Traces in Functional Analysis and Operator Algebras

Matthias Neufang Carleton University, Ottawa

I. Traces in Banach space theory

1. The projective tensor product

Let E be a Banach space. Then the dual pair (E^*, E) determines the **trace** Tr on $E^* \otimes E$ via

$$\mathrm{Tr}(\phi \otimes x) = \langle \phi, x \rangle.$$

Definition. Let E, F be Banach spaces. The projective tensor product $E \otimes_{\gamma} F$ is the completion of $E \otimes F$ w.r.t. the norm

$$\|z\|_{\gamma} = \inf\{\sum_{i=1}^{n} \|x_i\| \|y_i\| \mid n \in \mathbb{N}, z = \sum_{i=1}^{n} x_i \otimes y_i\}.$$

Alternatively: $(E \otimes_{\gamma} F)^* = \mathcal{B}(E, F^*)$

Putting on operator glasses, we have a natural map

$$j: E^* \otimes E \to \mathcal{B}(E)$$

given by $j(\phi \otimes x)(y) = \langle \phi, y \rangle x$. Consider its extension

$$J: E^* \otimes_{\gamma} E \to \mathcal{B}(E).$$

Grothendieck defined the image $E^* \otimes_{\gamma} E/Ker(J)$ with the quotient norm, as the space of nuclear operators $\mathcal{N}(E)$.

Since $|\langle \phi, x \rangle| \leq ||\phi|| ||x||$, the trace Tr extends to a functional on $E \otimes_{\gamma} E^*$.

If J is injective, then the trace is defined for all nuclear operators. When is this the case?

Theorem. J is injective iff E has the approximation property (AP).

Definition. E has the AP if for any compact set $K \subseteq E$ and $\varepsilon > 0$ there is a finite-rank map $S : E \to E$ such that $\|S(x) - x\| < \varepsilon$ for all $x \in K$.

 \rightsquigarrow All "usual" spaces – such as c_0 , C(K), L_p – have the AP; but NOT $\mathcal{B}(\mathcal{H})!!$

2. The Schatten ideals

The nuclear operators on a Hilbert space \mathcal{H} are usually called **trace class operators** $\mathcal{T}(\mathcal{H})$. By the above,

$$\mathcal{T}(\mathcal{H}) = \mathcal{H} \otimes_{\gamma} \mathcal{H}.$$

Alternative description: Every $S \in \mathcal{K}(\mathcal{H})$ has the form

$$S = \sum_{i=1}^{\infty} s_i \langle \cdot, \xi_i
angle \eta_i$$

for appropriate ONS (ξ_i) , (η_i) . Here, $s_i(S) \ge 0$ are the eigenvalues of $|S| = (S^*S)^{1/2}$ (= singular values).

Now, $S \in \mathcal{K}(\mathcal{H})$ is trace class iff $(s_i(S)) \in \ell_1$. Then $||S||_{\gamma} = ||(s_i(S))||_1$.

Example: Operator on ℓ_2 of multiplication with ℓ_1 -function The trace $\operatorname{Tr}(\rho)$ for $\rho \in \mathcal{T}(\mathcal{H})$ can be expressed as

$$\operatorname{Tr}(\rho) = \sum_{i=1}^{\infty} \langle \rho \xi_i, \xi_i \rangle$$

with any ONB of \mathcal{H} .

One defines the **Schatten class** $S_p(\mathcal{H})$ as the collection of $S \in \mathcal{K}(\mathcal{H})$ with $(s_i(S)) \in \ell_p$ $(1 , with the norm <math>||S||_p := ||(s_i(S))||_p$. One sets $S_{\infty}(\mathcal{H}) = \mathcal{K}(\mathcal{H})$.

- $S_1(\mathcal{H}) \subseteq S_p(\mathcal{H}) \subseteq \mathcal{K}(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H})$
- $S_p(\mathcal{H})$ form 2-sided ideals in $\mathcal{B}(\mathcal{H})$
- $S_p(\mathcal{H})^* = S_q(\mathcal{H})$ where $\frac{1}{p} + \frac{1}{q} = 1$
- the trace gives the dualities $\mathcal{K}(\mathcal{H})^* = \mathcal{T}(\mathcal{H})$ and $\mathcal{T}(\mathcal{H})^* = \mathcal{B}(\mathcal{H})$
- $\mathcal{B}(\mathcal{H})^* = \mathcal{T}(\mathcal{H}) \oplus_1 \mathcal{K}(\mathcal{H})^{\perp}$

3. Convolution of trace class operators

commutative world: $L_1(\mathcal{G})$	noncommutative world: $\mathcal{T}(L_2(\mathcal{G}))$
pointwise product in (ℓ_1, \cdot)	composition in $(\mathcal{T}(\ell_2(\mathcal{G})), \cdot)$
convolution in $(L_1(\mathcal{G}),*)$???

Let \mathcal{G} be a locally compact group. Then

$$L_{\infty}(\mathcal{G}) \hookrightarrow \mathcal{B}(L_2(\mathcal{G}))$$

as multiplication operators. The pre-adjoint of this embedding gives a canonical quotient map

$$\pi: \mathcal{T}(L_2(\mathcal{G})) = L_2(\mathcal{G}) \otimes_{\gamma} L_2(\mathcal{G}) \to L_1(\mathcal{G}).$$

We have $\pi(\xi \otimes \eta) = \xi \overline{\eta}$.

Definition. [N.] For trace class operators $\rho, \tau \in \mathcal{T}(L_2(\mathcal{G}))$ we define

$$\rho * \tau = \int_{\mathcal{G}} L_x \rho L_{x^{-1}} \pi(\tau)(x) d\lambda(x).$$

Then we obtain a new associative product on the space $\mathcal{T}(L_2(\mathcal{G}))$. This defines a convolution of trace class operators!

Your (legitimate) objection: Does this indeed extend classical convolution to the non-commutative context?

Let's convolve matrices!

If $A = [A_{i,j}]$ and $B = [B_{k,l}]$ are matrices, then their convolution product C = A * B is given by

$$C_{i,j} = \sum_{t \in \mathcal{G}} A_{t^{-1}i,t^{-1}j} B_{t,t}.$$

Thus, in case A and B are just functions (i.e., diagonal matrices), C as well is a diagonal matrix, namely

$$C_i = \sum_{t \in \mathcal{G}} A_{t^{-1}i} B_t.$$

So $(\ell_1, *)$ becomes a **subalgebra** of $(\mathcal{T}(\ell_2), *)$.

Some "amuse-gueules" for the study of

The Non-Commutative Convolution Algebra $\mathcal{S}_1(\mathcal{G}) = (\mathcal{T}(L_2(\mathcal{G})), *)$

- If $\mathcal{S}_1(\mathcal{G}) \cong \mathcal{S}_1(\mathcal{G}')$, then $\mathcal{G} \cong \mathcal{G}'$.
- \mathcal{G} amenable $\iff \mathcal{S}_1(\mathcal{G})$ right amenable (à la Lau)
- The dual space $S_{\infty}(\mathcal{G}) = S_1(\mathcal{G})^*$ becomes a **Hopf-von Neumann algebra**; its comultiplication extends the one of $L_{\infty}(\mathcal{G}) = L_1(\mathcal{G})^*$.

Thus, $S_1(\mathcal{G})$ is an **operator convolution algebra** in the sense of Effros–Ruan.

$$\int (f * g) d\lambda = \int f d\lambda \int g d\lambda$$
$$\operatorname{Tr}(\rho * \tau) = \operatorname{Tr}(\rho) \operatorname{Tr}(\tau)$$

• $S_1(G)$ yields a Banach algebra **extension** of $L_1(G)$:

$$0 \to \mathcal{ML}_{\infty}(\mathcal{G})_{\perp} \xrightarrow{\iota} (\mathcal{T}(L_{2}(\mathcal{G})), *) \xrightarrow{\pi} (L_{1}(\mathcal{G}), *) \to 0$$

The ideal $I := \mathcal{ML}_{\infty}(\mathcal{G})_{\perp}$ satisfies $I^2 = (0)$. In case \mathcal{G} is discrete, $(\mathcal{S}_1(\mathcal{G}), \pi, \iota)$ is a **singular extension** of the group algebra $(\ell_1(\mathcal{G}), *)$. Talk at International Conference on Banach Algebras 2001 in Odense, Denmark:

Presentation of my $\mathcal{S}_1(\mathcal{G})$ to the Banach algebra community

homological properties of $\mathcal{S}_1(\mathcal{G})$ \longleftrightarrow properties of \mathcal{G}

The following results are due in part to Prof. Pirkovskii – a former student of Prof. Helemskii and active member of his "Moscow school" – and in part to myself.

${\cal G}$ is discrete	\Leftrightarrow	the above extension splits	
	\Leftrightarrow	$L_1(\mathcal{G})$ is projective in mod- $\mathcal{S}_1(\mathcal{G})$	
\mathcal{G} is compact	\Leftrightarrow	${\mathbb C}$ is projective in $\operatorname{mod} {\mathcal S}_1({\mathcal G})$	
		$\mathcal{S}(\mathcal{C})$ is him algorithm	
g is inite	\Leftrightarrow	$\mathcal{S}_1(\mathcal{G})$ is diprojective	
\mathcal{G} is amenable	\Leftrightarrow	$S_1(G)$ is biflat	
2	\Leftrightarrow	\mathbb{C} is flat in mod- $S_1(\mathcal{G})$	
	~ /	\mathcal{O} is have in mode $\mathcal{O}_1(\mathcal{G})$	

Alternative view through Hopf algebra glasses

Definition. A Hopf-von Neumann algebra is a pair (M, Γ) where

- *M* is a von Neumann algebra;
- $\Gamma : M \to M \otimes \overline{\otimes} M$ is a co-multiplication, i.e., a normal, unital, isometric *-homomorphism satisfying $(id \otimes \Gamma) \circ \Gamma = (\Gamma \otimes id) \circ \Gamma$ (co-associativity).

Extend comultiplication of the Hopf–vN (even Kac) algebra $L_{\infty}(\mathcal{G})$ to $\mathcal{B}(L_2(\mathcal{G}))$ by setting

$$\Delta(x) = W(1 \otimes x)W^* \quad (x \in \mathcal{B}(L_2(\mathcal{G})))$$

where W is the **fundamental unitary** for $L_{\infty}(\mathcal{G})$: $W\xi(s,t) = \xi(s,st)$. Then our product in $S_1(G) := (\mathcal{T}(L_2(\mathcal{G})), *)$ is precisely Δ_* .

Consider dual Kac algebra $VN(G) = \{\lambda(x) \mid x \in \mathcal{G}\}'' =$ group vN algebra. Its predual is the Fourier algebra $A(\mathcal{G}) = \{\langle \lambda(\cdot)\xi, \eta \rangle \mid \xi, \eta \in L_2(\mathcal{G})\}.$

Then using \widehat{W} yields a "pointwise" product on $\mathcal{T}(L_2(\mathcal{G}))$.

We recover $(L_1(G), *)$ and $(A(G), \cdot)$ as complete quotient algebras of $(\mathcal{T}(L_2), *)$ resp. $(\mathcal{T}(L_2), \bullet)$:

$$(\mathcal{T}(L_2), *) \twoheadrightarrow (L_1(G), *)$$

 $(\mathcal{T}(L_2), \bullet) \twoheadrightarrow (A(G), \cdot)$

• $\mathcal{T}(L_2(\mathcal{G}))$ carries 2 dual structures: a "**convolution**" and a "**pointwise**" product!

• We have:
$$\operatorname{Tr}(\rho * \tau) = \operatorname{Tr}(\rho \bullet \tau) = \operatorname{Tr}(\rho)\operatorname{Tr}(\tau)$$

 \rightsquigarrow This can even be done over **locally compact quantum** groups (Junge-N.-Ruan)!

II. Traces in operator space theory

1. What are operator spaces?

Modern answer:

www.math.uni-sb.de/~ag-wittstock/projekt2001.html

Short answer:

Definition. A concrete operator space is a subspace X of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Simple observation: X inherits the structure of $\mathcal{B}(\mathcal{H})$ on each matrix level, i.e., we have isometrically

$$M_n(X) \subseteq M_n(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H} \oplus \ldots \oplus \mathcal{H}) = \mathcal{B}(\mathcal{H}^n)$$

for every $n \in \mathbb{N}$.

The norms $\|\cdot\|_n$ obtained on $M_n(X)$ satisfy **Ruan's axioms**:

- (R 1) $||a \cdot x \cdot b||_n \le ||a||_{M_n} ||x||_n ||b||_{M_n}$ for all $x \in M_n(E)$, $a, b \in M_n$
- (R 2) $\left\| \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \right\|_{n+m} = \max\{\|x\|_n, \|y\|_m\}$ for all $x \in M_n(E), y \in M_m(E)$

Definition. [Ruan '88] An abstract operator space is a Banach space which carries a sequence of (matrix) norms satisfying (R1) and (R2).

Theorem. [Ruan '88] Every abstract operator space is a concrete one.

For any Banach space E, we have an isometric embedding

$$\iota: E \hookrightarrow \mathcal{C}(\Omega)$$

where $\Omega = BALL(E^*)$. Here,

$$(\iota(x))(\xi) = \langle \xi, x \rangle.$$

But $C(\Omega)$ is the prototype of a commutative C^* -algebra. Hence we obtain the following scheme:

Banach spaces	Operator spaces		
$E \hookrightarrow \mathcal{A} \ C^*$ -algebra	$E \hookrightarrow \mathcal{A} \ C^*$ -algebra		
${\cal A}$ commutative	${\cal A}$ non-commutative		

Another nice way of distinguishing both concepts is the following.

E Banach space	\longleftrightarrow	norm $\ \cdot\ _E$
$E\subseteq \mathcal{B}(\mathcal{H})$ operator space	\longleftrightarrow	sequence of matrix
		norms $(\ \cdot\ _{M_n(E)})$

We now define, for each $x \in \bigcup_n M_n(E)$:

$$||x||_{\infty} := \lim_{n} ||x||_{M_{n}(E)}$$
$$K(E) := \overline{\bigcup_{n} M_{n}(E)}^{\|\cdot\|_{\infty}}.$$

It is crucial to note that even if $\dim E < \infty$, we have

$$\sup_{n} \dim M_{n}(E) = \infty, \text{ i.e., } \dim K(E) = \infty.$$

Thus, the "non-commutative" unit ball is NON compact. The reason for this is that we replace the scalars \mathbb{C} by the $n \times n$ -matrices (i.e., the "scalars" of quatum mechanics) – or, equivalently, by the elements of

$$\mathcal{K} = K(\mathbb{C}) = \overline{\bigcup_{n} M_n(\mathbb{C})}^{\|\cdot\|_{\infty}}$$

•

Summarizing we obtain the following picture:

$$E \text{ Banach space } \longleftrightarrow \| \sum_{i} \lambda_{i} x_{i} \|_{E}$$

where $\lambda_{i} \in \mathbb{C}, x_{i} \in E$
$$E \subseteq \mathcal{B}(\mathcal{H}) \text{ operator space } \longleftrightarrow \| \sum_{i} \lambda_{i} \otimes x_{i} \|_{K(E)}$$

where $\lambda_{i} \in \mathcal{K}, x_{i} \in E$

Philosophy: Operator space theory studies the many ways a Banach space can "sit" in $\mathcal{B}(\mathcal{H})$.

We saw that every Banach space sits isometrically in some (commutative) C^* -algebra $C(\Omega)$, and hence, in particular, in some $\mathcal{B}(\mathcal{H})$.

Hence, every Banach space can be "realized" as an operator space in at least one manner. Thus, in the **category of operator spaces**, the Banach spaces appear as **objects**. But the **morphisms** are different; these are the

completely bounded operators

instead of merely bounded (linear) operators. – They are exactly the operators on the space E which take into account all the matrix levels $M_n(E)$.

More precisely, let E and F be operator spaces, and $\Phi: E \longrightarrow F$ a bounded (linear) operator. Then we define the *n*-th amplification

$$\Phi^{(n)}: \quad M_n(E) \quad \longrightarrow \quad M_n(F)$$
$$[a_{ij}] \quad \mapsto \quad [\Phi(a_{ij})]$$

We say that Φ is **completely bounded** if

$$\|\Phi\|_{\rm cb} := \sup_n \|\Phi^{(n)}\| < \infty.$$

It is readily checked that $\|\cdot\|_{cb}$ is a norm, and it is thus just a functional analytic reflex to consider the Banach space

 $\mathcal{CB}(E,F) := \{ \Phi : E \longrightarrow F \mid \Phi \text{ completely bounded} \}.$

By the way – in case E = F, this is of course a Banach algebra.

Examples

First we discuss the morphisms.

Completely bounded maps

- Let E be an operator space, and A a commutative C^{*}algebra. Then every bounded linear operator Φ : X → A
 is CB with ||Φ||_{cb} = ||Φ||.
- For the transposition map $\tau_n : M_n \longrightarrow M_n$, we have $\|\tau_n\|_{cb} = n$. Hence, the transposition map τ on \mathcal{K} is **NOT** completely bounded.
- Consider two operator spaces E ⊆ B(H₁) and F ⊆ B(H₂). Let Φ : E → F have the form

$$\Phi(x) = a\pi(x)b$$

where $\pi : \mathcal{B}(\mathcal{H}_1) \to \mathcal{B}(\mathcal{H})$ is a C^* -representation, and $a : \mathcal{H} \to \mathcal{H}_2$ and $b : \mathcal{H}_2 \to \mathcal{H}$ are bounded operators. Then Φ is CB with $\|\Phi\|_{cb} \leq \|a\| \|b\|$.

In fact, the last example is the **prototype** of a CB map.

Now let's give examples for the objects of our category!

Operator spaces

- Row Hilbert space R := lin {e_{1j} | j = 1, 2, ...}.
 Finite dimensional version: R_n := lin {e_{1j} | j = 1, 2, ..., n}
- Column Hilbert space C := lin {e_{i1} | i = 1, 2, ...}.
 Finite dimensional version: C_n := lin {e_{i1} | i = 1, 2, ..., n}
 We have M₁(R) = M₁(C) = ℓ₂ as Banach spaces - but R ∠ C as operator spaces!
- Blecher-Paulsen have introduced the operator space structures MIN(B) and MAX(B), for every Banach space B. Here, MIN(B) is the (boring) operator space structure stemming from the "commutative" embedding $B \hookrightarrow C(\Omega)$, where $\Omega = BALL(B^*)$.

On the contrary, MAX(B) is precisely the other "extremal" structure, in the following sense: For every operator space E being isometric to B as a Banach space, we have canonical completely contractive "inclusions"

 $MAX(B) \subseteq E \subseteq MIN(B).$

In other words: The set of norms α on $\mathcal{K}(B)$ satisfying Ruan's axioms admits a minimal element α_{\min} and a maximal element α_{\max} , and

$$\alpha_{\min} \leq \alpha \leq \alpha_{\max}.$$

Paulsen showed that if at least $\dim(B) \ge 5$, then MIN(B)and MAX(B) are not completely isometrically isomorphic.

Summarizing, we have 4 different operator space structures

$$R, C, MIN(\ell_2), MAX(\ell_2)$$

which as Banach spaces are all isometric to the Hilbert space ℓ_2 .

Baby quantized functional analysis

$$M_n(E^*) := T_n(E)^* := (T_n \hat{\otimes} E)^*.$$

Alternatively: $E^* := \mathcal{CB}(E, \mathbb{C})$

For example, we have

$$R^* = C$$
 and $C^* = R$

and, for every Banach space B,

 $MIN(B)^* = MAX(B^*)$ and $MAX(B)^* = MIN(B^*)$.

• **Quotients** are formed using the identification

$$M_n(E_1/E_2) = M_n(E_1)/M_n(E_2).$$

• Complex Interpolation: For $0 < \theta < 1$, the interpolated space $E_{\theta} = (E_0, E_1)_{\theta}$ becomes an operator space by setting

$$M_n(E_\theta) = (M_n(E_0), M_n(E_1))_\theta.$$

 The Operator Hilbert Space: Thanks to Pisier, we know that there is a unique operator space which is isometric to l₂ (as a Banach space) and self-dual. It is denoted by OH. "Explicitly", we have

$$OH = (R, C)_{\frac{1}{2}} = (MIN(\ell_2), MAX(\ell_2))_{\frac{1}{2}}.$$

• Special feature: Haagerup tensor product

$$R \otimes_h C = \mathcal{T}(\mathcal{H})$$
 but $C \otimes_h R = \mathcal{K}(\mathcal{H})$

2. A glance at quantum information theory

Let H be a finite-dimensional Hilbert space.

The entropy of a positive density $d \in S_1(H)$ is defined by

$$S(d) := -\mathrm{Tr}(d\ln d).$$

Let ι_p denote the canonical inclusion of $S_1(H)$ into $S_p(H)$. The minimal entropy is given by

$$S_{min}(\Phi) := \inf \{ S(\Phi(d)) : d \in S_1(H)^+, tr(d) = 1 \}$$
$$= -\frac{d}{dp} \| \iota_p \circ \Phi : S_1(H) \to S_p(H) \| \big|_{p=1}$$

for a quantum channel, i.e., a trace preserving completely positive map $\Phi.$

The completely bounded minimal entropy (in short, <u>cb-entropy</u>) of a c.b. map $\Phi : S_1(H) \to S_1(H)$ is defined as

$$S_{min,cb}(\Phi) := -\frac{d}{dp} \|\iota_p \circ \Phi : S_1(H) \to S_p(H)\|_{cb} \big|_{p=1}.$$

Theorem. [Devetak–Junge–King–Ruskai '06] $S_{min,cb}(\Phi \otimes \Psi) = S_{min,cb}(\Phi) + S_{min,cb}(\Psi)$

• New examples of quantum channels from harmonic analysis with explicitly determined cb-entropy (Junge-N.-Ruan '07)

III. Amplification of CB Maps and Parametrized Traces (Slice Maps)

1. Algebraic amplifications

Consider two Hilbert spaces \mathcal{H} and \mathcal{K} . If $u : \mathcal{H} \to \mathcal{H}$ is a bounded operator, there is a unique operator

$$u \otimes \mathrm{id}_{\mathcal{K}} : \mathcal{H} \otimes_2 \mathcal{K} \to \mathcal{H} \otimes_2 \mathcal{K}$$

such that for all $\xi \in \mathcal{H}$ and $\eta \in \mathcal{K}$ we have:

$$(u \otimes \mathrm{id}_{\mathcal{K}})(\xi \otimes \eta) = u(\xi) \otimes \eta.$$

Let's climb one level now: We consider a bounded operator $\Phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$. Here, the existence of an **algebraic amplification**, i.e., of a bounded operator

$$\Phi \otimes \mathrm{id}_{\mathcal{B}(\mathcal{K})} : \underbrace{\mathcal{B}(\mathcal{H} \otimes_2 \mathcal{K})}_{\mathcal{B}(\mathcal{H}) \overline{\otimes} \mathcal{B}(\mathcal{K})} \to \underbrace{\mathcal{B}(\mathcal{H} \otimes_2 \mathcal{K})}_{\mathcal{B}(\mathcal{H}) \overline{\otimes} \mathcal{B}(\mathcal{K})}$$

such that for all $S \in \mathcal{B}(\mathcal{H})$ and $T \in \mathcal{B}(\mathcal{K})$:

$$(\Phi \otimes \mathrm{id}_{\mathcal{B}(\mathcal{K})})(S \otimes T) = \Phi(S) \otimes T,$$

of course forces our original map Φ to be CB. For we have:

$$\|\Phi \otimes \mathrm{id}_{\mathcal{B}(\mathcal{K})}\| = \sup_{n \in \mathbb{N}} \|\Phi \otimes \mathrm{id}_{M_n}\| =: \|\Phi\|_{\mathrm{cb}}.$$

Indeed, such an amplification always exists and is given by

$$\left(\Phi^{(\infty)}\right)([a_{ij}]) = [\Phi(a_{ij})].$$

Note that this apparently simple formula hides a subtle point – and it is exactly this fact which is at the heart of our later considerations: The latter equality makes sense even though the infinite matrix $[a_{ij}]$ really is a w^* -limit and our map Φ is not at all supposed to respect this topology. In other words, we do **not** assume that Φ is w^* - w^* -continuous (normal)!

Consider now a more general situation. Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ and $\mathcal{N} \subseteq \mathcal{B}(\mathcal{K})$ be two von Neumann algebras, and let $\Phi : \mathcal{M} \to \mathcal{M}$ be a CB map. We wish to "construct" an amplification

$$\Phi \otimes \mathrm{id}_{\mathcal{N}} : \mathcal{M} \overline{\otimes} \mathcal{N} \to \mathcal{M} \overline{\otimes} \mathcal{N}.$$

Using the operator Hahn-Banach Theorem due to Haagerup– Paulsen–Wittstock, we obtain an extension $\widetilde{\Phi} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ of Φ which preserves the cb-norm. We then get an amplification $\widetilde{\Phi}^{(\infty)}$ of the latter on the level of $\mathcal{B}(\mathcal{H}) \overline{\otimes} \mathcal{B}(\mathcal{K})$.

Finally we restrict to the sub-von Neumann algebra $\mathcal{M} \overline{\otimes} \mathcal{N}$:

Here, the only non-trivial step is obviously to verify the inclusion:

$$\widetilde{\Phi}^{(\infty)}\left(\mathcal{M}\overline{\otimes}\mathcal{N}\right)\subseteq\mathcal{M}\overline{\otimes}\mathcal{N}.$$

The latter is easily seen by using a classical theorem of Tomiyama – which leads us to his **slice maps**.

2. Tomiyama's slice maps

Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ and $\mathcal{N} \subseteq \mathcal{B}(\mathcal{K})$ be two von Neumann algebras – or more generally two dual operator spaces with their corresponding w^* -embeddings. Let's begin with the left slice. For every $\tau \in \mathcal{N}_*$ there is a unique normal map $L_{\tau} : \mathcal{M} \otimes \mathcal{N} \to \mathcal{M}$ such that for all $S \in \mathcal{M}$ and $T \in \mathcal{N}$:

$$L_{\tau}(S \otimes T) = \langle \tau, T \rangle \ S.$$

In an analogous fashion, for every $\rho \in \mathcal{M}_*$ there is a unique normal map $R_{\rho} : \mathcal{M} \otimes \mathcal{N} \to \mathcal{N}$ such that for all $S \in \mathcal{M}$ and $T \in \mathcal{N}$:

$$R_{\rho}(S \otimes T) = \langle \rho, S \rangle \ T.$$

The Fubini product $\mathcal{F}(\mathcal{M}, \mathcal{N}, \mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K}))$ is then defined to be the space

$$\{u \in \mathcal{B}(\mathcal{H} \otimes_2 \mathcal{K}) \mid L_{\tau}(u) \in \mathcal{M} \text{ and } R_{\rho}(u) \in \mathcal{N} \\ \forall \tau \in \mathcal{T}(\mathcal{K}) \; \forall \rho \in \mathcal{T}(\mathcal{H}) \}.$$

It turns out that this space actually does not depend on the particular choice of embeddings so that we denote it just by $\mathcal{F}(\mathcal{M}, \mathcal{N})$.

We recall the fundamental Slice Map Theorem which allows us to deduce the desired inclusion mentioned above.

Theorem. [Tomiyama] Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ and $\mathcal{N} \subseteq \mathcal{B}(\mathcal{K})$ be von Neumann algebras. Then we have:

$$\mathcal{F}(\mathcal{M},\mathcal{N})=\mathcal{M}\overline{\otimes}\mathcal{N}.$$

A serious drawback of the procedure described above is that it is highly non-constructive. Our first aim is to present a simple, **explicit** formula for an amplification – which even applies in a far more general situation.

3. The construction

We place ourselves in the setting of arbitrary (dual) operator spaces. The following is a crucial notion which has its natural motivation in the above-mentioned theorem of Tomiyama.

Definition. [Kraus] A dual operator space \mathcal{M} is said to have property S_{σ} if the equality

$$\mathcal{F}(\mathcal{M},\mathcal{N})=\mathcal{M}\overline{\otimes}\mathcal{N}$$

holds true for all dual operator spaces \mathcal{N} (here, $\overline{\otimes}$ denotes the normal spatial tensor product).

At this point we recall the following important well-known facts:

- There are even separably acting factors without property S_{σ} ; but every injective von Neumann algebra has property S_{σ} [Kraus].
- \mathcal{M} has property S_{σ} if and only if \mathcal{M}_* has the OAP [Effros-Ruan-Kraus].

Before presenting our explicit construction of an amplification, we shall make precise which topological properties the latter should meet beyond the obvious algebraic one.

Definition. [N.] Let $(\mathcal{M}, \mathcal{N})$ be an admissible pair, i.e., \mathcal{M} and \mathcal{N} are either von Neumann algebras or dual operator spaces with at least one of them having property S_{σ} .

A linear map $\chi : C\mathcal{B}(\mathcal{M}) \to C\mathcal{B}(\mathcal{M} \overline{\otimes} \mathcal{N})$ satisfying the algebraic amplification condition

$$\chi(\Phi)(S \otimes T) = \Phi(S) \otimes T$$

for all $\Phi \in C\mathcal{B}(\mathcal{M})$, $S \in \mathcal{M}$ and $T \in \mathcal{N}$, will be called an **amplification** if in addition it enjoys the following properties:

- (i) χ is a complete isometry;
- (ii) χ is multiplicative;
- (iii) χ is w^* - w^* -continuous;
- (iv) $\chi(\mathcal{CB}^{\sigma}(\mathcal{M})) \subseteq \mathcal{CB}^{\sigma}(\mathcal{M} \otimes \mathcal{N}).$

We now give a simple formula of an amplification for every admissible pair.

Theorem. [N.] Let $(\mathcal{M}, \mathcal{N})$ be an admissible pair. Then an amplification is explicitly given by

$$\langle \chi_{\mathcal{N}}(\Phi)(u), \rho \otimes \tau \rangle = \langle \Phi(L_{\tau}(u)), \rho \rangle,$$

where $\Phi \in CB(\mathcal{M})$, $u \in \mathcal{M} \otimes \mathcal{N}$, $\rho \in \mathcal{M}_*$, $\tau \in \mathcal{N}_*$.

We omit the proof and restrict ourselves to very roughly sketch the **IDEA** in the following diagram – which describes the situation on the predual level:

$$\underbrace{(\mathcal{M}\overline{\otimes}\mathcal{N})_{*}}_{\mathcal{M}_{*}\widehat{\otimes}\mathcal{N}_{*}}\widehat{\otimes}(\mathcal{M}\overline{\otimes}\mathcal{N}) \xrightarrow{\chi_{\mathcal{N}_{*}}} \mathcal{M}_{*}\widehat{\otimes}\mathcal{M}$$
$$\rho \otimes \tau \otimes u \quad \mapsto \quad \rho \otimes L_{\tau}(u)$$

4. Basic properties

We first note a natural compatibility property of our amplification with respect to different spaces \mathcal{N} .

Proposition. [N.] Let $(\mathcal{M}, \mathcal{N})$ be an admissible pair, and let further $\mathcal{N}_0 \subseteq \mathcal{N}$. Then we have for all $\Phi \in \mathcal{CB}(\mathcal{M})$:

$$\chi_{\mathcal{N}}(\Phi)|_{\mathcal{M}\overline{\otimes}\mathcal{N}_0} = \chi_{\mathcal{N}_0}(\Phi).$$

Going back to our original "amplifying reflex", we remark:

Proposition. [N.] Let $(\mathcal{M}, \mathcal{N})$ be an admissible pair, where $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ and $\mathcal{N} \subseteq \mathcal{B}(\mathcal{K})$. Let further $\Phi \in \mathcal{CB}(\mathcal{M})$. Then for an arbitrary Hahn-Banach extension $\tilde{\Phi} \in \mathcal{CB}(\mathcal{B}(\mathcal{H}))$ obtained as above, we have:

$$\widetilde{\Phi}^{(\infty)} \mid_{\mathcal{M} \overline{\otimes} \mathcal{N}} = \chi_{\mathcal{N}}(\Phi).$$

This shows by the way that

• in our first method, any Hahn-Banach extension chosen produces the same – namely, our – amplification;

• the amplification $\Phi^{(\infty)}$ does not depend on the particular choice of basis for the second Hilbert space \mathcal{K} .

Let $\Phi: \mathcal{A} \to \mathcal{B}$ be CB. For $u \in \mathcal{A} \overline{\otimes} \mathcal{N}$, $\rho \in \mathcal{B}_*$, $\tau \in \mathcal{N}_*$ set

$$\langle \chi_{\mathcal{N}}(\Phi)(u), \rho \otimes \tau \rangle = \langle \Phi(L_{\tau}(u)), \rho \rangle.$$

This gives of course an amplification $\chi_{\mathcal{N}}(\Phi) : \mathcal{A} \overline{\otimes} \mathcal{N} \to \mathcal{B} \overline{\otimes} \mathcal{N}$. Let $\Psi : \mathcal{A} \overline{\otimes} \mathcal{N} \to \mathcal{B} \overline{\otimes} \mathcal{N}$ be CB. For $\tau \in \mathcal{N}_*$ consider $\operatorname{Tr}_{\tau}(\Psi) : \mathcal{A} \to \mathcal{B}$ given by

$$\langle \operatorname{Tr}_{\tau}(\Psi)(a), \rho \rangle = \langle \Psi(a \otimes 1), \rho \otimes \tau \rangle$$

 $(a \in \mathcal{A}, \rho \in \mathcal{B}_*).$

<u>Remark</u>: We have $\operatorname{Tr}_{\tau} \circ \chi_{\mathcal{N}} = \operatorname{id}_{\mathcal{CB}(\mathcal{A},\mathcal{B})}$ for all $\tau \in \mathcal{N}_*$ with $\langle 1, \tau \rangle = 1$.

Why? – Fix $\Phi : \mathcal{A} \to \mathcal{B}$. Then, for all $a \in \mathcal{A}$ and $\rho \in \mathcal{B}_*$:

$$\begin{aligned} \langle \mathrm{Tr}_{\tau}(\chi_{\mathcal{N}}(\Phi))(a), \rho \rangle &= \langle (\chi_{\mathcal{N}}(\Phi))(a \otimes 1), \rho \otimes \tau \rangle \\ &= \langle \Phi(a) \otimes 1, \rho \otimes \tau \rangle \\ &= \langle \Phi(a), \rho \rangle. \end{aligned}$$

5. Uniqueness

Looking just at **algebraic** amplifications, of course we can by no means hope for uniqueness even in the case of von Neumann algebras \mathcal{M} and \mathcal{N} (despite the fact that this is claimed at several places in the literature). – Namely, for any non-zero functional $\varphi \in (\mathcal{M} \overline{\otimes} \mathcal{N})^*$ which vanishes on $\mathcal{M} \overset{\vee}{\otimes} \mathcal{N}$, and any non-zero vector $v \in \mathcal{M} \overline{\otimes} \mathcal{N}$,

$$\chi_{\mathcal{N}}^{\varphi,v}(\Phi) := \chi_{\mathcal{N}}(\Phi) - \langle \varphi, \chi_{\mathcal{N}}(\Phi)(\cdot) \rangle \ v$$

trivially defines an algebraic amplification.

Nevertheless, we briefly note the following **positive** result.

Proposition. Let \mathcal{M} be an injective factor and \mathcal{N} any dual operator space. Then an amplification is uniquely determined by properties (iii) and (iv).

6. Various applications

6.1 A generalization of the Ge–Kadison Lemma

In 1996, Ge and Kadison proved the following fundamental result which solved the famous **splitting problem** for factors.

Theorem. Let \mathcal{M} be a factor and \mathcal{S} be a von Neumann algebra. Suppose further that \mathcal{B} is a von Neumann algebra such that

 $\mathcal{M}\overline{\otimes}\mathbf{C}1\subseteq\mathcal{B}\subseteq\mathcal{M}\overline{\otimes}\mathcal{S}.$

Then $\mathcal{B} = \mathcal{M} \overline{\otimes} \mathcal{T}$ for some von Neumann subalgebra \mathcal{T} in \mathcal{S} .

In order to prove this theorem, they first establish a result on amplifications of normal, completely positive maps on von Neumann algebras. Instead of stating the latter, we generalize it!

We have the following uniqueness result.

Proposition. [N.] Let $(\mathcal{M}, \mathcal{N})$ be an admissible pair, and $\Phi \in C\mathcal{B}(\mathcal{M})$. Suppose $\Theta : \mathcal{M} \otimes \mathcal{N} \longrightarrow \mathcal{M} \otimes \mathcal{N}$ is any map which satisfies, for some $0 \neq n \in \mathcal{N}$:

(i) Θ commutes with the slice maps $\mathrm{id}_{\mathcal{M}} \otimes \tau n \ (\tau \in \mathcal{N}_*)$

(ii) Θ coincides with $\Phi \otimes id_{\mathcal{N}}$ on $\mathcal{M} \otimes \mathbf{C}n$.

Then we must have $\Theta = \Phi \otimes id_{\mathcal{N}}$.

This generalizes the corresponding result of Ge–Kadison who proved the above assuming that Φ is **normal** and **completely positive** and \mathcal{M} and \mathcal{N} are **von Neumann algebras**. <u>Remark:</u> Our amplification result may be useful in order to

• deal with **singular** conditional expectations;

• attack the splitting problem for dual operator spaces with property S_{σ} .

6.2 An algebraic characterization of normality

Theorem. [N.] Let \mathcal{M} and \mathcal{N} be von Neumann algebras with \mathcal{N} properly infinite. Then for an arbitrary $\Phi \in C\mathcal{B}(\mathcal{M})$, TFAE: (i) $(\Phi \otimes id_{\mathcal{N}})(id_{\mathcal{M}} \otimes \Psi) = (id_{\mathcal{M}} \otimes \Psi)(\Phi \otimes id_{\mathcal{N}}) \forall \Psi \in C\mathcal{B}(\mathcal{N})$ (ii) Φ is normal.

Here, (ii) \Rightarrow (i) holds for any admissible pair.

Our Theorem suggests considering two Arens type tensor products! the product on a Banach algebra \mathcal{A} can be extended in two natural ways to its bidual, giving rise to the two Arens products on \mathcal{A}^{**} . One defines the topological centre

$$Z_t := \{m \in \mathcal{A}^{**} \mid m \odot_1 n = m \odot_2 n \ orall n \in \mathcal{A}^{**} \}.$$

In our context, setting

$$\Phi \otimes_1 \Psi := (\Phi \otimes \mathrm{id}_{\mathcal{N}})(\mathrm{id}_{\mathcal{M}} \otimes \Psi)$$

 and

$$\Phi \otimes_2 \Psi := (\mathrm{id}_{\mathcal{M}} \otimes \Psi)(\Phi \otimes \mathrm{id}_{\mathcal{N}}),$$

we have constructed **two natural "tensor products"** – instead of multiplications! – which in general are different. It is then natural to introduce the **topological tensor centre**

$$Z_t^{\otimes} := \{ \Phi \in \mathcal{CB}(\mathcal{M}) \mid \Phi \otimes_1 \Psi = \Phi \otimes_2 \Psi \; \forall \Psi \in \mathcal{CB}(\mathcal{N}) \}.$$

The above Theorem may now be **equivalently** rephrased as

$$Z_t^{\otimes} = \mathcal{CB}^{\sigma}(\mathcal{M}).$$

This is exactly what one expects – since the (topological) centre should correspond to the nice, i.e., **normal** part in the Tomiyama-Takesaki decomposition

$$\mathcal{CB}(\mathcal{M}) = \mathcal{CB}^{\sigma}(\mathcal{M}) \oplus \mathcal{CB}^{s}(\mathcal{M}).$$

6.3 Completely bounded module homomorphisms

A result of May–Neuhardt–Wittstock (whose proof is rather involved) implies that whenever $\Phi \in C\mathcal{B}(\mathcal{B}(\mathcal{H}))$, then the amplification $\Phi^{(\infty)}$ is automatically a $1 \otimes \mathcal{B}(\mathcal{K})$ -bimodule homomorphism on $\mathcal{B}(\mathcal{H}) \overline{\otimes} \mathcal{B}(\mathcal{K})$.

Using our **explicit** formula, we obtain a **simpler** proof of the following even **more general** result:

Proposition. Let \mathcal{M} and \mathcal{N} be von Neumann algebras, and let $\Phi \in C\mathcal{B}(\mathcal{M})$. Then $\chi_{\mathcal{N}}(\Phi)$ is a $1 \otimes \mathcal{N}$ -bimodule homomorphism on $\mathcal{M} \otimes \mathcal{N}$.

The proof uses nothing more than the following elementary property of slice maps:

$$L_{\tau}((1 \otimes a)u(1 \otimes b)) = L_{b \cdot \tau \cdot a}(u),$$

where $\langle b \cdot \tau \cdot a, u \rangle = \langle \tau, aub \rangle$.

IV. Traces in von Neumann algebras

1. Characterizations of vN algebras through traces

Definition. A positive linear functional φ on \mathcal{M} is called a <u>trace</u> if

$$\varphi(ab) = \varphi(ba)$$

for all $a, b \in \mathcal{M}$.

<u>Note:</u> Equivalently, $\varphi(aa^*) = \varphi(a^*a)$ for all $a \in \mathcal{M}$.

Extension beyond finiteness:

Definition. A weight on \mathcal{M} is an additive map $\varphi : \mathcal{M}^+ \to [0,\infty]$ such that $\varphi(\lambda x) = \lambda \varphi(x)$ for all $\lambda \in \mathbb{R}^+$ and $x \in \mathcal{M}^+$. If, in addition $\varphi(x^*x) = \varphi(xx^*)$ for all $x \in \mathcal{M}$, then φ is called a <u>trace</u>.

Set

$$\mathcal{M}_{\varphi}^{+} := \{ x \in \mathcal{M}^{+} \mid \varphi(x) < \infty \}, \quad \mathcal{M}_{\varphi} := \mathrm{lin}\mathcal{M}_{\varphi}^{+}$$

and

$$\mathcal{N}_{\varphi} := \{ x \in \mathcal{M} \mid \varphi(x^*x) < \infty \}.$$

Then φ extends to a linear map on \mathcal{M}_{φ} , and \mathcal{N}_{φ} is a left ideal of \mathcal{M} .

We say that

- φ is <u>normal</u> if $\varphi(\sup_{\alpha} x_{\alpha}) = \sup_{\alpha} \varphi(x_{\alpha})$ for each bounded, increasing net (x_{α}) in \mathcal{M}^+ ;
- φ is <u>semifinite</u> if \mathcal{M}_{φ} is w^* -dense in \mathcal{M}_{z} ;
- φ is <u>faithful</u> if $\varphi(x) = 0$ for $x \in \mathcal{M}^+$ implies x = 0.

Given an n.s.f. weight φ on \mathcal{M} , the left ideal \mathcal{N}_{φ} , equipped with the scalar product $(x, y) := \varphi(y^*x)$, is a pre-Hilbert space. We denote by $L_2(\mathcal{M}, \varphi)$ its completion. Then \mathcal{M} can be identified as a subalgebra of $\mathcal{B}(L_2(\mathcal{M}, \varphi))$ – its **standard form**.

Theorem. There is a unique decomposition

$$\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2 \oplus \mathcal{M}_3$$

where

- \mathcal{M}_1 is finite \Leftrightarrow there is a faithful normal tracial state on \mathcal{M}_1
- \mathcal{M}_2 is properly infinite but semifinite:
- * properly infinite \Leftrightarrow there is NO normal tracial state on \mathcal{M}_2
- * semifinite \Leftrightarrow there is a faithful semifinite normal trace on \mathcal{M}_2^+

• \mathcal{M}_3 is purely infinite \Leftrightarrow there is NO (non-zero) semifinite normal trace on \mathcal{M}_3^+

Refinement

Theorem. There is a unique decomposition

$$\mathcal{M} = \mathcal{M}_{I_n} \oplus \mathcal{M}_{I_\infty} \oplus \mathcal{M}_{II_1} \oplus \mathcal{M}_{II_\infty} \oplus \mathcal{M}_{III}$$

where

- \mathcal{M}_{I_n} and \mathcal{M}_{II_1} are finite
- $\mathcal{M}_{I_{\infty}}$ and $\mathcal{M}_{II_{\infty}}$ are properly infinite and semifinite
- \mathcal{M}_{III} is purely infinite

Examples:

• baby example $\mathcal{M} = M_n(\mathbb{C})$ [type I_n] from the beginning: non-normalized trace $\operatorname{Tr}(a_{ij}) = \sum_{i=1}^n a_{ii}$; normalized trace $\operatorname{Tr}^n = \frac{1}{n} \sum_{i=1}^n a_{ii}$

• $\mathcal{M} = L_{\infty}(\mathcal{G})$ for a compact group \mathcal{G} [type I]: $\mathrm{Tr} = \int_{\mathcal{G}} \cdot d\lambda$, where $\lambda = (\text{normalized})$ Haar measure

• $\mathcal{M} = VN(\mathcal{G})$ for an ICC group \mathcal{G} [type II_1]: $\mathrm{Tr} = \langle \cdot \delta_e, \delta_e \rangle$

<u>Note:</u> Given \mathcal{M} with an n.s.f. trace Tr one associates to \mathcal{M} the **non-commutative** L_p spaces $L_p(\mathcal{M}, \mathrm{Tr})$.

For Tr finite, $L_p(\mathcal{M}, \operatorname{Tr}) = \text{completion of } \mathcal{M} \text{ w.r.t.}$ the norm $||x||_p = (\operatorname{Tr}(|x|^p))^{1/p}$.

We have $L_1(\mathcal{M}, \mathrm{Tr}) = \mathcal{M}_*$ and $L_\infty(\mathcal{M}, \mathrm{Tr}) = \mathcal{M}_.$

One can obtain $L_p(\mathcal{M}, \mathrm{Tr})$ by **complex interpolation** between \mathcal{M}_* and \mathcal{M} . This yields a natural **operator space structure** on $L_p(\mathcal{M}, \mathrm{Tr})$.

Examples:

- $L_p(\mathcal{B}(\mathcal{H}), \mathrm{Tr}) = S_p(\mathcal{H})$
- $L_p(L_{\infty}(\Omega), \mu) = L_p(\Omega, \mu)$

2. En guise d'épilogue

• The centre-valued trace on a finite von Neumann algebra \mathcal{M} is a faithful normal projection of norm 1 (=conditional expectation) from \mathcal{M} onto $Z = \mathcal{M}' \cap \mathcal{M}$, such that $\operatorname{Tr}(ab) = \operatorname{Tr}(ba)$ for all $a, b \in \mathcal{M}$.

• Caution: There are non-normal traces on $\mathcal{B}(\mathcal{H})$ (Dixmier '66)! The so-called Dixmier traces vanish on $\mathcal{K}(\mathcal{H})$ – in particular on $\mathcal{T}(\mathcal{H})$.

- * closely linked to invariant means on ℓ_∞ (they vanish on c_0)
- * useful in Noncommutative Geometry in calculations modulo finite rank operators

•