now familiar: one sets up an appropriate deductive system

27

(generated by G) for MLL (cf. Example 5 in Section 1.7) and imposes the relevant equations
between proofs. A related, but more delicate issue is to set up the fundamental equivalence of
categorical logic, as in Example 6 in Section 1.7 , between ∗-autonomous categories and their
internal logics, which are calculi of proof-terms. Thorny categorical questions like dealing
with the units and coherence equations must also be taken into account.

These and related issues are discussed in the work of Cockett, Seely and others, see
[CS1, CS2, BCST, BCS1, BCS2], which begins with an alternate approach to ∗-autonomous
categories and the model theory of linear logic. The starting point is the notion of linearly
distributive category1. Roughly, LDCs axiomatize multiplicative linear logic in terms of
tensor and par, as opposed to tensor and negation. So an LDC is a category with two
monoidal structures which interact via a linear distribution. One may then add negation as
an additional structure.

Definition 2.22 A symmetric linearly distributive category (SLDC) is a category C
equipped with

• Two bifunctors ⊗, ...
............
.................................. : C ×C → C, together with objects and isomorphisms endowing C

with two monoidal structures.

• Linear distributivity natural transformations

1. ωLABC : A⊗ (B ...
............
.................................. C)→ (A⊗B) ...

............
.................................. C

2. ωRABC : A⊗ (B ...
............
.................................. C)→ (A⊗ C) ...

............
.................................. B

• a number of coherence conditions.

A symmetric linearly distributive category with negation is an SLDC together with an
object function (−)⊥ on ob(C) and natural maps A⊗ A⊥ γA−→⊥, I

τA−→ A ...
............
.................................. A⊥ satisfying:

I ⊗ A
τ ⊗ A

- (A ...
............
.................................. A⊥)⊗ A

@@
swRs
R

A ...
............
.................................. (A⊥ ⊗ A)

	��
A ...

............
.................................. γs

A

`⊗A

?
�

`
...

............
..................................

A ...
............
.................................. ⊥

Theorem 2.23 (Cockett-Seely) SLDC’s with negation are the same as ∗-autonomous cat-
egories.

Let us give an example from the above reference.

1Originally referred to as weakly distributive categories.

28

Example 2.24 A shift monoid (M, 0,+, a) is a commutative monoid with an invertible
element a. Let x.y = x+y−a. Then note that x.(y+z) = (x.y)+z, which is an instance of a
linear distributivity. Shift monoids are exactly discrete linearly distributive categories. Shift
groups , i.e. shift monoids which are groups, are exactly discrete ∗-autonomous categories.
In the latter case, linear negation is defined by x⊥ = a− x.

The references cited above, beginning with the notion of linearly distributive category,
extend the categorical analysis of linear logic in several directions. Using (two-sided) proof
nets, a natural deduction system for various fragments of linear logic, the authors give explicit
constructions of free weakly distributive and ∗-autonomous structures [BCST], and extend
this idea to the exponential fragment [CS1]. In [CS2, BCS2], these ideas are extended to
include functors between linearly distributive categories and a logic for the analysis of such
functors is presented.

3 Monads and Exponentials

3.1 Monads

Monads (also called triples or standard constructions) arose in the 1960’s from the theory of
adjoint functors and have played a central role in category theory ever since. It turns out
that many categories of interest are “monadic”, i.e. equivalent to categories of (Eilenberg-
Moore) algebras of a monad, and thus arise from a pair of adjoint functors, as we discuss
below. The general theory has many consequences, for example “monadicity” is a far-
reaching generalization of the concept of “equationality” which includes not only traditional
equational varieties of universal algebras but also theories with infinitary operations as well
as certain topological categories (e.g. compact Hausdorff spaces).

More recently, monads have played an important role in theoretical computer science. For
example, the power set monad discussed below (and its domain-theoretic variants introduced
by Plotkin) are now a standard tool in modelling nondeterminacy, while coalgebraic methods
are fundamental in concurrency theory. The influential work of E. Moggi [Mog] introduced
monads and comonads into programming language semantics as a kind of structuring tool:
they permit a modular treatment of such important programming features as exceptions,
side-effects, non-determinism, resumptions, dynamic allocation, etc.

Definition 3.1 A monad on a category C is a 3-tuple (T, η, µ), where T : C → C is a functor,
η : Id −→ T (unit) and µ : T 2 −→ T (multiplication) are two natural transformations
satisfying the following equations:

T
Tη
- T 2

@
@
@id R

T 2

ηT
?

µ
- T

µ
?

T 3 µT
- T 2

T 2

Tµ
?

µ
- T

µ
?

29

A comonad on D is a monad on Dop. Thus a comonad is a functor G : D → D, together
with natural transformations ε : G → Id (counit) and δ : G → G2 (comultiplication)
satisfying the dual of the diagrams above.

Examples 3.2

1. Power Set Monad: The covariant power set functor P : Set → Set determines a
monad (P , µ, η), where η : Id→ P is given by: ηX(x) = {x} and µ : P2 → P is given
by: µA(F) = ∪F , where F ⊆ P(A)

2. Adjoint Functors: The canonical examples of monads and comonads arise from a

pair of adjoint functors D �
F

U
- C, where F a U . Let T = UF : C → C. Following

Exercise 1.7, there are natural transformations η : Id→ UF and µ = UεF : UFUF →
UF . We leave it as an exercise to check the monad equations.

Continuing this example, we also obtain a comonad G = FU : D → D, where ε :
FU → Id and δ = FηU : FU → FUFU .

In fact, every monad T : C → C arises from a pair of adjoint functors D �
F

U
- C. Although

the category D is not unique, there are two natural choices:

Theorem 3.3 (Kleisli,Eilenberg-Moore) Every monad (T, η, µ) on C arises from a pair

of adjoint functors D �
F

U
- C for two choices of D, now called the Kleisli and the Eilenberg-

Moore categories, respectively.

• The Kleisli Category of T :

D = Kleisli(T) is defined as follows: the objects of D are the same as the objects of C.
The hom-sets are defined as D(A,B) = C(A, TB). We define the categorical structure
of D as follows:

1. Identity arrows are defined by setting idA : A→ A in D = ηA : A→ TA in C.
2. Composition in D is defined via composition in C as:

A
f−→ B B

g−→ C

A
gf−→ C

in D =

A
f−→ TB

B
g−→ TC

TB
Tg−→ T 2C

A
(Tg)f−→ T 2C T 2C

µc−→ TC
A

µC(Tg)f
- TC

We leave it as an exercise to verify that the associated pair of adjoint functors

D �
F

U
- C are given by: U(A) = T (A), U(h) = µBT (h) for any object A and any

arrow h : A → B in D = Kleisli(T) and F (A) = A , F (f) = ηBf for objects A and
arrows f : A→ B in C.

30

• The Eilenberg-Moore Category

The Eilenberg-Moore category D = CT of a monad T is defined as follows: its objects
are arrows TA

α−→ A (called T -algebras) satisfying: αηA = idA and αµA = αT (α).

Morphisms of T -algebras are arrows A
f−→ B ∈ C commuting with the T -algebra

structure. The definition of objects and arrows in CT is illustrated by the following
commuting diagrams:

A
ηA- TA

@
@
@id R

A

α
?

T 2A
µA- TA

TA

T (α)
? α

- A

α
?

TA
Th
- TB

A

α
? h

- B

β
?

We leave it to the reader to check that CT is a category, with functors CT �
F

U
- C

given by: U(TA
α−→ A) = A and U(h) = h for objects and arrows in CT , and

F (A) = T 2(A)
µA−→ TA and F (f) = T (f) for objects and arrows in C.

Exercise 3.4 1. The Kleisli category of the power set monad P on Set has sets for
objects and functions A

r−→ P(B) for arrows. The arrows may be identified with
relations R ⊆ A × B. Check that composition in the Kleisli category corresponds to
relational composition. Conclude that Kleisli(P) = Rel.

2. The Eilenberg-Moore category of P is exactly the category of sup-complete lattices
and sup-preserving maps.

It may be shown that the Kleisli category of a monad is equivalent to the full subcategory
of the Eilenberg-Moore category consisting of all free algebras, where free algebras in the
Eilenberg-Moore category are those of the form µA:T 2A→TA. .

We can dualize the entire discussion above and speak of the co-Kleisli category of a
comonad G : D → D, of Eilenberg-Moore categories of coalgebras, etc. In this case, Co −
Kleisli(G) will be equivalent to the full subcategory of cofree coalgebras of the Eilenberg-
Moore category of G. This will be relevant for linear logicians, as we now show.

3.2 Adding Exponentials to Linear Logic

The deductive system for MALL, and the equations between proofs we postulated previ-
ously, correspond to the theory of ∗-autonomous categories with products and coproducts.
Although minor variations are possible (e.g. weak vs ordinary products), the story so far
seems to yield a natural and satisfying categorical modelling of MALL proof theory.

Unfortunately, the exponentials are less clear: the structure seems less canonical. Work by
many categorical logicians has refined the original Seely model (e.g. see [See, Bier95, BCS1]),
resulting in interesting and reasonable equations between proofs. We begin with seven basic
derivations and postulate equations which arise directly from the categorical point of view.

31

Functoriality

A
f−→ B

!A
!f−→!B

Monoidalness I
mI−→!I !A⊗!B

mAB−→!(A⊗B)

Products I
nI−→!> !A⊗!B

nAB−→!(A&B)

Dereliction !A
εA−→ A

Weakening !A
ε′A−→ I

Contraction !A
δ′A−→!A⊗!A

Digging !A
δA−→!!A

(Storage)

Let C be a model of MALL proofs, i.e. a ∗-autonomous category with products (and
hence coproducts). We postulate the following additional equational data:

• (!,mI ,mAB) : C → C is a monoidal endofunctor

• !A
εA−→ A and !A

δA−→!!A are monoidal natural transformations.

• (!, δ, ε) is a monoidal comonad.

• nI , nAB are natural isomorphisms.

• The associated adjunction structure 〈F,U, η, ε〉 between the co-Kleisli category of ! and
C is monoidal.

• Various coherence equations [BCS1, HS].

Having products and the canonical isomorphism !(A&B) ∼= !A⊗!B gives added features
that must be postulated in weaker fragments (cf [Bier95, BCS1]). For example, the following
are a consequence of the above properties:

Examples 3.5

(i) The endofunctor ! establishes an isomorphism of the following cocommutative

comonoids: I
ε′A←−!A

δ′−→!A⊗!A ∼= !(> ←− A
∆−→ A&A)

(ii) The forgetful functor from the category of⊗-comonoids in C, say⊗-Comonoids(C) U−→
C has a right adjoint U a ! rendering (!A, ε′A, δ

′
A) a cofree,cocommutative ⊗-comonoid

object in C.

Finally, we remark that the essence of Girard’s original translation of intuitionistic logic
into CLL is the following observation:

Proposition 3.6 (Seely) The co-Kleisli category of the comonad (!, δ, ε) is a cartesian
closed category, in which A⇒ B = !A −◦ B

32

Indeed, recall that in the co-Kleisli category of !, Hom(A,B) is defined to be C(!A,B).

Examples 3.7

1. The category Rel has exponentials. Let X be a set, and define !X to be the set of
all finite multisets on X. We leave the remaining details to the reader. But we note
that this is an instance of a more general construction. Finite multisets on X could be
written as follows:

!X = 0⊕X ⊕X ⊗s X ⊕X ⊗s X ⊗s X . . .

Here 0 is the initial object, ⊕ is disjoint union, which acts as both product and coprod-
uct in this category, and ⊗s is the symmetrized tensor, and is expressed as a certain
quotient (coequalizer). For example, X ⊗sX is the coequalizer of the identity and the
symmetry map. In general, the n’th symmetric group acts on the n-fold tensor of X
with itself, and the symmetrized tensor is the coequalizer of all of these maps.

It was an observation of Barr that this formula works frequently, but certainly not
always. We recommend [HS] as a reference which considers these issues.

2. The inclusion Cohlin ↪→ Coh has a left adjoint ! a ↪→. Thinking of a coherence space
as a graph, !A = (Afin,_^), where Afin is the set of finite cliques in the graph A and
where a_^b iff a ∪ b is a clique. The co-Kleisli category induced by this comonad is
equivalent to Coh. (see for example [Tr]).

3. The category of finiteness spaces described above also has an exponential, as observed
in [Ehr3]. Let (X,F) be a finiteness space, then define its exponential by

!(X,F) = (M(X),M(F))

where M(X) is the set of all finite multisets on X, and M(F)) is an appropriate set
of subsets. See [Ehr3] for further details.

4 Traced monoidal categories and the geometry of in-

teraction

Traced monoidal categories, introduced by Joyal, Street, and Verity [JSV], provide a conve-
nient framework for discussing iteration, parametrized feedback and fixedpoints in computa-
tion, algebra of networks, and categorical aspects of Girard’s Geometry of Interaction (GoI)
program [AHS, Hagh, Hi].

Definition 4.1 A traced symmetric monoidal category is a symmetric monoidal category
(C,⊗, I, s) with a family of functions TrUX,Y : C(X ⊗ U, Y ⊗ U) −→ C(X, Y) pictured in
Figure 1, called a trace, subject to the following conditions:

33

f

X

U

Y

U

-

-

-

-

Figure 1: The trace TrUX,Y (f)

1. Natural in X, TrUX,Y (f)g = TrUX′,Y (f(g ⊗ 1U)) , where f : X ⊗ U −→ Y ⊗ U ,
g : X ′ −→ X,

2. Natural in Y , gTrUX,Y (f) = TrUX,Y ′((g ⊗ 1U)f) , where f : X ⊗ U −→ Y ⊗ U ,
g : Y −→ Y ′,

3. Dinatural in U , TrUX,Y ((1Y ⊗ g)f) = TrU
′

X,Y (f(1X ⊗ g)) , where f : X⊗U −→ Y ⊗U ′,
g : U ′ −→ U ,

4. Vanishing (I, II), TrIX,Y (f) = f and TrU⊗VX,Y (g) = TrUX,Y (TrVX⊗U,Y⊗U(g)), for
f : X ⊗ I −→ Y ⊗ I and g : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V .

5. Superposing,
g ⊗ TrUX,Y (f) = TrUW⊗X,Z⊗Y (g ⊗ f)

for f : X ⊗ U −→ Y ⊗ U and g : W −→ Z .

6. Yanking, TrUU,U(σU,U) = 1U .

We think of TrUX,Y (f) as “feedback along U”, as in Figure 1. Similarly, the axioms of traced
monoidal categories have a geometrical representation given in [AHS] (Appendix 1).

Examples 4.2

1. The category Rel× is traced. Let R : X × U −→ Y × U be a morphism in Rel×.
Then TrUX,Y (R) : X −→ Y is defined by: TrUX,Y (R)(x, y) = ∃u.R(x, u, y, u).

2. The category Vecfd is traced. Let f : V ⊗ U −→ W ⊗ U be a linear map, where
U, V,W are finite dimensional vector spaces with bases {ui}, {vj}, {wk}. We define
TrUV,W (f) : V −→ W by:

TrUV,W (f)(vi) =
∑
j,k

akjij wk where f(vi ⊗ uj) =
∑
k,m

akmij wk ⊗ um.

This reduces to the usual trace of f : U −→ U when V and W are one dimensional.

3. Note that both Rel and Vecfd are compact closed categories. More generally [JSV],
every compact closed category has a canonical trace:

TrUA,B(f) = A ∼= A⊗ I id⊗η−→ A⊗ U ⊗ U⊥ f⊗id−→ B ⊗ U ⊗ U⊥ id⊗ev′−→ B ⊗ I ∼= B

where ev′ = evos.

34

X
f

g
Y

Y Z

Z

= X
f−→ Y

g−→ Z
-

-

-

-

-

-
@
@R�
��

6

Figure 2: Generalized Yanking

4. The category ω-CPO⊥ consists of objects of ω-CPO with a smallest element ⊥,
and maps of ω-CPO that do not necessarily preserve ⊥. Here ⊗ = ×, I = {⊥}. The
(dinatural) family of least-fixed-point combinators YU : UU → U induces a trace, given
as follows (using informal lambda calculus notation): for any f : X × U → Y × U ,
TrUX,Y (f)(x) = f1(x,YU(λu.f2(x, u))), where f1 = π1of : X × U → Y, f2 = π2of :
X×U → U and YU(λu.f2(x, u)) = the smallest element u′ of U such that f2(x, u′) = u′.

In the above examples, ⊗ is based on (cartesian) product. Unfortunately, these examples do
not really illustrate the notion of feedback as data flow: the movement of tokens through a
network. This latter view, emphasized in work of Abramsky and later Haghverdi and Hines
(cf. [AHS, Hagh, Hi]), is illustrated by examples based on coproduct-like traces, given below.

Exercise 4.3 (Generalized Yanking) Let C be a traced symmetric monoidal category,
with arrows f : X→Y and g : Y→Z. Then gof = TrYX,Z(sY,Zo(f ⊗ g)). Find an algebraic
proof of this fact. Geometrically, the reader should stare at the diagram in Figure 2 , and
do a “string-pulling” argument (cf. [JSV])

The next examples of traced monoidal categories arise in considering “coproduct-like”
traces, and are related to dataflow interpretations of graphical networks. We illustrate this
view with categories connected to Rel.

Examples 4.4

1. Rel+ , the category Rel with× = +, disjoint union. SupposeX+U
R−→ Y+U is a re-

lation. The coproduct injections induce four restricted relations : RUU , RUY , RXY , RXU

(for example, RXY ⊆ X × Y is such that RXY (x, y) = R(inX,U1 (x), inY,U1 (y)). Let R∗

be the reflexive, transitive closure of the relation R. A trace can be defined as follows:

TrUX,Y (R) = RXY ∪
⋃
n≥0

RUY oRn
UU

oRXU

= RXY ∪RUY oR∗UU oRXU . (5)

2. Consider the categories Pfn and PInj of sets and partial functions (resp. sets and
partial injective functions), as monoidal subcategories of Rel+. The tensor product
is given by the disjoint union of sets, where we identify A + B = {1} × A ∪ {2} × B
(note that this is not a coproduct in PInj, although it is a coproduct in Pfn). There

35

are the obvious injections inA,B1 : A → A + B and inA,B2 : B → A + B as well as
“quasiprojections” ρ1 : A + B −→ A given by ρ1((1, a)) = a (where ρ1((2, b)) is
undefined) and similarly for ρ2 : A+B −→ B.

Given a morphism f : X + U −→ Y + U , we may consider its four “components”
fXY : X → Y , fXU : X → U , fUX : U → X, and fUU : U → U obtained by pre-

and post-composing with injections and quasiprojections: for example, fXY = X
in1−→

X + U
f−→ Y + U

ρ1−→ Y , (See Figure 3).

X

U

fXY

fUU

fXU

fUY

Y

U
......................

1

q-

....................--

-

-

-

Figure 3: Components of f : X + U → Y + U

Both Pfn and Pinj are traced, the trace being given by the following iterative formula

TrUX,Y (f) = fXY +
∑
n∈ω

fUY f
n
UUfXU , (6)

which we interpret as follows: a family {hi}i∈I : X −→ Y is said to be summable if the
hi’s have pairwise disjoint domains and codomains. In that case, we define their sum

(
∑
i∈I

hi)(x) =

{
hj(x), if x ∈ Dom(hj) for some j ∈ I;
undefined, else.

From a dataflow view, particles enter through X, travel around a loop on U some number
n of times, then exit through Y . Numerous other examples of such “coproduct-like” traces
are studied in [AHS].

The iterative trace formulas (5) and (6) are versions of Girard’s Execution Formula from
his GoI program. A general categorical framework for discussing such traces, and their
connections to Girard’s original work, is studied in Haghverdi’s work [Hagh].

On a more general level, starting with a traced monoidal category C, we now describe
a compact closed category Int(C) described in [JSV] (also called G(C) in [Abr96]) which
captures in abstract form many of the features of Girard’s Geometry of Interaction program,
as well as the general ideas behind game semantics. We follow the treatment in Abramsky
[Abr96].

Definition 4.5 (The Int Construction) Given a traced monoidal category C we define a
compact closed category, Int(C), as follows [JSV, Abr96]:

• Objects: Pairs of objects (A+, A−) where A+ and A− are objects of C.

• Arrows: An arrow f : (A+, A−) −→ (B+, B−) in Int(C) is an arrow f : A+ ⊗ B− −→
A− ⊗B+ in C.

36

• Identity: 1(A+,A−) = sA+,A− .

• Composition: Arrows f : (A+, A−) −→ (B+, B−) and g : (B+, B−) −→ (C+, C−) have
composite gof : (A+, A−) −→ (C+, C−) given by:

gof = TrB
−⊗B+

A+⊗C−,A−⊗C+(β(f ⊗ g)α)

where α = (1A+⊗1B−⊗sC−,B+)(1A+⊗sC−,B−⊗1B+) and β = (1A−⊗1C+⊗sB+,B−)(1A−⊗
sB+,C+ ⊗ 1B−)(1A− ⊗ 1B+ ⊗ sB−,C+). Pictorially, gof is given by symmetric feedback:

?

?

?

?�
�
�
�
��
?

B
B
B
B
BB

?

A+
B− B+ C−

B+ B− C+A−

gf

• Tensor: (A+, A−)⊗ (B+, B−) = (A+ ⊗B+, A− ⊗B−) and for (A+, A−) −→ (B+, B−)
and g : (C+, C−) −→ (D+, D−), f⊗g = (1A−⊗sB+,C−⊗1D+)(f⊗g)(1A+⊗sC+,B−⊗1D−)

• Unit: (I, I).

• Duality: The dual of (A+, A−) is given by (A+, A−)⊥ = (A−, A+) where the unit η :
(I, I) −→ (A+, A−)⊗ (A+, A−)⊥ =def sA−,A+ and counit ε : (A+, A−)⊥⊗ (A+, A−) −→
(I, I) =def sA−,A+ .

• Internal Homs: As usual, (A+, A−) −◦ (B+, B−) = (A+, A−)⊥ ⊗ (B+, B−) = (A− ⊗
B+, A+ ⊗B−).

Translating the work of [JSV] in our setting we obtain that Int(C) is a kind of “free
compact closure” of C at the bicategorical level (for which the reader is referred to [JSV]):

Proposition 4.6 Let C be a traced symmetric monoidal category

1. Int(C) defined above is a compact closed category. Moreover, FC : C −→ Int(C) defined
by FC(A) = (A, I) and FC(f) = f is a full and faithful embedding.

2. The inclusion of 2-categories CompCl ↪→ TraMon of compact closed categories into
traced monoidal ones has a left biadjoint with unit having component at C given by FC.

Following Abramsky [Abr96], we interpret the objects of Int(C) in a game-theoretic
manner: A+ is the type of “moves by Player (the System)” and A− is the type of “moves
by Opponent (the Environment)”. The composition of morphisms in Int(C) is connected to
Girard’s execution formula . In [Abr96] it is pointed out that G(Pinj) captures the essence
of the original Girard model, while G(ω-CPO⊥) is the model of GoI in [AJ1].

Finally, we remark that in [AHS], a general analysis of such algebraic models of GoI is
given. There it is shown how to use the above abstract GoI construction to obtain models of
the {!,−◦} fragment of linear logic, presented in terms of linear combinatary algebras. These

37

are certain combinatory algebras (A, .) equipped with a map ! : A → A and constants
B,C, I,K,W,D, δ, F satisfying the combinatory identities for a Hilbert-style axiomatization
of {!,−◦} (see also [Tr]). The method is sketched as follows.

Let C be a traced smc, with an endofunctor T : C → C and an object (called a reflexive
object) U ∈ C with retractions U ⊗ U � U , I � U , and TU � U . Then if T satisfies
some reasonable axioms and setting V = (U,U) and I = (I, I), it is shown in [AHS] how
the homset Int(C)(I, V) = C(U,U) naturally inherits the structure of a linear combinatory
algebra. For example, in the case of C = Pinj, N is such a reflexive object, with endofunctor
T (−) = N× (−). This example underlies the original Girard GoI constructions. The model
in [AJ1] likewise arises from Int(CPO⊥). Moreover, Girard’s original operator-theoretic
models (in the category of Hilbert spaces), as well as Danos-Regnier’s small model [DR2] are
also captured in the above framework using some additional functorial structure (see [Hagh],
Section 6).

5 Nonsymmetric monoidal categories

One of the most appealing features of linear logic is its flexibility; one can readily define
variants of linear logic which either have a full exchange rule or a very limited exchange rule.
These variants correspond to the varying degrees of symmetry that one gives to the tensor.
In short, just as there are nonsymmetric monoidal categories, there is nonsymmetric linear
logic. The most interesting examples of nonsymmetric monoidal categories occur in the rep-
resentation theory of Hopf algebras. Hopf algebras arise in many areas of physics, computer
science and combinatorics. In this section, we review the basics of nonsymmetric monoidal
categories, how Hopf algebras provide examples, and how these examples correspond to
various types of linear logic.

If we drop the requirement that the tensor be symmetric, then one should consider
categories with two internal HOM ’s. Thus we should have adjunctions of the form:

HOM(A⊗B,C) ∼= HOM(B,A −◦ C)
HOM(A⊗B,C) ∼= HOM(A,C ◦− B)

This is the definition of biautonomous category, an obvious generalization of the symmet-
ric case. Of course, if the tensor happens to be symmetric, this will induce an isomorphism
between the two HOM ’s.

Analogously, to define a nonsymmetric analogue of categories with dualizing objects one
needs two duals, A⊥ and ⊥A. (The dualizing object for each will be the same.) These will
be subject to the isomorphisms:

⊥(A⊥) ∼= (⊥A)⊥ ∼= A

More specifically, a biautonomous category has a canonical morphism:

A −→ ⊥(A⊥) ∼= (⊥A)⊥

and if this map is an isomorphism, then we have a bi-∗-autonomous category. (In general,
there will be no relationship between A and A⊥⊥ in the nonsymmetric case.)

We now discuss a variant of these categories.

38

Definition 5.1 If in a bi-∗-autonomous category, the dualizing object, ⊥, has the property
that:

⊥A ∼= A⊥

or equivalently:

A −◦⊥∼=⊥◦− A

then ⊥ is said to be cyclic. A ∗-autonomous category with such a dualizing object is also
said to be cyclic.

In the posetal case, these are the Girard quantales, and were introduced by Yetter in
[Yet] and studied by Rosenthal [Ros]. A notion of proof net for this theory is contained in
[Yet].

Yetter’s cyclic linear logic is obtained by replacing the usual exchange rule with:

` A1, A2, . . . , An
` Aσ(1), Aσ(2), . . . , Aσ(n)

where σ is a cyclic element of the symmetric group on n letters. It is straightforward to
verify that a ∗-autonomous category with a cyclic dualizing object validates this rule.

Noncommutative linear logic, with the cyclic exchange rule would seem to be the optimal
level of noncommutativity. The theory has an excellent semantics, sequent calculus and proof
nets. Similarly well-behaved structures for fully noncommutative linear logic have proven to
be much more problematic.

We note that the subject of noncommutative linear logic has not been explored as exten-
sively as other aspects of linear logic. In addition to obtaining further noncommutative full
completeness theorems, there are also a number of logical variants of cyclic linear logic that
should be considered. Indeed, Ruet’s recent variant, called simply noncommutative logic,
ultimately suggests that the number of noncommutative variants may be almost endless.
See [AR] for an analysis of its syntax, as well as a notion of proof net for this logic.

Ruet’s logic is a mix of commutative and noncommutative elements. In it, there are
two sets of connectives, one an ordinary commutative tensor and par and the other a cyclic
noncommutative tensor and par. Interaction between the two systems is mediated by a
structural rule called entropy.

It is hoped that for any possible version of noncommutative linear logic, there is a corre-
sponding notion of Hopf algebra (see below). For Ruet’s logic, there is the notion of entropic
Hopf algebra developed in [BLR].

5.1 Representations of Hopf algebras

We now introduce Hopf algebras as a means of constructing examples of nonsymmetric
monoidal closed categories. Hopf algebras are best considered as a nonsymmetric generaliza-
tion of the categoryMOD(G) of G-modules (see Examples 2.4, Number 5). We recommend
[K, Maj] as excellent introductions. We begin with some preliminaries. We assume through-
out a fixed, but arbitrary field k.

39

Definition 5.2 An (associative) algebra is a k-vector space H equipped with maps m: H⊗
H → H and η: k→H which are called the multiplication and unit, and these must satisfy
the evident equations for associativity and unit. Dually one may define a (coassociative)
coalgebra as a space with maps ∆: H→H ⊗ H and ε : H → k satisfying the dual axioms.
Then a Hopf algebra is a k-vector space H equipped with an algebra structure, a compatible
coalgebra structure and a map S: H→ H called the antipode satisfying appropriate equations.
The following chart summarizes the necessary structure. All maps shown are linear.

Structure Equations
Algebra m: H⊗ H→ H Associativity and Unit:

(multiplication)
m ◦ (m⊗ id) = m ◦ (id⊗m)

η: k→H and
(unit) η(1) is 2-sided unit for m.

Coalgebra ∆: H→H⊗ H
(comultiplication) Coassociativity with

counit for comultiplication
ε : H→ k (dual to algebra structure).
(counit)

Bialgebra Algebra + Coalgebra ∆ and ε are algebra homs.
(Equivalently m, η are

coalgebra homs.)
Antipode S: H→ H Inverse to idH : H→ H

under convolution

Here convolution refers to the operation on Homk(H,H) defined by (f ∗ g)(c) = m((f ⊗
g)(∆c)). The identity for the convolution operation is given by ηε : H→H. We say a Hopf
algebra is (co)commutative if the (co)multiplication is (co)commutative (i.e. the appropriate
diagram or its dual commutes [K, Maj].)

Example 5.3 A particular Hopf algebra which provides the semantics of cyclic linear logic
is known as the shuffle algebra. It is an example of an incidence algebra and is of fundamental
importance in several areas of mathematics. The terminology below is motivated by thinking
of shuffling a deck of cards.

Let X be a set and X∗ the free monoid generated by X. We denote words (= strings)
in X∗ by w,w′, · · · and occasionally z, z′ Elements x, y, · · · ∈ X are identified with
words of length 1, the empty word (= unit of the monoid) is denoted by ε, and the monoid
multiplication is given by concatenation of strings. We denote the length of word w by |w|.
Let k[X∗] be the free k-vector space generated by X. We consider k[X∗] endowed with the
following Hopf algebra structure (cf. [BS2]):

(i) A = k[X∗] is an algebra, i.e. comes equipped with an associative k-linear multiplication
(with unit) m : A⊗A → A:

w ⊗ w′ 7→ w.w′ =
∑

u∈Sh(w,w′)

u (7)

40

where Sh(w,w′) denotes the set of “shuffled” words of length |w| + |w′| obtained from w
and w′. Here, a shuffle of w = a1 · · · am and w′ = a′1 · · · a′n is a word of length m + n, say
w′′ = c1 · · · cm+n such that each of the ai and a′j occurs once in w′′ ; moreover, within w′′,
ai and a′j occur in their original sequential order. For example, if w = aba and w′ = bc, we
obtain the following set of shuffled words (where the letters from w′ are underlined)

ababc, abbac, abbac, babac, abbca, abbca, babca, abcba, bacba, bcaba

Thus the summation w.w′ is equal to

ababc+ 2abbac+ babac+ 2abbca+ babca+ abcba+ bacba+ bcaba

Note that we always denote the shuffle multiplication with ., as opposed to the monoid
multiplication, for which we use concatenation.

The unit η : k→ A arises by mapping 1 7→ ε.

(ii) A = k[X∗] is a coalgebra, i.e. comes equipped with a coassociative comultiplication (with
counit) ∆ : A → A⊗A, defined as:

∆(w) =
∑

w1w2=w

w1 ⊗ w2 (8)

Note that in the equation w1w2 = w we are using the original monoid multiplication of X∗.
The above pair w1w2 is called a cut of w.

The counit ε : A → k is defined by:

ε(w) =

{
1 if w = ε
0 else

(9)

Finally, there is an antipode defined as

S(w) = (−1)|w|w̄ (10)

where w̄ denotes the word w written backwards.

Proposition 5.4 A = k[X∗] with the above structure forms a Hopf algebra with involutive
antipode.

5.2 H-Modules

In analogy with the notion of G-space, we may speak of the action of a Hopf algebra H on
a vector space V . This is a linear map ρ : H ⊗ V → V satisfying the analog of the action
equations above:

Definition 5.5 Given a Hopf algebra H, a module over H is a vector space V , equipped with
a linear map called an H-action ρ: H⊗ V→V such that the following diagrams commute:

41

H⊗ H⊗ V
id⊗ ρ

- H⊗ V V �
ρ

H⊗ V
I@
@
@
@
@

∼=

H⊗ V

m⊗ id

? ρ
- V

ρ

?
k ⊗ V

η ⊗ id

6

We will generally denote an H-action by concatenation, e.g. ρ(h⊗ v) = hv. Then the above
diagrams translate, respectively, to: (hḣ′)v = h(h′v) and η(1)v = v, for all h, h′ ∈ H, v ∈ V .
We shall frequently denote η(1) by 1H.

If (V, ρ) and (W, τ) are modules, then a map of modules, sometimes called an H-map, is
a k-linear map f :V→W such that the following commutes:

H⊗ V
id⊗ f

- H⊗W

V

ρ

? f
- W

τ

?

i.e. in the above notation, f(hv) = hf(v) for all h ∈ H, v ∈ V . We thus obtain a category
MOD(H).

The above definition is a straightforward generalization from group representations; in-
deed, the latter arises as the special case H = k[G]. If U and V are modules, then U ⊗ V
has a natural module structure given by:

H⊗ U ⊗ V
∆⊗ id

- H⊗ H⊗ U ⊗ V
c23- H⊗ U ⊗ H⊗ V

ρ⊗ ρ
- U ⊗ V

Theorem 5.6 (See [Maj, K] for details.) MOD(H) is a monoidal category. If the Hopf
algebra is cocommutative, then the tensor product is symmetric. The unit for the tensor is
given by the ground field with the module structure induced by the counit of H.

Definition 5.7 Given an arbitrary Hopf algebra H with bijective antipode, and two H-
modules, A and B, we will define two new H-modules, A −◦ B and B ◦− A, as follows. In
both cases, the underlying space will be A −◦k B, the space of k-linear maps.

The action on B ◦− A is defined by:

(hf)(a) =
∑

h1f(S(h2)a) (11)

and the action on A −◦ B is defined by:

(hf)(a) =
∑

h2f(S−1(h1)a) (12)

where ∆(h) =
∑
h1 ⊗ h2.

42

A proof of the following can be found in [Maj]. See that reference also for the history of
these constructions, many of which are due to that author.

Theorem 5.8 Let H be a Hopf algebra with bijective antipode. Then with the actions defined
above, MOD(H) is a biautonomous category. The adjoint relation:

HOM(A⊗B,C) ∼= HOM(B,A −◦ C)

holds whether or not the antipode is bijective. In the case of a cocommutative Hopf algebra,
the two internal HOM ’s are equal.

So the representation theory of Hopf algebras provides us access to a wide variety of
models of noncommutative (intuitionistic) linear logic. There are several ways to extend
this to obtain classical models. One could restrict to finite-dimensional representations, or
again use the topological category RTVec for representations. The expository paper [Bl96]
considers these ideas. In particular, we note the following as an example of the usefulness of
Hopf algebras.

Theorem 5.9 If H is a Hopf algebra with involutive antipode, then its category of finite-
dimensional representations or representations in RTvec is a model of cyclic linear logic.

As a corollary, we obtain from Proposition 5.4 that the shuffle Hopf algebra A = k[X∗]
models cyclic linear logic. Such Hopf algebras were used to obtain a full completeness theorem
for cyclic multiplicative linear logic in [BS2]. This will be discussed in the next section.

6 Full Completeness and Representation Theorems

The most basic representation theorem of all is the Yoneda embedding:

Theorem 6.1 (Yoneda) If A is locally small, the Yoneda functor Y : A → SetA
op

, where
Y(A) = HomA(−, A), is a fully faithful embedding.

Indeed, Yoneda preserves limits as well as cartesian closedness. This theorem, and its many
variants, is critical to the development of category theory and categorical model theory.

However we seek mathematical models which fully and faithfully represent proofs. From
the viewpoint of a logician, these are completeness theorems, but now at the level of proofs
rather than provability. The results are known as full completeness theorems. The terminol-
ogy arose in the work of Abramsky and Jagadeesan on full completeness for MLL + Mix in
∗-autonomous categories of games [AJ].

Definition 6.2 Let F be a free category. We say that a categorical model M is fully
complete for F or that we have full completeness of F with respect to M if, with respect to
some interpretation of the generators, the unique free functor − : F → M is full. It is
even better to demand that − is a fully faithful representation.

43

For example, suppose F = F (G0) is a free structured category (e.g. free ccc, ∗-
autonomous, etc.) generated by the appropriate deductive system on a discrete graph G0.
To say a categorical model M is fully complete for F means: any arrow A → B ∈ M
between definable objects is itself definable, i.e. it must be of the form f for some (equiva-
lence class of a) proof f : A→ B in F . If the representation is fully faithful, then f is unique.
Thus, by Curry-Howard-Lambek, any morphism in the model between definable objects is
itself the image of a proof (or program); and this proof is unique if the representation is fully
faithful.

Such results are mainly of interest when the models M are “genuine” mathematical
models not a priori connected to the syntax. For example, an explicit use of the Yoneda
embedding Y : F → SetF

op

is not what we want, since the target model SetF
op

depends too
much on F .

Probably some of the earliest full completeness results were for free ccc’s (i.e. for simply
typed lambda-calculi). Plotkin in the 1970’s and Statman in the 1980’s studied lambda
definability in terms of invariance under logical relations on set-theoretic Henkin models.

In the case of Linear Logic, the fundamental paper of Abramsky and Jagadeesan [AJ]
proved full completeness for MLL + Mix, using categories of games with certain history-
free winning strategies as morphisms. It is shown there that “uniform” history-free winning
strategies are the denotations of unique proof nets. An alternate notion of game, developed by
Hyland and Ong, permits eliminating the Mix rule in such game-theoretic full completeness
theorems for the multiplicatives. These results paved the way for the most spectacular
application of these game-theoretic methods: the solution of the full abstraction problem for
PCF, by Abramsky, Jagadeesan, and Malacaria and by Hyland and Ong. See for example
[HO2].

There have been a host of full completeness theorems for MLL + Mix, MLL, Yetter’s
CyLL, and recently for MALL. Very roughly speaking, we may distinguish two styles of
fully-complete models in the literature:

• Direct Models: These are subcategories of some ambient ∗-autonomous category. The
key idea is to impose an invariance or uniformity condition to restrict the class of
arrows between definable types to those which are exactly the denotations of proofs.
This is typical of the original game theoretic fully-complete models mentioned above
(where proofs correspond to certain restricted kinds of winning strategies) as well as to
Hamano’s direct full completeness theorem for MLL + Mix, which uses a subcategory
of RTVec restricted to certain Z-invariant maps.

• Functorial Models: This approach, and similar ones using relational transformers and
Reynolds’ parametricity, uses techniques of functorial polymorphism in [BFSS]. The
basic idea is to model formulas (i.e. types) as multivariant functors over some base
monoidal category, and proofs as multivariant (dinatural) transformations. In the sec-
ond case, one uses similar relational methods. In either approach, one often imposes
additional uniformity requirements on (di)natural families to enable them to exactly
correspond to proofs (e.g. in our previous work [BS1, BS2], we supposed dinatural
families (discussed below) are invariant under continuous group or Hopf-algebra ac-
tions.).

44

The functorial models and their variants provide a powerful and increasingly popular
framework for full completeness proofs. Uniformity is now imposed over (di)natural families,
with a much wider range of examples than the direct models approach. But this flexibility
comes at a price: the functorial approach only applies to cut-free systems of LL, since
dinatural transformations (as well as logical relations) do not compose in general. Hence
functorial models, unlike direct models, are not a priori categories.

Since the work of Ralph Loader in the early 1990’s, later generalized in work of Hyland
and Tan, it has become increasingly important to lift known full completeness theorems to
larger base categories. The techniques for doing this involve using a Chu space or Double
Gluing construction on top of the base. The point of the Chu or Double-gluing construction
is to eliminate various unwanted maps, e.g. moving from a compact base category or one
satisfying Mix to a more general ∗-autonomous setting, and then to rebuild the whole func-
torial framework at this level. Haghverdi [Hagh] introduces a new class of full completeness
theorems for MLL by a 2-step process: first applying a GoI-model construction to certain
traced monoidal categories, then applying modified Loader-Hyland-Tan techniques.

In the case of MALL, there are currently two full completeness theorems in the dinatural
framework. Part of the difficulty here is that the associated notion of proof-nets for MALL
is highly non-trivial. The first model, by Abramsky and Melliès [AM] uses dinaturals over a
base category of so-called concurrent games, which are themselves related to a kind of double-
gluing construction. The second, by the authors and Hamano [BHS] uses the dinatural
framework on a double gluing category over Ehrhard’s category of hypercoherence spaces.

As an example of how full completeness theorems work, we now give a brief picture of
the dinatural results in the authors’ papers [BS1, BS2].

Definition 6.3 Let C be a category, and F,G : (Cop)n × Cn → C functors. A dinatural
transformation θ : F → G is a family of C-morphisms θ = {θA : FAA → GAA |A ∈ Cn}
satisfying (for any n-tuple f : A→ B ∈ Cn):

FAA
θA- GAA

��
FfA� @@

GAf
R

FBA GAB

@@
FBf

R ��
GfB
�

FBB
θB- GBB

For a history of this notion, see [BFSS].
Let C be a ∗-autonomous category. Given an MLL formula ϕ(α1, . . . , αn) built from

⊗,−◦, ()⊥ , with type variables α1, . . . , αn, we inductively define its functorial interpretation
ϕ(α1, . . . , αn) : (Cop)n × Cn → C as follows (boldface letters are vectors of objects):

• ϕ (AB) =

{
Bi if ϕ(α1, . . . , αn) ≡ αi
A⊥i if ϕ(α1, . . . , αn) ≡ α⊥i

• ϕ1 ⊗ ϕ2 (AB) = ϕ1 (AB)⊗ ϕ2 (AB).

45

It is readily verified that ϕ⊥ = ϕ ⊥ and ϕ1 −◦ ϕ2 (AB) = ϕ1 (BA) −◦ ϕ2 (AB),
where A −◦ B is defined as (A⊗B⊥)⊥.

From now on, let C = RTVec. The set Dinat(F,G) of dinatural transformations from F
to G is a vector space, under pointwise operations. We call it the proof space associated to
the sequent F ` G (where we identify formulas with definable functors.) If ` Γ is a one-sided
sequent, then Dinat(Γ) denotes the set of dinaturals from k to ...

............
.................................. Γ .

The following is proved in [BS1, BS2]. A binary sequent is one where each atom appears
exactly twice, with opposite variances. A diadditive dinatural transformation is one which is
a linear combination of substitution instances of binary dinaturals.

Theorem 6.4 (Full Completeness for MLL + Mix) Let F and G be formulas in MLL
+ Mix, interpreted as definable multivariant functors on RTVec. Then the proof space
Dinat(F,G) of diadditive dinatural transformations has as basis the denotations of cut-free
proofs in the theory MLL + Mix.

Example 6.5 The proof space of the sequent

α1, α1 −◦ α2, α2 −◦ α3, . . . , αn−1 −◦ αn ` αn

has dimension 1, generated by the evaluation dinatural. Thus any proof of this sequent must
be a scalar multiple of the evaluation dinatural.

The proofs of the above results actually yield a fully faithful representation theorem for a
free ∗-autonomous category with Mix, whose homsets are canonically enriched over vector
spaces ([BS1]).

In the same paper we proved a similar Full Completeness Theorem and fully faithful
representation theorem for Yetter’s Cyclic Linear Logic. In this case one employs the category
RTMOD(H) for a Hopf algebra H . The particular Hopf algebra used is the shuffle Hopf
algebra. Once again we consider formulas as multivariant functors on RTVec, but restrict
the dinaturals to so-called H -uniform dinaturals θ|V1|,···,|Vn|, i.e. those which are equivariant
with respect to the H -action induced from the atoms, for H -modules Vi ∈ RTMOD(H).
This is completely analogous to the techniques used in logical relations.

Theorem 6.6 (Full Completeness for CyLL + Mix) Let F and G be formulas in MLL
+ Mix, interpreted as definable multivariant functors on RTVec. Let H be the shuffle Hopf
algebra. Then the proof space of H -uniform diadditive dinatural transformations has as basis
the denotations of cut-free proofs in the theory CyLL + Mix.

From the large literature on MLL full completeness theorems, we end by discussing an
interesting line of research stemming from seminal work of Ralph Loader [Loa], who early
on proved full completeness theorems using a linear version of logical predicates. His work
led M. Hyland and A. Tan to introduce the method of double gluing [HS, Tan] as a new
categorical technique for generating fully complete functorial models.

46

Definition 6.7 Let C = (C,⊗, I, (−)⊥) be a compact closed category. We define a new
category, GC, the double gluing category of C, whose objects are triples A = (A,Ap,Acp)
where A is an object of C, where Ap ⊆ C(I, A) is called a set of points of A and where
Acp ⊆ C(A, I) ∼= C(I, A⊥) is called a set of copoints of A.

A morphism f : A −→ B in GC is a morphism f : A −→ B in C such that f(Ap) ⊆ Bp
and f⊥(Bcp) ⊆ Acp. Composition and identities are induced from the underlying composition
and identities in C.

Proposition 6.8 For any compact closed category C, GC is a ∗-autonomous category, in
which

A⊥ = (A⊥,Acp,Ap)
A⊗ B = (A⊗B, (A⊗ B)p, (A⊗ B)cp)

IGC = (I, {idI}, C(I, I))

where (A⊗B)p = {α⊗β|α ∈ Ap, β ∈ Bp} and (A⊗B)cp = GC(A,B⊥). The forgetful functor
U : GC → C preserves the ∗-autonomous structure.

We remark that in a logical setting one can think of an object A ∈ GC as a formula A in
C together with a collection of proofs of A (the set Ap) and a collection of refutations of A
(the set Acp). Also, we remark that the double gluing construction works more generally for
∗-autonomous categories C (see [BHS, HS]). An important special case is:

Example 6.9 GRel denotes the double gluing category over the category Rel×. Its ob-
jects are triples A = (A,Ap,Acp), where A is a set, Ap ⊆ Rel(I, A) = P(A) and
Acp ⊆ Rel(A, I) = P(A) . A morphism f : A → B of GRel is a relation R : A → B
of Rel such that:

(image condition:) ∀α ∈ Ap [α]R := {b ∈ β | ∃ a ∈ α(a, b) ∈ R} ∈ Bp
(co-image condition:) ∀β ∈ Bcp R[β] := {a ∈ α | ∃ b ∈ β(a, b) ∈ R} ∈ Acp

There are many interesting full subcategories of GRel, e.g. Loader’s Linear Logical Predi-
cates and Totality Spaces [Loa], as well as Coh.

The Hyland-Tan approach to Loader’s method is based on the following ideas. We start
with a compact closed category C (e.g. C = Rel). We look at multivariant MLL-definable
functors on the double gluing category GC and dinatural transformations between them.
Full completeness states that every such dinatural corresponds to a Danos-Regnier MLL
proof net ρθ. The method is as follows:

1. Using the forgetful functor U : GC → C, the dinatural family θ on GC is completely
determined by arrows in C. It thus suffices to prove a version of full completeness for
compact categories C. For Rel such a result holds, and it implies that every nontrivial
such dinatural θ arises as a union of fixed-point-free involutions. Instantiating θ at
appropriate subcategories of GRel determines axiom links of a proof structure ρθ.

2. One shows ρθ is a proof net, by showing it is acyclic and connected, using further
instantiations of θ in GRel.

47

Haghverdi [Hagh] applied these techniques to compact closed categories arising from GoI,
e.g. of the form Int(C), for certain traced monoidal categories C.

Finally, we should remark that GRel has products and coproducts, so is a model of
MALL. But neither GRel nor Dinat(GRel) is fully complete for MALL. Instead, it turns
out that one must move to Dinat(GHCoh), where HCoh is Ehrhard’s category of hyper-
coherences [Ehr1] in order to get a full completeness theorem for MALL (see [BHS]).

Acknowledgements

Both authors would like to thank the entire Èquipe de Logique de la Programmation (Lu-
miny) and the TMR Network, along with the Directors Jean-Yves Girard and Laurent Reg-
nier, for their kind hospitality and support. We also acknowledge support from operating
grants from NSERC, Canada. Finally we thank Robert Seely and Mark Weber for helpful
comments.

References

[Abr96] S. Abramsky , Retracing Some Paths in Process Algebra. In CONCUR 96, Springer
Lecture Notes in Computer Science 1119, pp. 1-17 (1996).

[AJ1] S. Abramsky, R. Jagadeesan. New foundations for the geometry of interaction. Infor-
mation and Computation, 111, pp. 53–119, (1994).

[AJ] S. Abramsky, R. Jagadeesan, Games and Full Completeness for Multiplicative Linear
Logic, J. Symbolic Logic 59, pp. 543-574 (1994).

[AHS] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interaction and linear combi-
natory algebras. Mathematical Structures in Computer Science 12, pp. 625-665, (2002).

[AM] S. Abramsky, P.-A. Melliès. Concurrent games and full completeness. Proceedings,
Logic in Computer Science 1999. IEEE Press, (1999).

[Abr97] S. Abramsky. Semantics of interaction: an introduction to game semantics. in
Semantics and logics of computation, edited by A. Pitts and P. Dybjer, Cambridge
University Press, (1997).

[AR] V.M. Abrusci, P. Ruet. Non-commutative logic I : the multiplicative fragment. Annals
of Pure and Applied Logic 101 pp.29-64, (2000).

[AC] R. Amadio, P.L. Curien. Domains and Lambda Calculi. Cambridge University Press,
(1998).

[BFSS] E. Bainbridge, P. Freyd, A. Scedrov, P. Scott, Functorial polymorphism, Theoretical
Computer Science 70, pp. 1403-1456, (1990).

[Barr80] M. Barr. ∗-autonomous categories. Springer Lecture Notes in Mathematics 752,
(1980).

48

[Bier95] G. Bierman. What is a categorical model of intuitionistic linear logic? In Proceed-
ings of the Second International Conference on Typed Lambda Calculus and Applica-
tions. Lecture Notes in Computer Science 902, (1995).

[Bl93] R. Blute. Linear logic, coherence and dinaturality. Theoretical Computer Science,
115:3-41, 1993.

[Bl96] R. Blute, Hopf algebras and linear logic, Mathematical Structures in Computer Sci-
ence 6, pp. 189-212, (1996).

[BCST] R. Blute, J. R. B. Cockett, R. A. G. Seely and T. Trimble. Natural deduction and
coherence for weakly distributive categories. Journal of Pure and Applied Algebra 13,
pp. 229–296, (1996)

[BCS1] R. Blute, J. R. B. Cockett, R. A. G. Seely. ! and ?: Storage as tensorial strength.
Mathematical structures in Computer Science 6, pp. 313-351, (1996).

[BCS2] R. Blute, J. R. B. Cockett, R. A. G. Seely. The logic of linear functors. Mathematical
structures in Computer Science 12, pp. 513-539, (2002).

[BLR] R. Blute, F. Lamarche, P. Ruet. Entropic Hopf algebras and models of non-
commutative logic. Theory and Applications of Categories 10, pp. 424-460, (2002).

[BHS] R. Blute, M. Hamano, P. Scott. Softness of hypercoherences and MALL full com-
pleteness. In preparation, (2003).

[BS1] R. Blute, P. Scott. Linear Lauchli semantics, Annals of Pure and Applied Logic 77,
pp. 101-142 (1996).

[BS2] R. Blute, P. Scott. The Shuffle Hopf algebra and noncommutative full completeness.
Journal of Symbolic Logic 63, pp. 1413-1435, (1998).

[Borc] F. Borceux. Handbook of Categorical Algebra Cambridge University Press, (1993).

[BE] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational se-
mantics in multiplicative-additive linear logic. Annals of Pure and Applied Logic 102,
pp. 247-282, 2000.

[CS1] J. R. B. Cockett, R. A. G. Seely. Weakly distributive categories. Journal of Pure and
Applied Algebra 114, pp. 133-173, (1997).

[CS2] J. R. B. Cockett, R. A. G. Seely. Linearly distributive functors. Journal of Pure and
Applied Algebra 143, pp. 155-203, (1999).

[DR] V. Danos, L. Regnier, The structure of multiplicatives, Arch. Math. Logic 28, pp.181-
203, (1989).

[DR2] V. Danos, L. Regnier. Proof-nets and the Hilbert space, In Advances in Linear Logic,
London Mathematical Society Lecture Notes Volume 222, (1995).

49

[DHPP] H. Devarajan, D. Hughes, G. Plotkin, and V. Pratt. Full completeness of the
multiplicative linear logic of Chu spaces. in Proceedings 14th Annual IEEE Symposium
on Logic in Computer Science, LICS’99, Trento, Italy, July 1999.

[Ehr1] T. Ehrhard. Hypercoherences: a strongly stable model of linear logic. Mathematical
Structures in Computer Science 3, pp. 365-385, (1993).

[Ehr2] T. Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in
Computer Science 12, pp. 579-623, (2002).

[Ehr3] T. Ehrhard. Finiteness spaces, preprint, (2001).

[ER] T. Ehrhard and L. Regnier. The differential lambda-calculus. To appear in Theoretical
Computer Science. 2003.

[FH] W. Fulton, J. Harris. Representation Theory: A First Course. Springer Verlag, (1991).

[G1] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[G2] J.Y. Girard. Geometry of interaction I: interpretation of system F . Proceedings of the
ASL Meeting, Padova, 1988.

[G3] J.Y. Girard. Linear Logic, its syntax and semantics. In Advances in Linear Logic,
London Mathematical Society Lecture Notes Volume 222, (1995).

[G4] J.Y. Girard. Geometry of Interaction III: accommodating the additives. In Advances
in Linear Logic, London Mathematical Society Lecture Notes Volume 222, (1995).

[G5] J.Y. Girard. Proof-nets: the parallel syntax for proof-theory, Logic and Algebra, eds
Ursini and Agliano, Marcel Dekker, New York 1996.

[G6] J.Y. Girard. Locus Solum. Mathematical Structures in Computer Science 11, pp.
301-506, (2001).

[GLT] J.Y. Girard, Y. Lafont, P. Taylor. Proofs and Types. Cambridge University Press,
(1989)

[Hagh] E. Haghverdi. Unique decomposition categories, geometry of interaction and combi-
natory logic. Math. Structures Comput. Sci. 10, pp. 205–230, (2000).

[Ham1] M. Hamano. Z-modules and Full Completeness of Multiplicative Linear Logic, An-
nals of Pure Appl. Logic 107 , pp. 165-191 (2001).

[Ham2] M. Hamano. Pontrjagin Duality and Full Completeness for Multiplicative Linear
Logic (Without Mix), Math. Struct. in Comp. Science 10, pp. 231-259 (2000).

[Hi] P. Hines. The Algebra of Self-Similarity and its Applications. Thesis. University of
Wales, (1997).

[HO1] J. M. E. Hyland and C.-H. L. Ong. Fair Games and Full Completeness for Multi-
plicative Linear Logic without the Mix-Rule. Preprint, 1993.

50

[HO2] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF. Information and
Computation, Volume 163, pp. 285-408, December 2000

[HS] J. M. E. Hyland and A. Schalk. Glueing and orthogonality for models of linear logic.
Theoretical Computer Science 294, pp. 183-231, (2003).

[JSV] A. Joyal, R. Street and D. Verity. Traced monoidal categories. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 119:425–446, 1996.

[K] C. Kassel. Quantum Groups. Springer-Verlag, (1995)

[KL] G. M. Kelly and M. Laplaza. Coherence for compact closed categories. Journal of Pure
and Applied Algebra 19, pp. 193–213, (1980).

[L1] Y. Lafont. Interaction nets. In Principles of Programming Languages (POPL 1990), p.
95-108, (1990).

[LS] J. Lambek, P. Scott. Introduction to Higher-Order Categorical Logic. Cambridge Uni-
versity Press, (1988).

[Loa] R. Loader, Linear Logic, Totality and Full Completeness, Symposium of Logic in Com-
puter Science (LICS), pp. 292-298 (1994)

[Mac] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate texts
in Mathematics. Springer-Verlag, New York, 1971.

[Maj] S. Majid. Foundations of Quantum Group Theory. Cambridge University Press,
(2000).

[Mog] E. Moggi. Notions of computation and monads. Information And Computation 93,
1991.

[PS] V. de Paiva, A. Schalk. Poset-valued sets, or, How to build models for linear logic, to
appear in Theoretical Computer Science.

[RW] R. Rosebrugh, R. Wood. Constructive complete distributivity IV, Applied categorical
structures 2, pp. 119-144, (1994).

[Ros] K. Rosenthal. Quantales and Their Applications. Pitman Research Notes in Mathe-
matics, (1990).

[Sco] P. Scott. Some aspects of categories in computer science, in Handbook of Algebra ,
Volume 2, edited by M. Hazewinkel, North-Holland, pp. 1-77, (2000).

[See] R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras. Contem-
porary Mathematics, Volume 92. American Mathematical Society, (1989).

[Sel] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-
mu calculus. Math. Structures Comput. Sci. 11 , pp. 207–260 (2001).

51

[Tan] A. Tan. Full completeness for models of linear logic. Thesis, Cambridge University,
(1997).

[Tr] A. Troelstra. Lectures on Linear Logic, Cambridge University Press, (1992).

[Yet] D. Yetter, Quantales and (noncommutative) linear logic, Journal of Symbolic Logic
55, p. 41-64, (1990)

52

