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Denotational Semantics in the 1970s

Cartesian-Closed
Categories

Intuitionistic
Logicλ-calculus
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Linear Logic in the 1990s

Monoidal-Closed
Categories

Linear LogicProof-Nets
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String Diagrams

Categorical
Algebra

Logic and
LanguageString Diagrams

An algebraic investigation of logic
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String Diagrams

Categorical
Algebra

Logic and
LanguageString Diagrams

A logical investigation of algebra
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String Diagrams

Categorical
Algebra

Logic and
LanguageString Diagrams

Connections to physics and n-dimensional algebra
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String Diagrams

Categorical
Algebra

Logic and
LanguageString Diagrams

Extending the methodology of linear logic to other effects
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String Diagrams

An idea by Roger Penrose (1970)
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Monoidal Categories

A monoidal category is a category C equipped with a functor:

⊗ : C× C −→ C

an object:

I

and three natural transformations:

(A⊗B)⊗ C
α−→ A⊗ (B ⊗ C)

I ⊗A
λ−→ A A⊗ I

ρ−→ A

satisfying a series of coherence properties.
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String Diagrams

A morphism f : A⊗B ⊗ C −→ D ⊗ E is depicted as:

f

A B C

D E
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Composition

The morphism A
f−→ B

g−→ C is depicted as

AA

C

g ◦ f =

g

f

A

C

B

Vertical composition
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Tensor product

The morphism (A
f−→ B)⊗ (C

g−→ D) is depicted as

A⊗ C

B ⊗D

f ⊗ g = gf

A

B

C

D

Horizontal tensor product

12



Example

f

A

B D

D

f ⊗ idD
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Example

g

f

A

B

C

D

(f ⊗ idD) ◦ (idA ⊗ g)
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Example

g

f

A

B

C

D

(idB ⊗ g) ◦ (f ⊗ idC)
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Meaning preserved by deformation

g

f

A

B

C

D

=

g

f

A

B

C

D

(f ⊗ idD) ◦ (idA ⊗ g) = (idB ⊗ g) ◦ (f ⊗ idC)
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Balanced categories (Joyal, Street 1993)

A balanced category is a monoidal category equipped with

Braid maps A⊗B
γA,B−→ B ⊗A

B

B A

A

Twist maps A
θA−→ A

A

A
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Low dimensional topology

UUU

= =
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Low dimensional topology

6∼

2x−2 − x−4 + x−2y−2 2x2 − x4 + x2y2

Jones polynomial = a semantics of knots
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Logic is symmetric — not braided

B

B A

A

=

B

B A

A

=

B

B A

A

A

A

=

A

A

=

A

A

Leads to a ribbon variant of Linear Logic
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Proof nets

An idea by Jean-Yves Girard (1986)
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Sequent calculus

The two equivalent proofs:

π1
···
` A

π2
···

` B, C
` A⊗B, C

π3
···
` D

` A⊗B, C ⊗D

π1
···
` A

π2
···

` B, C

π3
···
` D

` B, C ⊗D
` A⊗B, C ⊗D

A permutation equivalence
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Proof nets

are interpreted by the same proof net:

&

DCBA

π3π2π1

A geometric notation
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Sequentialization by deformation

&

DCBA

π3π2π1

π1
···
` A

π2
···

` B, C

π3
···
` D

` B, C ⊗D
` A⊗B, C ⊗D
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Sequentialization by deformation

&

DCBA

π3π2π1

π1
···
` A

π2
···

` B, C
` A⊗B, C

π3
···
` D

` A⊗B, C ⊗D
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Multiplicative proof nets

axiom

&

& AA*

A* A

&

axiom

&

axiom

B* A

&

BA*

AB A*B* &

AB BA

Multiplicative proof nets are string diagrams!
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Question

Can one extend string diagrams with boxes?
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Functorial boxes

Rediscovery of an idea by Robin Cockett and Robert Seely (1996)
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The categorical semantics of linear logic
(Nick Benton — CSL’94)

A symmetric monoidal adjunction

M

L

""

⊥ L

M

bb

M cartesian L symmetric monoidal closed

! = L ◦M
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Functorial boxes in string diagrams

f

F

FA FA

FB

B

FB

A

=Ff
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Functorial equalities

F

g

F

f f

F

F

g

FB

FA FA

B

FAFA

C

B

C

FC

B

AA

FA

A

FA

A

FC

==
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Lax monoidal functor

A lax monoidal functor is a functor F : C −→ D equipped with mor-
phisms

m[A,B] : FA⊗ FB −→ F (A⊗B)

m[−] : I −→ FI

satisfying a series of coherence relations.

A strong monoidal functor is lax monoidal with invertible coercions.
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The purpose of coercions

FI

I

F FA2

FA3FA2

A3A1

FA1

F (A1 ⊗A2 ⊗A3)

A1 ⊗A2 ⊗A3

m[A1,A2,A3]
m[−]
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Lax monoidal functor

A lax monoidal functor is a box with many inputs - one output.

f

F

FA1 FAk

FB

AkA1

B

F (f) ◦m[A1,···,Ak]
: FA1 ⊗ · · · ⊗ FAk −→ FB
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Functorial equalities (on lax functors)

g

F

f

C

FAk

A1

B

Ak

FAj

AjAi

FAiFA1

FC

=

F

F

g

f

FA1

FC

C

B

FB

AkA1

FAj FAk

AjAi

FAi

B
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Strong monoidal functors

A strong monoidal functor is a box with many inputs - many outputs
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Functorial equalities (on strong functors)

g

F

f

B1

FCkFC1

Ck

FAi

AiA1

FA1

C1

Bj =

g

F

f

F

FCkFC1

Ck

FAi

AiA1

FA1

C1

FBjFB1
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Functorial equalities (on strong functors)

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl

=

F

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl
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Natural transformations

A natural transformation

θ : F −→ G : C −→ D
satisfies the pictorial equality:

θ

f

F

FA

B

FB

GB

A
=

θ

f

G

FA

B

GA

GB

A
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Monoidal natural transformations

A monoidal natural transformation

θ : F −→ G : C −→ D
satisfies the pictorial equality:

θ

f

F

FAk
FA1

B

FB

Ak

GB

A1

=

θθ

f

G

FAkFA1

GAkGA1

B

A1

GB

Ak
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Exercise 1

Transport of trace
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Trace operator (Joyal - Street - Verity 1996)

A trace in a balanced category C is an operator

A⊗ U −→ B ⊗ U
TrUA,B

A −→ B

depicted as feedback in string diagrams:
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Trace operator

( ) ff =

AA

U

B BU

U

TrU
A,B
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Sliding (naturality in U )

u

u

ff =

AA

B B

V

U

U

V
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Tightening (naturality in A, B)

a

b

a

b

f f=
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Vanishing (monoidality in U )

f f=

U ⊗ V

V

U

f f=

I
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Superposing

gff gf g ==
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Yanking

UUU

= =
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Traces = fixpoints
(Hasegawa - Hyland 1997)

In cartesian categories:

Fix : f

A U

U

7→
∆

f

A

U

U

Well-behaved parametric fixpoint operator.
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Original question

When does a trace in the category L lifts to a trace in the category M ?

M

L

""

⊥ L

M

bb

Observation: the functor L is usually faithful.

50



Derived question

Characterize when a faithful balanced functor

F : C −→ D

between balanced categories transport a trace in D to a trace in C.
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Characterization

There exists a trace on C preserved by the functor F

⇐⇒

for all objects A, B, U and morphism

f : A⊗ U −→ B ⊗ U

there exists a morphism

g : A −→ B

such that

F (g) = TrFU
FA,FB(m−1

[A,B] ◦ F (f) ◦m[A,B])
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Pictorially...

The last equality is depicted as follows:

FU

FAFA

A

FB

FB

B

F

fg

F

=
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Proof sketch...

First step: define the operator

( )f f=

A A

U

BB U

U

trU
A,B
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which transports every morphism f to the unique morphism such that

U

FU

FAFA

FB FB

F

ff =

F

Second step: prove that tr satisfies the axioms of a trace operator.
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Illustration: sliding (1)

We want to show that

u

ff

u

=

AA

V

B

U

B

U
V
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Illustration: sliding (2)

Because the functor F is faithful, this reduces to

u

ff

u

F F

=

FAFA

V

FB FB

U
V

U
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Illustration: sliding (3)

f

u

F

FA

FB

V

U
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Illustration: sliding (4)

f

u
F

FA

FB
FV

U
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Illustration: sliding (5)

u

F

f

F

FA

FV

FB

U

FU
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Illustration: sliding (6)

u

F

f

F

FA

FU

FB

V

FV
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Illustration: sliding (7)

f

u

F

FA

FB
FU

V
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Illustration: sliding (8)

u

f

F

FA

FB

U
V
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Examples

• The relational model of linear logic

• Game semantics (Conway games)

Provides well-behaved parametric fixpoints in game semantics
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Non-Example (Masahito Hasegawa)

The adjunction generated by the powerset monad:

category of coalgebras Set

L

##

⊥ Rel

M

cc Kleisli category

The trace of a function in Rel is not a function anymore

Currently investigating Ryu Hasegawa’s model of linear logic.
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Exercise 2

Decomposing

the exponential box of linear logic
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The categorical semantics of linear logic

A symmetric monoidal adjunction

M

L

""

⊥ L

M

bb

M cartesian L symmetric monoidal closed

! = L ◦M
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Decomposition of the exponential box

!

f

!B

B

Ak

!Ak!A1

A1

=

L

M

f

MB

MAkMA1

B

LMAk

AkA1

LMA1

LMB
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Decomposition of the contraction node

c

!A

!A !A

=
∆

L

MA

MA

LMA

LMA LMA

MA
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Illustration: duplication of the exponential box

L

∆

M

L

f

MB

LMB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MBMB
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Duplication (step 1)

L

∆

M

f

MB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MB
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Duplication (step 2)

M

L

ff

∆

M

∆

MB

MA1
MAk

MA1

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

B
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Duplication (step 3)

L

f

L

M

L

f

M

∆ ∆

MA1

MB

MAk

MA1

B

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

MAk
MA1
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Duplication (step 4)

f

M

L

f

L

M

∆∆

MAkMA1

MB

MA1 MAk

B

LMAk

AkA1

LMA1

LMB

MAkMA1

MB

LMB

LMA1

B

AkA1

LMAk
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Duplication (step 5)

L

L

f

L

M

f

L

M

∆ ∆

MB

MAk

MA1

B

LMAk

Ak

A1

LMA1

LMB

MA1

MB

MAk

LMB

B

Ak

A1

LMA1 LMAk
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Five steps instead of one!

Follows faithfully the categorical proof of soundness.
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Philosophy

Categorical
Algebra

Logic and
LanguageString Diagrams
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Thank you!

78


