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I. Traces in Banach space theory
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1. The projective tensor product

LetE be a Banach space. Then the dual pair (E∗, E) determines

the trace Tr on E∗ ⊗ E via

Tr(φ⊗ x) = 〈φ, x〉.

Definition. Let E,F be Banach spaces. The projective

tensor product E ⊗γ F is the completion of E ⊗ F w.r.t.

the norm

‖z‖γ = inf{
n∑
i=1

‖xi‖‖yi‖ | n ∈ N, z =
n∑
i=1

xi ⊗ yi}.

Alternatively: (E ⊗γ F )∗ = B(E,F ∗)

Putting on operator glasses, we have a natural map

j : E
∗ ⊗ E → B(E)

given by j(φ⊗ x)(y) = 〈φ, y〉x. Consider its extension

J : E
∗ ⊗γ E → B(E).

Grothendieck defined the image E∗ ⊗γ E/Ker(J) with the

quotient norm, as the space of nuclear operators N (E).
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Since |〈φ, x〉| ≤ ‖φ‖ ‖x‖, the trace Tr extends to a functional

on E ⊗γ E∗.

If J is injective, then the trace is defined for all nuclear operators.

When is this the case?

Theorem. J is injective iff E has the approximation property

(AP).

Definition. E has the AP if for any compact set K ⊆ E

and ε > 0 there is a finite-rank map S : E → E such that

‖S(x)− x‖ < ε for all x ∈ K.

; All “usual” spaces – such as c0, C(K), Lp – have the AP;

but NOT B(H)!!
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2. The Schatten ideals

The nuclear operators on a Hilbert space H are usually called

trace class operators T (H). By the above,

T (H) = H⊗γ H.

Alternative description: Every S ∈ K(H) has the form

S =
∞∑
i=1

si〈·, ξi〉ηi

for appropriate ONS (ξi), (ηi). Here, si(S) ≥ 0 are the

eigenvalues of |S| = (S∗S)1/2 (= singular values).

Now, S ∈ K(H) is trace class iff (si(S)) ∈ `1. Then ‖S‖γ =

‖(si(S))‖1.

Example: Operator on `2 of multiplication with `1-function

The trace Tr(ρ) for ρ ∈ T (H) can be expressed as

Tr(ρ) =
∞∑
i=1

〈ρξi, ξi〉

with any ONB of H.

One defines the Schatten class Sp(H) as the collection of

S ∈ K(H) with (si(S)) ∈ `p (1 < p < ∞), with the norm

‖S‖p := ‖(si(S))‖p. One sets S∞(H) = K(H).
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• S1(H) ⊆ Sp(H) ⊆ K(H) ⊆ B(H)

• Sp(H) form 2-sided ideals in B(H)

• Sp(H)∗ = Sq(H) where 1
p + 1

q = 1

• the trace gives the dualities K(H)∗ = T (H)

and T (H)∗ = B(H)

• B(H)∗ = T (H)⊕1 K(H)⊥

3. Convolution of trace class operators

commutative world: L1(G) noncommutative world: T (L2(G))

pointwise product in (`1, ·) composition in (T (`2(G)), ·)
convolution in (L1(G), ∗) ???

Let G be a locally compact group. Then

L∞(G) ↪→ B(L2(G))

as multiplication operators. The pre-adjoint of this embedding

gives a canonical quotient map

π : T (L2(G)) = L2(G)⊗γ L2(G)→ L1(G).

We have π(ξ ⊗ η) = ξη.
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Definition. [N.] For trace class operators ρ, τ ∈ T (L2(G))

we define

ρ ∗ τ =

∫
G
LxρLx−1π(τ)(x)dλ(x).

Then we obtain a new associative product on the space

T (L2(G)). This defines a convolution of trace class

operators!

Your (legitimate) objection:

Does this indeed extend classical convolution

to the non-commutative context?

Let’s convolve matrices!

If A = [Ai,j] and B = [Bk,l] are matrices, then their

convolution product C = A ∗ B is given by

Ci,j =
∑
t∈G

At−1i,t−1jBt,t.

Thus, in case A and B are just functions (i.e., diagonal matrices),

C as well is a diagonal matrix, namely

Ci =
∑
t∈G

At−1iBt.

So (`1, ∗) becomes a subalgebra of (T (`2), ∗).
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Some “amuse-gueules” for the study of

The Non-Commutative Convolution Algebra
S1(G) = (T (L2(G)), ∗)

• If S1(G) ∼= S1(G′), then G ∼= G′.

• G amenable⇐⇒ S1(G) right amenable (à la Lau)

• The dual space S∞(G) = S1(G)∗ becomes a Hopf–von
Neumann algebra; its comultiplication extends the one of

L∞(G) = L1(G)∗.

Thus, S1(G) is an operator convolution algebra in the sense

of Effros–Ruan.∫
(f ∗ g) dλ =

∫
fdλ

∫
gdλ

Tr(ρ ∗ τ) = Tr(ρ) Tr(τ)

• S1(G) yields a Banach algebra extension of L1(G):

0→ML∞(G)⊥
ι→ (T (L2(G)), ∗) π→ (L1(G), ∗)→ 0

The ideal I :=ML∞(G)⊥ satisfies I2 = (0).

In case G is discrete, (S1(G), π, ι) is a singular extension
of the group algebra (`1(G), ∗).
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Some more homology theory

Talk at International Conference on Banach Algebras 2001
in Odense, Denmark:

Presentation of my S1(G) to the Banach algebra community

homological properties of S1(G)
←→

properties of G

The following results are due in part to Prof. Pirkovskii – a former

student of Prof. Helemskii and active member of his “Moscow

school” – and in part to myself.

G is discrete ⇔ the above extension splits

⇔ L1(G) is projective in mod-S1(G)

G is compact ⇔ C is projective in mod-S1(G)

G is finite ⇔ S1(G) is biprojective

G is amenable ⇔ S1(G) is biflat

⇔ C is flat in mod-S1(G)
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Alternative view through Hopf algebra glasses

Definition. A Hopf–von Neumann algebra is a pair (M,Γ)

where

• M is a von Neumann algebra;

• Γ : M → M⊗M is a co-multiplication, i.e., a normal,

unital, isometric ∗-homomorphism satisfying (id⊗ Γ) ◦ Γ =

(Γ⊗ id) ◦ Γ (co-associativity).

Extend comultiplication of the Hopf–vN (even Kac) algebra

L∞(G) to B(L2(G)) by setting

∆(x) = W (1⊗ x)W
∗

(x ∈ B(L2(G)))

where W is the fundamental unitary for L∞(G): Wξ(s, t) =

ξ(s, st). Then our product in S1(G) := (T (L2(G)), ∗) is

precisely ∆∗.
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Consider dual Kac algebra VN (G) = {λ(x) | x ∈ G}′′ =

group vN algebra. Its predual is the Fourier algebra A(G) =

{〈λ(·)ξ, η〉 | ξ, η ∈ L2(G)}.

Then using Ŵ yields a “pointwise” product on T (L2(G)).

We recover (L1(G), ∗) and (A(G), ·) as complete quotient

algebras of (T (L2), ∗) resp. (T (L2), •):

(T (L2), ∗) � (L1(G), ∗)

(T (L2), •) � (A(G), ·)
• T (L2(G)) carries 2 dual structures: a “convolution” and a

“pointwise” product!

• We have: Tr(ρ ∗ τ) = Tr(ρ • τ) = Tr(ρ)Tr(τ)

; This can even be done over locally compact quantum
groups (Junge–N.–Ruan)!
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II. Traces in operator space theory
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1. What are operator spaces?

Modern answer:

www.math.uni-sb.de/~ag-wittstock/projekt2001.html

Short answer:

Definition. A concrete operator space is a subspace X of

B(H) for some Hilbert space H.

Simple observation: X inherits the structure of B(H) on each

matrix level, i.e., we have isometrically

Mn(X) ⊆Mn(B(H)) = B(H⊕ . . .⊕H) = B(Hn
)

for every n ∈ N.

The norms ‖ · ‖n obtained on Mn(X) satisfy Ruan’s axioms:

(R 1) ‖a · x · b‖n ≤ ‖a‖Mn ‖x‖n ‖b‖Mn
for all x ∈Mn(E), a, b ∈Mn

(R 2)

∥∥∥∥( x 0

0 y

)∥∥∥∥
n+m

= max{‖x‖n, ‖y‖m}

for all x ∈Mn(E), y ∈Mm(E)
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Definition. [Ruan ’88] An abstract operator space is a Banach

space which carries a sequence of (matrix) norms satisfying (R1)

and (R2).

Theorem. [Ruan ’88] Every abstract operator space is a

concrete one.

For any Banach space E, we have an isometric embedding

ι : E ↪→ C(Ω)

where Ω = BALL(E∗). Here,

(ι(x))(ξ) = 〈ξ, x〉.

But C(Ω) is the prototype of a commutative C∗-algebra.

Hence we obtain the following scheme:

Banach spaces Operator spaces

E ↪→ A C∗-algebra E ↪→ A C∗-algebra

A commutative A non-commutative

Another nice way of distinguishing both concepts is the following.

E Banach space ←→ norm ‖ · ‖E
E ⊆ B(H) operator space ←→ sequence of matrix

norms (‖ · ‖Mn(E))
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We now define, for each x ∈
⋃
nMn(E):

‖x‖∞ := lim
n
‖x‖Mn(E)

K(E) :=
⋃
n

Mn(E)
‖·‖∞

.

It is crucial to note that even if dimE <∞, we have

sup
n

dim Mn(E) =∞, i.e., dim K(E) =∞.

Thus, the “non-commutative” unit ball is NON compact.

The reason for this is that we replace the scalars C by the

n × n-matrices (i.e., the “scalars” of quatum mechanics) – or,

equivalently, by the elements of

K = K(C) =
⋃
n

Mn(C)
‖·‖∞

.

Summarizing we obtain the following picture:

E Banach space ←→ ‖
∑
λixi‖E

where λi ∈ C, xi ∈ E

E ⊆ B(H) operator space ←→ ‖
∑
λi ⊗ xi‖K(E)

where λi ∈ K, xi ∈ E
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Philosophy: Operator space theory studies the many ways a

Banach space can “sit” in B(H).

We saw that every Banach space sits isometrically in some

(commutative) C∗-algebra C(Ω), and hence, in particular, in

some B(H).

Hence, every Banach space can be “realized” as an operator

space in at least one manner. Thus, in the category of
operator spaces, the Banach spaces appear as objects. But the

morphisms are different; these are the

completely bounded operators

instead of merely bounded (linear) operators. – They are exactly

the operators on the space E which take into account all the

matrix levels Mn(E).
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More precisely, let E and F be operator spaces, and Φ : E −→
F a bounded (linear) operator. Then we define the n-th
amplification

Φ(n) : Mn(E) −→ Mn(F )

[aij] 7→ [Φ(aij)] .

We say that Φ is completely bounded if

‖Φ‖cb := sup
n
‖Φ(n)‖ <∞.

It is readily checked that ‖ · ‖cb is a norm, and it is thus just a

functional analytic reflex to consider the Banach space

CB(E,F ) := {Φ : E −→ F | Φ completely bounded}.

By the way – in case E = F , this is of course a Banach algebra.
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Examples

First we discuss the morphisms.

Completely bounded maps

• Let E be an operator space, and A a commutative C∗-
algebra. Then every bounded linear operator Φ : X −→ A
is CB with ‖Φ‖cb = ‖Φ‖.

• For the transposition map τn : Mn −→ Mn, we have

‖τn‖cb = n. Hence, the transposition map τ on K is NOT
completely bounded.

• Consider two operator spaces E ⊆ B(H1) and F ⊆ B(H2).

Let Φ : E −→ F have the form

Φ(x) = aπ(x)b

where π : B(H1) → B(H) is a C∗-representation, and

a : H → H2 and b : H2 → H are bounded operators.

Then Φ is CB with ‖Φ‖cb ≤ ‖a‖ ‖b‖.

In fact, the last example is the prototype of a CB map.

Now let’s give examples for the objects of our category!
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Operator spaces

• Row Hilbert space R := lin{e1j | j = 1, 2, . . .}.

Finite dimensional version:

Rn := lin{e1j | j = 1, 2, . . . , n}
• Column Hilbert space C := lin{ei1 | i = 1, 2, . . .}.

Finite dimensional version:

Cn := lin{ei1 | i = 1, 2, . . . , n}
We have M1(R) = M1(C) = `2 as Banach spaces – but

R 6' C as operator spaces!

• Blecher–Paulsen have introduced the operator space structures

MIN (B) and MAX (B), for every Banach space B.

Here, MIN (B) is the (boring) operator space structure

stemming from the “commutative” embedding B ↪→ C(Ω),

where Ω = BALL(B∗).

On the contrary, MAX (B) is precisely the other “extremal”

structure, in the following sense: For every operator space E

being isometric to B as a Banach space, we have canonical

completely contractive “inclusions”

MAX (B) ⊆ E ⊆ MIN (B).
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In other words: The set of norms α on K(B) satisfying

Ruan’s axioms admits a minimal element αmin and a maximal

element αmax, and

αmin ≤ α ≤ αmax.

Paulsen showed that if at least dim(B) ≥ 5, then MIN (B)

and MAX (B) are not completely isometrically isomorphic.

Summarizing, we have 4 different operator space structures

R,C,MIN (`2),MAX (`2)

which as Banach spaces are all isometric to the Hilbert space `2.

Baby quantized functional analysis

• A New Duality: One defines the operator space projective
tensor product ⊗̂ similarly to the Banach space setting. We

know that M∗
n = Tn (trace duality!!). For an operator space

E, one then defines the operator space dual by norming

Mn(E
∗
) := Tn(E)

∗
:= (Tn⊗̂E)

∗
.

Alternatively: E∗ := CB(E, C)
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For example, we have

R
∗

= C and C
∗

= R

and, for every Banach space B,

MIN (B)
∗

= MAX (B
∗
) and MAX (B)

∗
= MIN (B

∗
).

• Quotients are formed using the identification

Mn(E1/E2) = Mn(E1)/Mn(E2).

• Complex Interpolation: For 0 < θ < 1, the interpolated

space Eθ = (E0, E1)θ becomes an operator space by setting

Mn(Eθ) = (Mn(E0),Mn(E1))θ.

• The Operator Hilbert Space: Thanks to Pisier, we know

that there is a unique operator space which is isometric to

`2 (as a Banach space) and self-dual. It is denoted by OH.

“Explicitly”, we have

OH = (R,C)1
2

= (MIN (`2),MAX (`2))1
2
.

• Special feature: Haagerup tensor product

R⊗h C = T (H) but C ⊗h R = K(H)
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2. A glance at quantum information theory

Let H be a finite-dimensional Hilbert space.

The entropy of a positive density d ∈ S1(H) is defined by

S(d) := −Tr(d ln d).

Let ιp denote the canonical inclusion of S1(H) into Sp(H).

The minimal entropy is given by

Smin(Φ) := inf{S(Φ(d)) : d ∈ S1(H)
+
, tr(d) = 1}

= −
d

dp
‖ιp ◦ Φ : S1(H)→ Sp(H)‖

∣∣
p=1

for a quantum channel, i.e., a trace preserving completely positive

map Φ.

The completely bounded minimal entropy (in short, cb-entropy)

of a c.b. map Φ : S1(H)→ S1(H) is defined as

Smin,cb(Φ) := −
d

dp
‖ιp ◦ Φ : S1(H)→ Sp(H)‖cb

∣∣
p=1
.

Theorem. [Devetak–Junge–King–Ruskai ’06]
Smin,cb(Φ⊗Ψ) = Smin,cb(Φ) + Smin,cb(Ψ)

• New examples of quantum channels from harmonic analysis

with explicitly determined cb-entropy (Junge–N.–Ruan ’07)
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III. Amplification of CB Maps and
Parametrized Traces (Slice Maps)
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1. Algebraic amplifications

Consider two Hilbert spaces H and K. If u : H → H is a

bounded operator, there is a unique operator

u⊗idK : H⊗2K → H⊗2K

such that for all ξ ∈ H and η ∈ K we have:

(u⊗idK)(ξ⊗η) = u(ξ)⊗η.

Let’s climb one level now: We consider a bounded operator

Φ : B(H) → B(H). Here, the existence of an algebraic
amplification, i.e., of a bounded operator

Φ⊗idB(K) : B(H⊗2K)︸ ︷︷ ︸
B(H)⊗B(K)

→ B(H⊗2K)︸ ︷︷ ︸
B(H)⊗B(K)

such that for all S ∈ B(H) and T ∈ B(K):

(Φ⊗idB(K))(S⊗T ) = Φ(S)⊗T,

of course forces our original map Φ to be CB. For we have:

‖Φ⊗idB(K)‖ = sup
n∈N
‖Φ⊗idMn‖ =: ‖Φ‖cb.

Indeed, such an amplification always exists and is given by(
Φ

(∞)
)

([aij]) = [Φ(aij)].
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Note that this apparently simple formula hides a subtle point

– and it is exactly this fact which is at the heart of our later

considerations: The latter equality makes sense even though the

infinite matrix [aij] really is a w∗-limit and our map Φ is not at

all supposed to respect this topology. In other words, we do not
assume that Φ is w∗-w∗-continuous (normal)!

Consider now a more general situation. Let M ⊆ B(H)

and N ⊆ B(K) be two von Neumann algebras, and let

Φ : M → M be a CB map. We wish to “construct” an

amplification

Φ⊗ idN :M⊗N →M⊗N .

Using the operator Hahn-Banach Theorem due to Haagerup–

Paulsen–Wittstock, we obtain an extension Φ̃ : B(H)→ B(H)

of Φ which preserves the cb-norm. We then get an amplification

Φ̃(∞) of the latter on the level of B(H)⊗B(K).

Finally we restrict to the sub-von Neumann algebraM⊗N :

B(H)⊗B(K)
Φ̃(∞)

// B(H)⊗B(K)

M⊗N
?�

OO

// M⊗N
?�

OO
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Here, the only non-trivial step is obviously to verify the inclusion:

Φ̃
(∞) (M⊗N) ⊆M⊗N .

The latter is easily seen by using a classical theorem of Tomiyama

– which leads us to his slice maps.

2. Tomiyama’s slice maps

Let M ⊆ B(H) and N ⊆ B(K) be two von Neumann

algebras – or more generally two dual operator spaces with their

corresponding w∗-embeddings. Let’s begin with the left slice.

For every τ ∈ N∗ there is a unique normal map Lτ :M⊗N →
M such that for all S ∈ M and T ∈ N :

Lτ(S⊗T ) = 〈τ, T 〉 S.

In an analogous fashion, for every ρ ∈ M∗ there is a unique

normal map Rρ :M⊗N → N such that for all S ∈ M and

T ∈ N :

Rρ(S⊗T ) = 〈ρ, S〉 T.

25



The Fubini product F(M,N ,B(H),B(K)) is then defined

to be the space

{u ∈ B(H⊗2 K) | Lτ(u) ∈ M and Rρ(u) ∈ N

∀τ ∈ T (K) ∀ρ ∈ T (H)}.

It turns out that this space actually does not depend on the

particular choice of embeddings so that we denote it just by

F(M,N ).

We recall the fundamental Slice Map Theorem which allows us

to deduce the desired inclusion mentioned above.

Theorem. [Tomiyama] Let M ⊆ B(H) and N ⊆ B(K) be

von Neumann algebras. Then we have:

F(M,N ) =M⊗N .

A serious drawback of the procedure described above is that it

is highly non-constructive. Our first aim is to present a simple,

explicit formula for an amplification – which even applies in a far

more general situation.
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3. The construction

We place ourselves in the setting of arbitrary (dual) operator

spaces. The following is a crucial notion which has its natural

motivation in the above-mentioned theorem of Tomiyama.

Definition. [Kraus] A dual operator space M is said to have

property Sσ if the equality

F(M,N ) =M⊗N

holds true for all dual operator spaces N (here, ⊗ denotes the

normal spatial tensor product).

At this point we recall the following important well-known facts:

• There are even separably acting factors without property Sσ;

but every injective von Neumann algebra has property Sσ
[Kraus].

• M has property Sσ if and only if M∗ has the OAP

[Effros–Ruan–Kraus].

Before presenting our explicit construction of an amplification, we

shall make precise which topological properties the latter should

meet beyond the obvious algebraic one.
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Definition. [N.] Let (M,N ) be an admissible pair, i.e.,

M and N are either von Neumann algebras or dual operator

spaces with at least one of them having property Sσ.

A linear map χ : CB(M) → CB(M⊗N ) satisfying the

algebraic amplification condition

χ(Φ)(S⊗T ) = Φ(S)⊗T

for all Φ ∈ CB(M), S ∈ M and T ∈ N , will be called an

amplification if in addition it enjoys the following properties:

(i) χ is a complete isometry;

(ii) χ is multiplicative;

(iii) χ is w∗-w∗-continuous;

(iv) χ(CBσ(M)) ⊆ CBσ(M⊗N ).

We now give a simple formula of an amplification for every

admissible pair.

Theorem. [N.] Let (M, N ) be an admissible pair. Then an

amplification is explicitly given by

〈χN(Φ)(u), ρ⊗ τ〉 = 〈Φ(Lτ(u)), ρ〉,

where Φ ∈ CB(M), u ∈ M⊗N , ρ ∈ M∗, τ ∈ N∗.

28



We omit the proof and restrict ourselves to very roughly sketch

the IDEA in the following diagram – which describes the situation

on the predual level:

(M⊗N )∗︸ ︷︷ ︸
M∗⊗̂N∗

⊗̂(M⊗N )
χN∗−→ M∗⊗̂M

ρ⊗τ⊗u 7→ ρ⊗Lτ(u)

4. Basic properties

We first note a natural compatibility property of our amplification

with respect to different spaces N .

Proposition. [N.] Let (M, N ) be an admissible pair, and let

further N0 ⊆ N . Then we have for all Φ ∈ CB(M):

χN(Φ)|M⊗N0
= χN0

(Φ).

Going back to our original “amplifying reflex”, we remark:

Proposition. [N.] Let (M, N ) be an admissible pair, where

M ⊆ B(H) and N ⊆ B(K). Let further Φ ∈ CB(M).

Then for an arbitrary Hahn-Banach extension Φ̃ ∈ CB(B(H))

obtained as above, we have:

Φ̃
(∞) |M⊗N = χN(Φ).
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This shows by the way that

• in our first method, any Hahn-Banach extension chosen

produces the same – namely, our – amplification;

• the amplification Φ(∞) does not depend on the particular

choice of basis for the second Hilbert space K.

Let Φ : A → B be CB. For u ∈ A⊗N , ρ ∈ B∗, τ ∈ N∗ set

〈χN(Φ)(u), ρ⊗ τ〉 = 〈Φ(Lτ(u)), ρ〉.

This gives of course an amplification χN(Φ) : A⊗N → B⊗N .

Let Ψ : A⊗N → B⊗N be CB. For τ ∈ N∗ consider

Trτ(Ψ) : A → B given by

〈Trτ(Ψ)(a), ρ〉 = 〈Ψ(a⊗ 1), ρ⊗ τ〉

(a ∈ A, ρ ∈ B∗).

Remark: We have Trτ ◦ χN = idCB(A,B) for all τ ∈ N∗ with

〈1, τ〉 = 1.

Why? – Fix Φ : A → B. Then, for all a ∈ A and ρ ∈ B∗:

〈Trτ(χN(Φ))(a), ρ〉 = 〈(χN(Φ))(a⊗ 1), ρ⊗ τ〉

= 〈Φ(a)⊗ 1, ρ⊗ τ〉

= 〈Φ(a), ρ〉.
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5. Uniqueness

Looking just at algebraic amplifications, of course we can by no

means hope for uniqueness even in the case of von Neumann

algebras M and N (despite the fact that this is claimed at

several places in the literature). – Namely, for any non-zero

functional ϕ ∈ (M⊗N )∗ which vanishes on M
∨
⊗N , and any

non-zero vector v ∈ M⊗N ,

χ
ϕ,v
N (Φ) := χN(Φ)− 〈ϕ, χN(Φ)(·)〉 v

trivially defines an algebraic amplification.

Nevertheless, we briefly note the following positive result.

Proposition. Let M be an injective factor and N any dual

operator space. Then an amplification is uniquely determined by

properties (iii) and (iv).
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6. Various applications

6.1 A generalization of the Ge–Kadison Lemma

In 1996, Ge and Kadison proved the following fundamental result

which solved the famous splitting problem for factors.

Theorem. LetM be a factor and S be a von Neumann algebra.

Suppose further that B is a von Neumann algebra such that

M⊗C1 ⊆ B ⊆M⊗S.

Then B =M⊗T for some von Neumann subalgebra T in S.

In order to prove this theorem, they first establish a result

on amplifications of normal, completely positive maps on von

Neumann algebras. Instead of stating the latter, we generalize it!

We have the following uniqueness result.

Proposition. [N.] Let (M,N ) be an admissible pair, and

Φ ∈ CB(M). Suppose Θ :M⊗N −→ M⊗N is any map

which satisfies, for some 0 6= n ∈ N :

(i) Θ commutes with the slice maps idM ⊗ τn (τ ∈ N∗)
(ii) Θ coincides with Φ⊗ idN onM⊗ Cn.

Then we must have Θ = Φ⊗ idN .
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This generalizes the corresponding result of Ge–Kadison who

proved the above assuming that Φ is normal and completely
positive and M and N are von Neumann algebras. Remark:

Our amplification result may be useful in order to

• deal with singular conditional expectations;

• attack the splitting problem for dual operator spaces with

property Sσ.

6.2 An algebraic characterization of normality

Theorem. [N.] Let M and N be von Neumann algebras with

N properly infinite. Then for an arbitrary Φ ∈ CB(M), TFAE:

(i) (Φ⊗idN)(idM⊗Ψ) = (idM⊗Ψ)(Φ⊗idN)∀Ψ ∈ CB(N )

(ii) Φ is normal.

Here, (ii)⇒ (i) holds for any admissible pair.

Our Theorem suggests considering two Arens type tensor
products! the product on a Banach algebra A can be extended

in two natural ways to its bidual, giving rise to the two Arens
products on A∗∗. One defines the topological centre

Zt := {m ∈ A∗∗ | m�1 n = m�2 n ∀n ∈ A∗∗}.
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In our context, setting

Φ⊗1Ψ := (Φ⊗idN)(idM⊗Ψ)

and

Φ⊗2Ψ := (idM⊗Ψ)(Φ⊗idN),

we have constructed two natural “tensor products” – instead

of multiplications! – which in general are different. It is then

natural to introduce the topological tensor centre

Z
⊗
t := {Φ ∈ CB(M) | Φ⊗1 Ψ = Φ⊗2 Ψ ∀Ψ ∈ CB(N )}.

The above Theorem may now be equivalently rephrased as

Z
⊗
t = CBσ(M).

This is exactly what one expects – since the (topological)

centre should correspond to the nice, i.e., normal part in the

Tomiyama-Takesaki decomposition

CB(M) = CBσ(M)⊕ CBs(M).
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6.3 Completely bounded module homomorphisms

A result of May–Neuhardt–Wittstock (whose proof is rather

involved) implies that whenever Φ ∈ CB(B(H)), then

the amplification Φ(∞) is automatically a 1⊗B(K)-bimodule

homomorphism on B(H)⊗B(K).

Using our explicit formula, we obtain a simpler proof of the

following even more general result:

Proposition. Let M and N be von Neumann algebras,

and let Φ ∈ CB(M). Then χN(Φ) is a 1⊗N -bimodule

homomorphism onM⊗N .

The proof uses nothing more than the following elementary

property of slice maps:

Lτ((1⊗a)u(1⊗b)) = Lb·τ ·a(u),

where 〈b · τ · a, u〉 = 〈τ, aub〉.
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IV. Traces in von Neumann algebras
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1. Characterizations of vN algebras through traces

Definition. A positive linear functional ϕ on M is called a

trace if

ϕ(ab) = ϕ(ba)

for all a, b ∈ M.

Note: Equivalently, ϕ(aa∗) = ϕ(a∗a) for all a ∈ M.

Extension beyond finiteness:

Definition. A weight on M is an additive map ϕ : M+ →
[0,∞] such that ϕ(λx) = λϕ(x) for all λ ∈ R

+ and

x ∈ M+. If, in addition ϕ(x∗x) = ϕ(xx∗) for all x ∈ M,

then ϕ is called a trace.

Set

M+
ϕ := {x ∈ M+ | ϕ(x) <∞}, Mϕ := linM+

ϕ

and

Nϕ := {x ∈ M | ϕ(x
∗
x) <∞}.

Then ϕ extends to a linear map on Mϕ, and Nϕ is a left ideal

ofM.
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We say that

• ϕ is normal if ϕ(supα xα) = supαϕ(xα) for each bounded,

increasing net (xα) inM+;

• ϕ is semifinite ifMϕ is w∗-dense inM;

• ϕ is faithful if ϕ(x) = 0 for x ∈ M+ implies x = 0.

Given an n.s.f. weight ϕ onM, the left ideal Nϕ, equipped with

the scalar product (x, y) := ϕ(y∗x), is a pre-Hilbert space. We

denote by L2(M, ϕ) its completion. ThenM can be identified

as a subalgebra of B(L2(M, ϕ)) – its standard form.

Theorem. There is a unique decomposition

M =M1 ⊕M2 ⊕M3

where

• M1 is finite⇔ there is a faithful normal tracial state onM1

• M2 is properly infinite but semifinite:

∗ properly infinite⇔ there is NO normal tracial state onM2

∗ semifinite ⇔ there is a faithful semifinite normal trace on

M+
2

• M3 is purely infinite ⇔ there is NO (non-zero) semifinite

normal trace onM+
3
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Refinement

Theorem. There is a unique decomposition

M =MIn ⊕MI∞ ⊕MII1
⊕MII∞ ⊕MIII

where

• MIn andMII1
are finite

• MI∞ andMII∞ are properly infinite and semifinite

• MIII is purely infinite

Examples:

• baby example M = Mn(C) [type In] from the beginning:

non-normalized trace Tr(aij) =
∑n

i=1 aii; normalized trace

Trn = 1
n

∑n
i=1 aii

•M = L∞(G) for a compact group G [type I]: Tr =
∫
G · dλ,

where λ = (normalized) Haar measure

•M = V N(G) for an ICC group G [type II1]: Tr = 〈 · δe, δe〉
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Note: GivenM with an n.s.f. trace Tr one associates toM the

non-commutative Lp spaces Lp(M,Tr).

For Tr finite, Lp(M,Tr) = completion of M w.r.t. the norm

‖x‖p = (Tr(|x|p))1/p.

We have L1(M,Tr) =M∗ and L∞(M,Tr) =M.

One can obtain Lp(M,Tr) by complex interpolation between

M∗ andM. This yields a natural operator space structure on

Lp(M,Tr).

Examples:

• Lp(B(H),Tr) = Sp(H)

• Lp(L∞(Ω), µ) = Lp(Ω, µ)
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2. En guise d’épilogue

• The centre-valued trace on a finite von Neumann algebraM is

a faithful normal projection of norm 1 (=conditional expectation)

fromM onto Z =M′ ∩M, such that Tr(ab) = Tr(ba) for

all a, b ∈ M.

• Caution: There are non-normal traces on B(H) (Dixmier ’66)!

The so-called Dixmier traces vanish on K(H) – in particular on

T (H).

∗ closely linked to invariant means on `∞ (they vanish on c0)

∗ useful in Noncommutative Geometry in calculations modulo

finite rank operators

• .....
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