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Summary

Two interesting categories SRel (stochastic relations) and
TNCPM (trace-nonincreasing completely positive maps).

SRel is a natural category for describing probabilistic
processes. TNCPM should be a natural category for
quantum mechanics.

Unfortunately, they do not have the traditional notion of
trace.

We propose a new construct that we call “internal traces.”
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Two Nice (?) Categories

Probabilistic Quantum
Processes Processes
SRel TNCPM
Stochastic relations Trace-nonincreasing

completely-positive maps

Both categories have monoidal structure, scalars (Hom(I, I))
and partially additive structure. They seem ideal for the analysis
of probabilistic processes and quantum processes respectively.
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But they do not have trace!
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What is SRel? Part I

Mes: Objects are measurable spaces (X ,ΣX ), X a set, ΣX

a σ-algebra on X . Morphisms f : (X ,ΣX ) −→ (Y ,ΣY ) are
measurable functions.

Define monad Π : Mes −→ Mes by

Π(X ) = {ν|ν : X −→ [0, 1]}

where ν is a (sub)probability measure.

Π(f )(ν) = ν ◦ f−1.

SRel is the Kleisli category of this monad.

Π is a probabilistic powerset and SRel represents
“stochastic relations.” [Lawvere 64, Giry 81]
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What is SRel? Part II

An arrow, h : X −→ Y , of SRel looks like h : X × ΣY

−→ [0, 1] where h(x , ·) is a measure and h(·, A) is
measurable.

Composition is given by integration: h : X −→ Y and k : Y
−→ Z

(k ◦ h)(x , C) =

∫
Y

k(y , C)h(x , dy).

Delbecque, Panangaden Internal Traces and Abstract Observations



Introduction
Stochastic Relations

TNCPM
Internal Traces

Properties of Internal Trace
Observations

What is SRel? Part II

An arrow, h : X −→ Y , of SRel looks like h : X × ΣY

−→ [0, 1] where h(x , ·) is a measure and h(·, A) is
measurable.

Composition is given by integration: h : X −→ Y and k : Y
−→ Z

(k ◦ h)(x , C) =

∫
Y

k(y , C)h(x , dy).

Delbecque, Panangaden Internal Traces and Abstract Observations



Introduction
Stochastic Relations

TNCPM
Internal Traces

Properties of Internal Trace
Observations

Why SRel?

A categorical treatment of stochastic processes. A
stochastic process is just a functor into SRel. The
so-called Chapman-Kolmogorov equation is just
functoriality and the notion of composition in this category.

Played a significant role in the treatment of Labelled
Markov Processes [Blute, Desharnais, Edalat, P.,
LICS97,98;IC 2002].

SRel has partially additive structure and thus can
immediately be used for the semantics of probabilistic
programming languages á la Kozen. [P 98]
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Why no Trace in SRel?

Consider h : X ⊗ U −→ Y ⊗ U in SRel.

h(x , u; B × V ), where B ⊆ Y and V ⊆ U are measurable
subsets.

The trace should be something like

TrU(h)(x , B) =

∫
U

h(x , u(?); B ⊗ “du”).

But this makes no sense! What “u” should we pick?

Note: there is a “particle-style” trace.
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TNCPM

Objects: Finite Dimensional Hilbert spaces.

Morphisms: f : H −→ K linear, trace-nonincreasing,
completely-positive map from D(H) −→ D(K), where D(H)
stands for density matrices over H.

They can have trace less than 1.

If we just had completely-positive maps then the category
would be traced.

TNCPM has partially additive structure and hence also has
a particle-style trace.
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Why no Trace in TNCPM?

A map in TNCPM is automatically in CPM.

Why can’t we use the trace in CPM?

If we use the CPM trace then the resulting
completely-positive map may be trace increasing.
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Intuitions

We would like to have a trace defined on “objects” that will
allow us to compute a trace for global elements.

We want tr : X −→ I so that for any element x : I −→ X we
get a scalar tr ◦x : I −→ I, we write this as tr(x).

We write trX for these internal traces as opposed to Tr for
the usual trace.
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Axioms for internal traces

Defined on monoidal categories with zero morphisms and
coproducts.
Morphisms trX : X −→ I
Some obvious conditions:

trI = 1I , tr0 = 0,

X

λX

��

trX // I

I ⊗ X

trI⊗X

=={{{{{{{{{{{{

X

ρX

��

trX // I

X ⊗ I

trX⊗I

==||||||||||||||||

X ⊗ Y
trX⊗Y //

σXY

��

I

Y ⊗ X

trY⊗X

==zzzzzzzzzzzz
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Coherence with associativity

(X ⊗ Y )⊗ Z

αXYZ

��

tr(X⊗Y )⊗Z // I

X ⊗ (Y ⊗ Z )

trX⊗(Y⊗Z )

66nnnnnnnnnnnnnnnnnnnnnnnnnn
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Interaction with tensor and coproduct:

X ⊗ Y
trX ⊗ trY //

trX⊗Y

((PPPPPPPPPPPPPPPPPPPP I ⊗ I

'

��
I

⊕
i∈I Xj

tr⊕i∈I Xi

""D
D

D
D

D
D

D
D

D
Xj

trXj

��

qjoo

I
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Internal trace for SRel

trX (x , {∗}) = 1 trX (x , ∅) = 0.

Given h : I −→ X (which is just a measure) by the definition of
SRel composition

tr(h) =

∫
X

h(∗, dx)

i.e. the total weight of h.

Delbecque, Panangaden Internal Traces and Abstract Observations



Introduction
Stochastic Relations

TNCPM
Internal Traces

Properties of Internal Trace
Observations

Internal trace for TNCPM

Now we don’t want to compute the trace of a
completely-positive map,

we want a completely-positive map that computes the
ordinary trace.

But this is just the plain freshman linear algebra trace!
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Something is missing!

There is a missing condition.

In FDHilb there is an internal trace

n∑
i=1

〈i |

is a trace.

But this makes no sense! The internal trace should only be
defined on “matrix like” things.

Thanks Eric!
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The Fix (?)

We can fix the problem in some cases by requiring
invariance of trX under unitaries.

What does this mean in SRel?

Possibly some kind of invariance under permutations.

Needs to be thought about more.
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Traces of global elements are abstract scalars:

TrX (u) : I
u // X

trX // I

Partial traces are defined from traces:

trXY
X : X ⊗ Y

trX ⊗1 // I ⊗ Y
λ−1

// Y
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These internal trace morphisms are applied by
composition, and the result is an abstract scalar (in the
example case of probabilities).

Partial traces correspond to to operation of discarding part
of a state in the quantum case, and to taking marginal
distributions in the probabilistic case.
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Properties of internal traces 1

trX (s · u) = s · (trX u)
where s ∈ Hom(I, I), x ∈ Hom(X , Y ) and
s · u ∈ Hom(X , Y ) is given by

s · u : X '−−→ I ⊗ X s ⊗ x−−−−→ I ⊗ Y '−−→ Y .

trX (u + v) = (trX u) + (trX v)

trI(s) = s

Monoidal coherence isomorphisms preserve traces.
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trX⊗Y (u � v) = (trX u) · (trY v)
where, u : I −→ X , v ′′I −→ Y and (u � v) : I −→ X ⊗ Y is

(u � v) : I '−−→ I ⊗ I v ⊗ v−−−−→ X ⊗ Y .

For categories equipped with a partial additive structure:

trX⊗Y (u ⊕ v) = trX u ⊕ trY v .

Both SRel and TNCPM have partial additive structure.
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trXY
Y (u) = (σ−1

XY trXY
X σXY )u

trXY
Y (s · u) = s · trXY

Y u

trXY
Y (u � v) = (trX u) · v

If we have partial additive structure then

trXY
Y (u + v) = trXY

Y u + trXY
Y v
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Observations

Observation on X :
A state is a trace 1 global element.
set of observation results M
family of morphisms fm : X −→ X ; how the state is modified
by an observation producing the result m.
For all global elements u : I −→ X we have∑

m

P(m|u) = 1,

where
P(m|u) = trX fmu.

P(m|u) is the probability of observing m in the global state
u.
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Observation structure

Family of observations O such that

O contains all trivial observations (there is only outcome
and the morphism is the identity),

O is closed under composition, conjugations by
isomorphisms and extensions.

If u, v are two states such that for all observations in O, we
have P(m|u) = P(m|v), then u = v .
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1 An alternative view of classical quantum interface.
2 Abstract entropy?
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