Functorial boxes in string diagrams

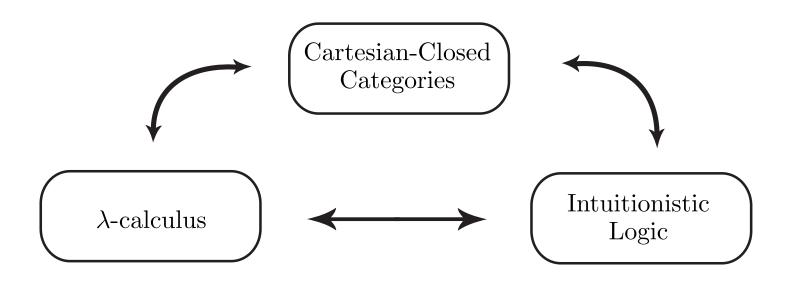
Paul-André Melliès

CNRS, Université Paris 7

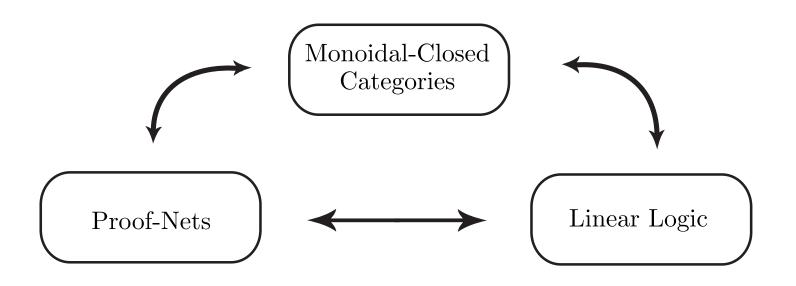
Computer Science and Logic Szeged, September 2006

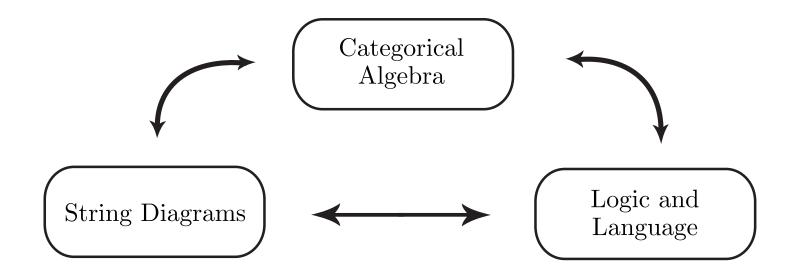
Paper available at www.pps.jussieu.fr/~mellies/

Denotational Semantics in the 1970s

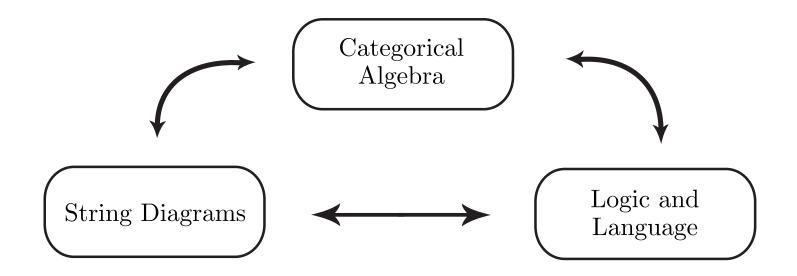


Linear Logic in the 1990s

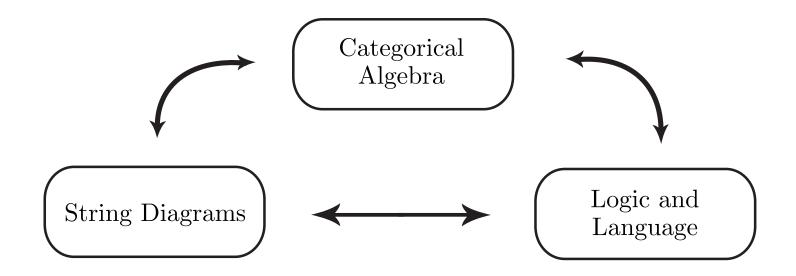




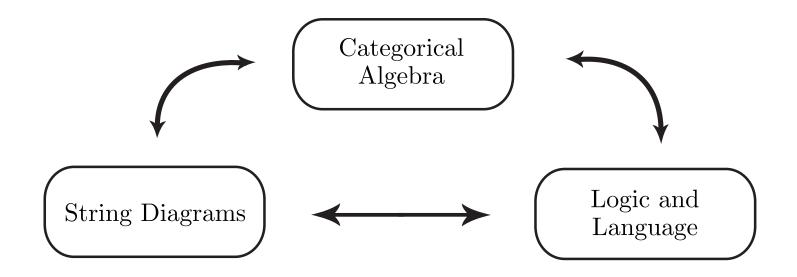
An algebraic investigation of logic



A logical investigation of algebra



Connections to physics and n-dimensional algebra



Extending the methodology of linear logic to other effects

An idea by Roger Penrose (1970)

Monoidal Categories

A monoidal category is a category \mathbb{C} equipped with a functor:

 $\otimes \ : \ \mathbb{C} \times \mathbb{C} \ \longrightarrow \ \mathbb{C}$

an object:

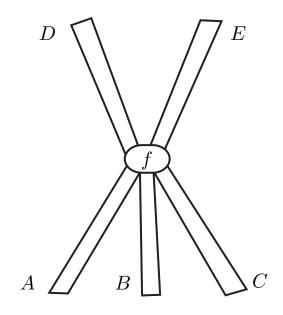
Ι

and three natural transformations:

$$(A \otimes B) \otimes C \xrightarrow{\alpha} A \otimes (B \otimes C)$$
$$I \otimes A \xrightarrow{\lambda} A \qquad A \otimes I \xrightarrow{\rho} A$$

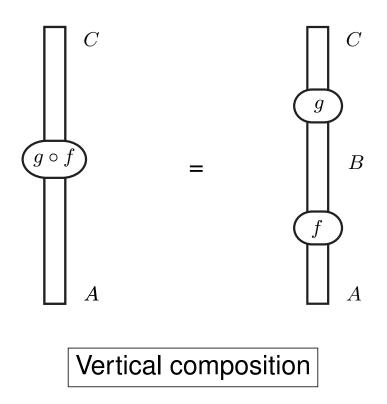
satisfying a series of coherence properties.

A morphism $f: A \otimes B \otimes C \longrightarrow D \otimes E$ is depicted as:



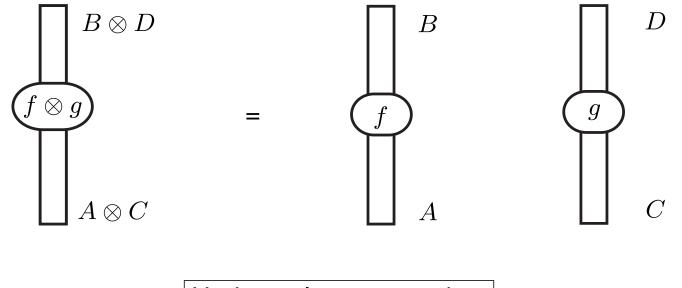
Composition

The morphism $A \xrightarrow{f} B \xrightarrow{g} C$ is depicted as

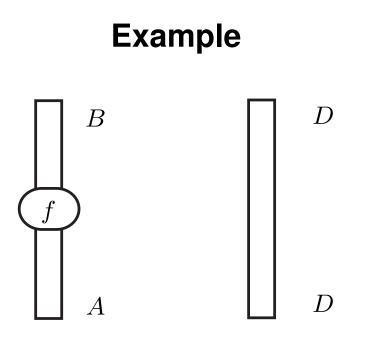


Tensor product

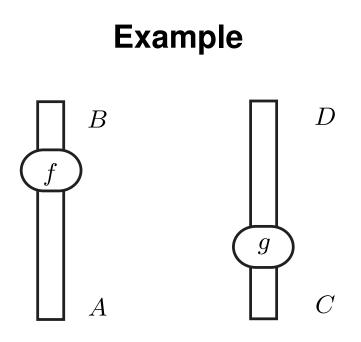
The morphism $(A \xrightarrow{f} B) \otimes (C \xrightarrow{g} D)$ is depicted as



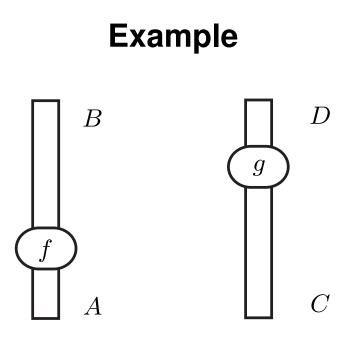
Horizontal tensor product



 $f\otimes id_D$

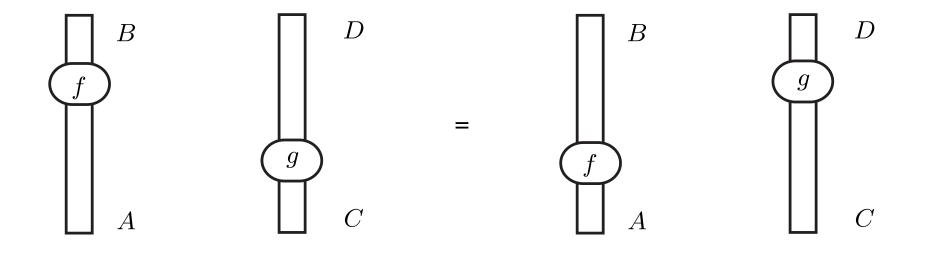


 $(f\otimes id_D)\circ(id_A\otimes g)$



 $(id_B\otimes g)\circ (f\otimes id_C)$

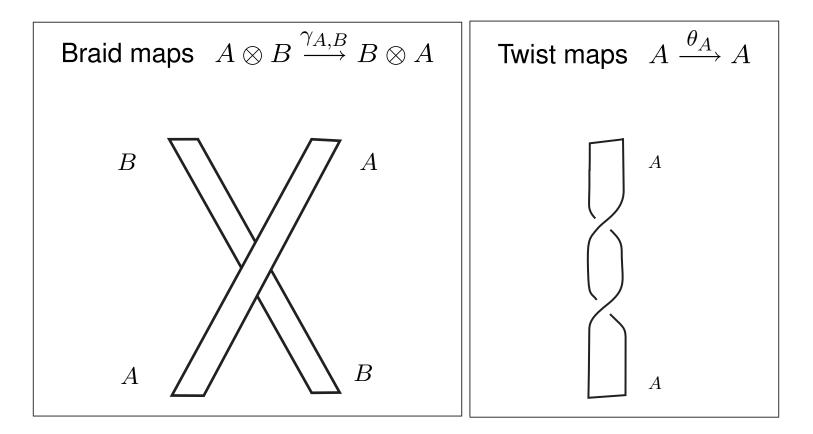
Meaning preserved by deformation



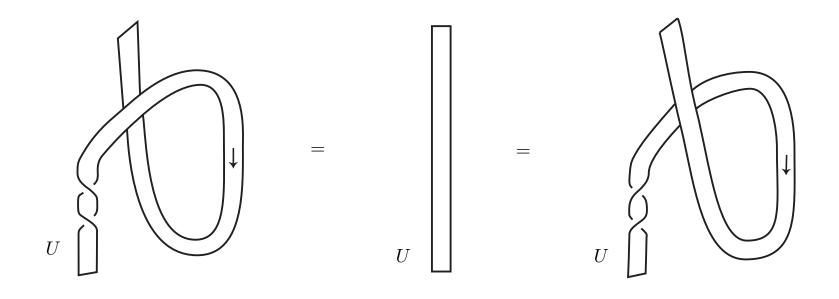
 $(f \otimes id_D) \circ (id_A \otimes g) = (id_B \otimes g) \circ (f \otimes id_C)$

Balanced categories (Joyal, Street 1993)

A balanced category is a monoidal category equipped with



Low dimensional topology



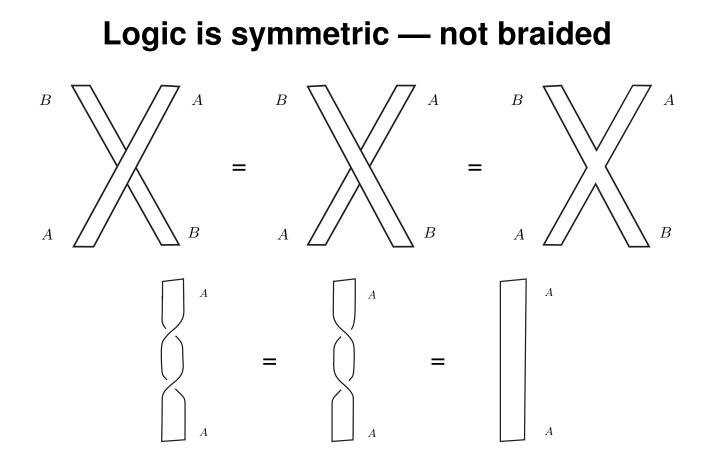
Low dimensional topology

 $\not\sim$

 $2x^{-2} - x^{-4} + x^{-2}y^{-2}$

 $2x^2 - x^4 + x^2y^2$

Jones polynomial = a semantics of knots



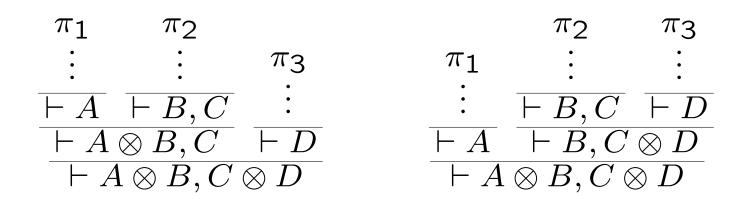
Leads to a ribbon variant of Linear Logic

Proof nets

An idea by Jean-Yves Girard (1986)

Sequent calculus

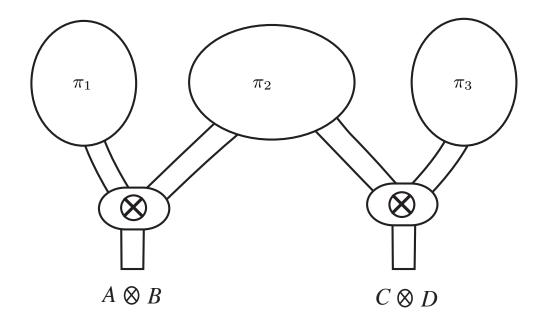
The two equivalent proofs:



A permutation equivalence

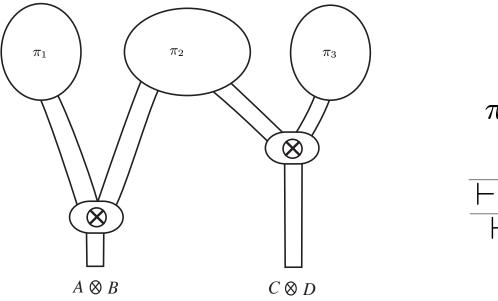
Proof nets

are interpreted by the same proof net:



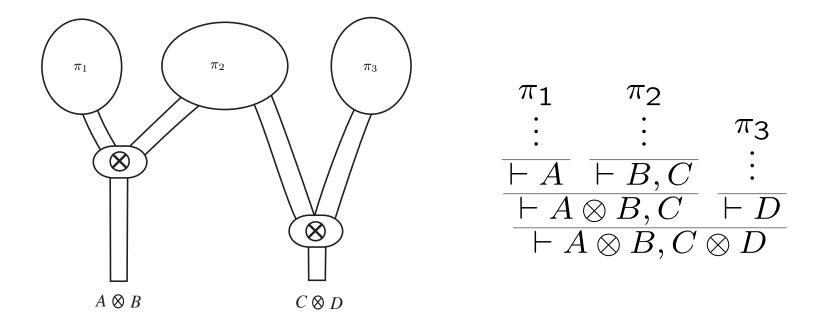
A geometric notation

Sequentialization by deformation

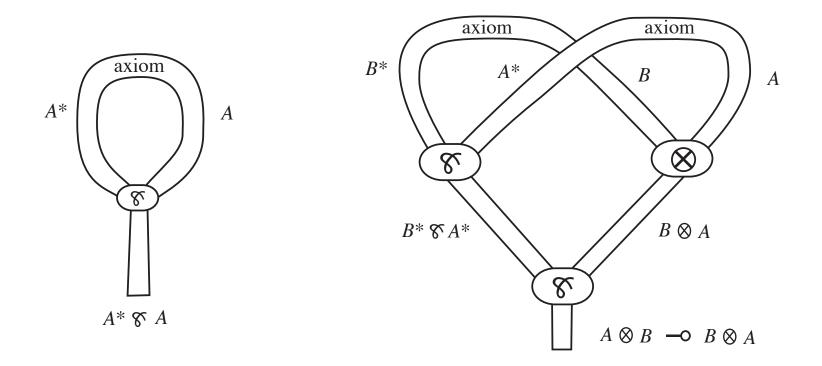


	π_2	π_{3}
π_1	• •	• • •
•	$\vdash B, C$	$\vdash D$
$\vdash A$	$\vdash B, C$	$\otimes D$
$\vdash A \otimes B, C \otimes D$		

Sequentialization by deformation



Multiplicative proof nets



Multiplicative proof nets are string diagrams!

Question

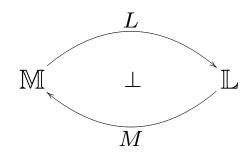
Can one extend string diagrams with boxes?

Functorial boxes

Rediscovery of an idea by Robin Cockett and Robert Seely (1996)

The categorical semantics of linear logic (Nick Benton — CSL'94)

A symmetric monoidal adjunction

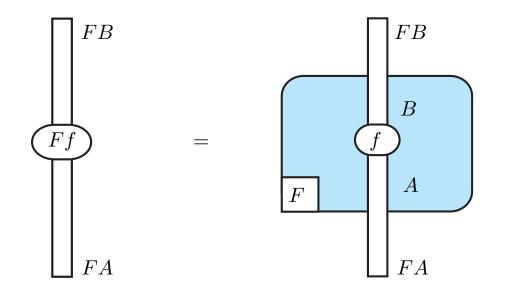


 ${\mathbb M}$ cartesian

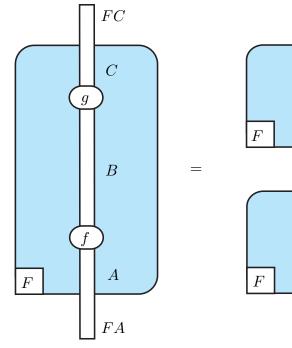
 $\ensuremath{\mathbb{L}}$ symmetric monoidal closed

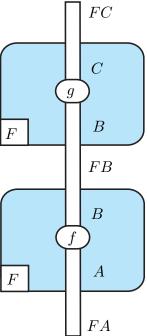
 $! = L \circ M$

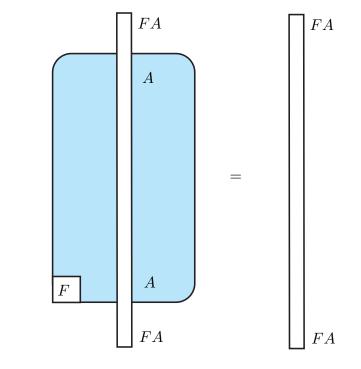
Functorial boxes in string diagrams



Functorial equalities







Lax monoidal functor

A lax monoidal functor is a functor $F : \mathbb{C} \longrightarrow \mathbb{D}$ equipped with morphisms

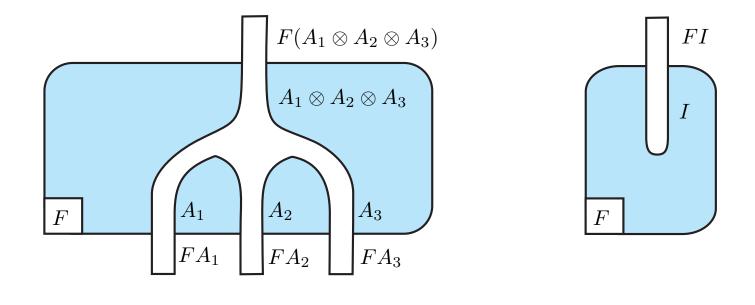
$$m_{[A,B]}$$
 : $FA \otimes FB \longrightarrow F(A \otimes B)$

$$m_{[-]}$$
 : $I \longrightarrow FI$

satisfying a series of coherence relations.

A strong monoidal functor is lax monoidal with invertible coercions.

The purpose of coercions

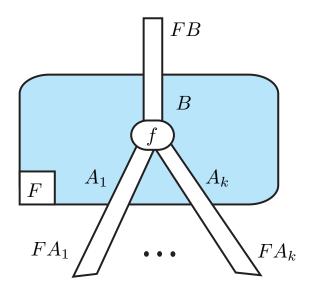


 $m_{[A_1,A_2,A_3]}$

 $m_{[-]}$

Lax monoidal functor

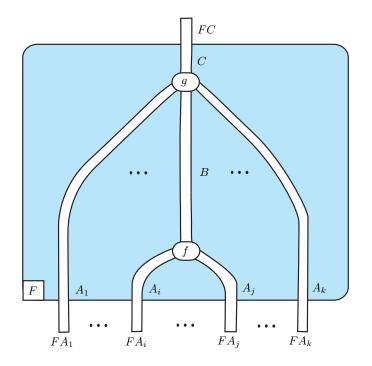
A lax monoidal functor is a box with many inputs - one output.

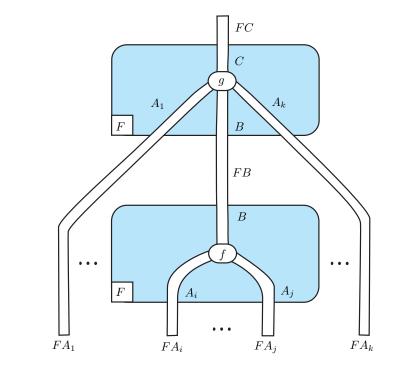


 $F(f) \circ m_{[A_1, \cdots, A_k]} : FA_1 \otimes \cdots \otimes FA_k \longrightarrow FB$

Functorial equalities (on lax functors)

=





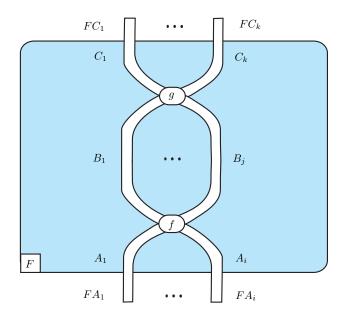
35

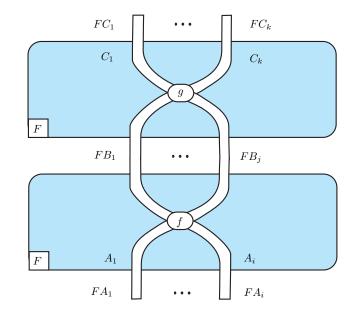
Strong monoidal functors

A strong monoidal functor is a box with many inputs - many outputs

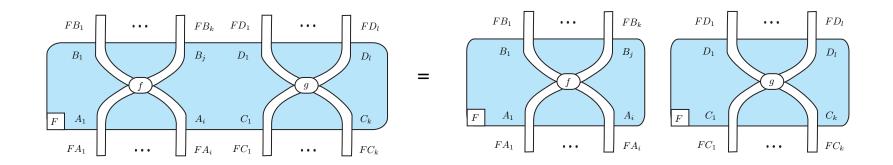
Functorial equalities (on strong functors)

=





Functorial equalities (on strong functors)

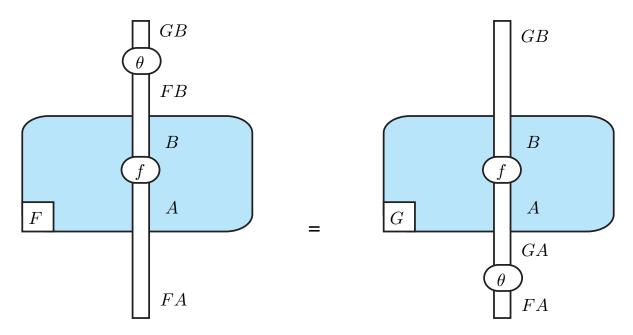


Natural transformations

A natural transformation

$$\theta \quad : \quad F \ \longrightarrow \ G \quad : \quad \mathbb{C} \ \longrightarrow \ \mathbb{D}$$

satisfies the pictorial equality:

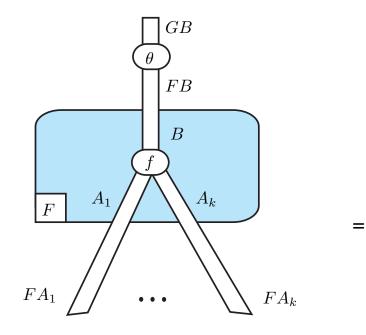


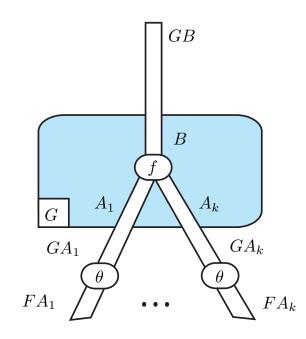
Monoidal natural transformations

A monoidal natural transformation

$$\theta \quad : \quad F \ \longrightarrow \ G \quad : \quad \mathbb{C} \ \longrightarrow \ \mathbb{D}$$

satisfies the pictorial equality:





Exercise 1

Transport of trace

Trace operator (Joyal - Street - Verity 1996)

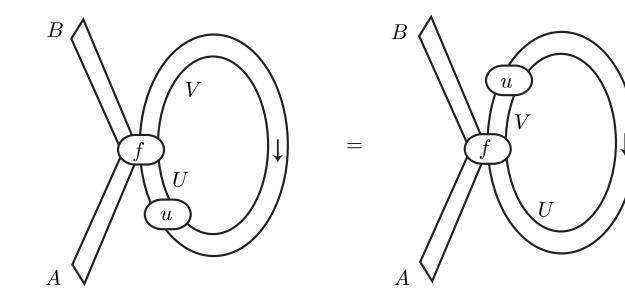
A **trace** in a balanced category \mathbb{C} is an operator

$$\mathsf{Tr}_{A,B}^U \qquad \frac{A \otimes U \longrightarrow B \otimes U}{A \longrightarrow B}$$

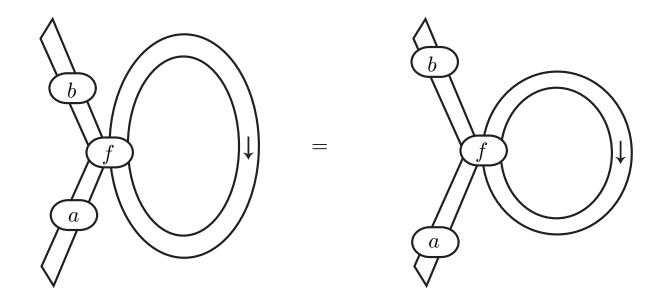
depicted as feedback in string diagrams:



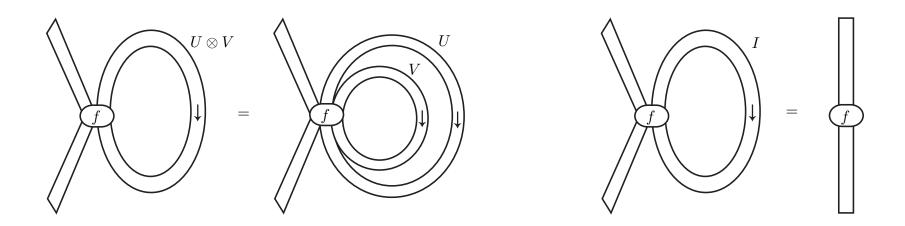
Sliding (naturality in U)



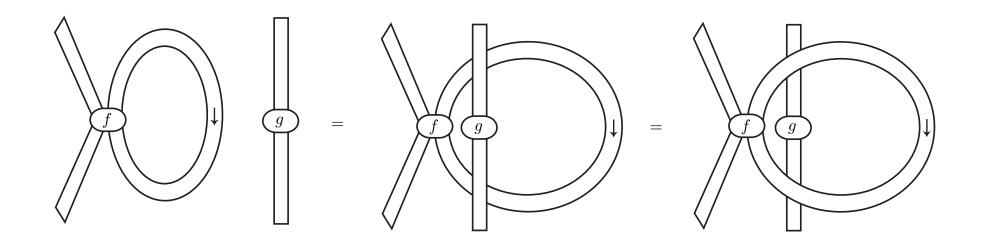
Tightening (naturality in A, B)

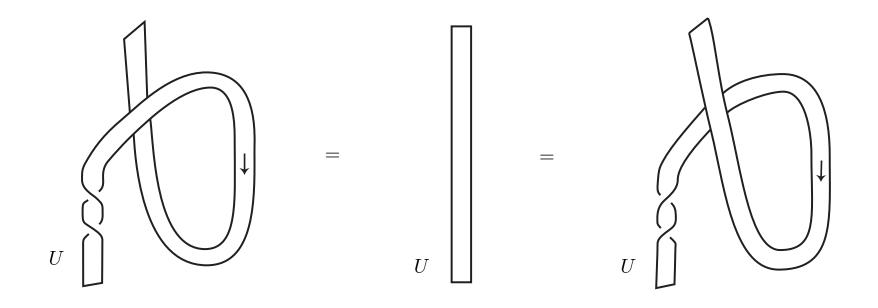


Vanishing (monoidality in U)



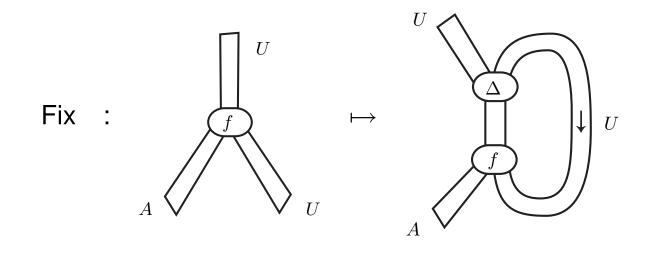
Superposing





Traces = fixpoints (Hasegawa - Hyland 1997)

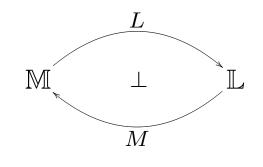
In cartesian categories:



Well-behaved parametric fixpoint operator.

Original question

When does a trace in the category $\mathbb L$ lifts to a trace in the category $\mathbb M$?



Observation: the functor *L* is usually **faithful**.

Derived question

Characterize when a **faithful** balanced functor

$F:\mathbb{C}\longrightarrow\mathbb{D}$

between **balanced categories** transport a trace in \mathbb{D} to a trace in \mathbb{C} .

Characterization

There exists a trace on $\mathbb C$ preserved by the functor F

 \iff

for all objects A, B, U and morphism

$$f : A \otimes U \longrightarrow B \otimes U$$

there exists a morphism

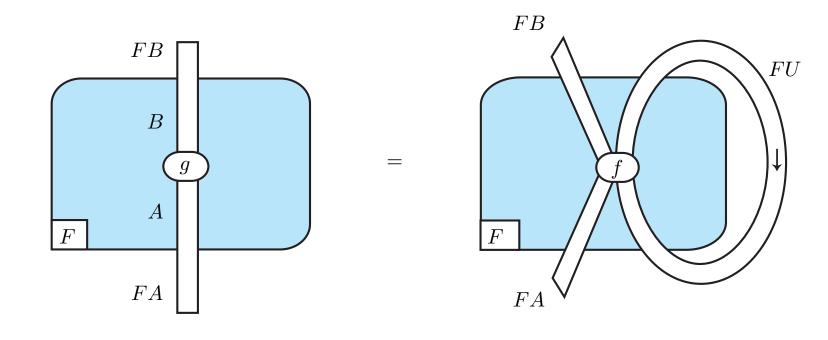
$$g: A \longrightarrow B$$

such that

$$F(g) = \operatorname{Tr}_{FA,FB}^{FU}(m_{[A,B]}^{-1} \circ F(f) \circ m_{[A,B]})$$

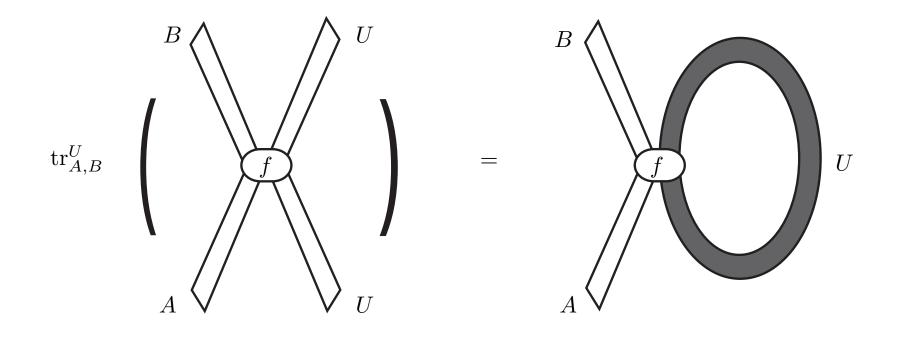
Pictorially...

The last equality is depicted as follows:

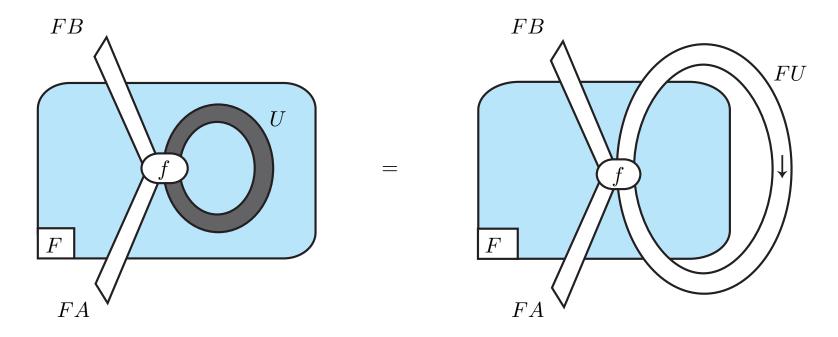


Proof sketch...

First step: define the operator



which transports every morphism f to the **unique** morphism such that



Second step: prove that tr satisfies the axioms of a trace operator.

Illustration: sliding (1)

We want to show that

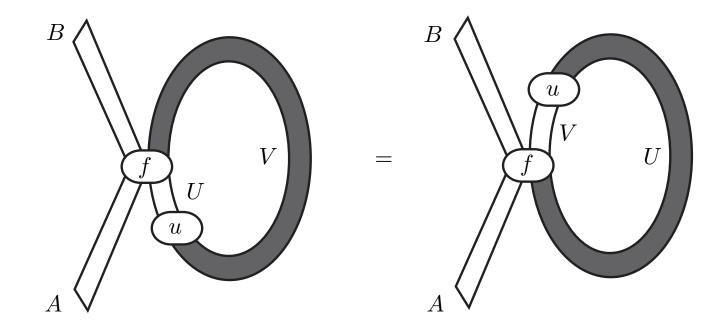


Illustration: sliding (2)

Because the functor F is **faithful**, this reduces to

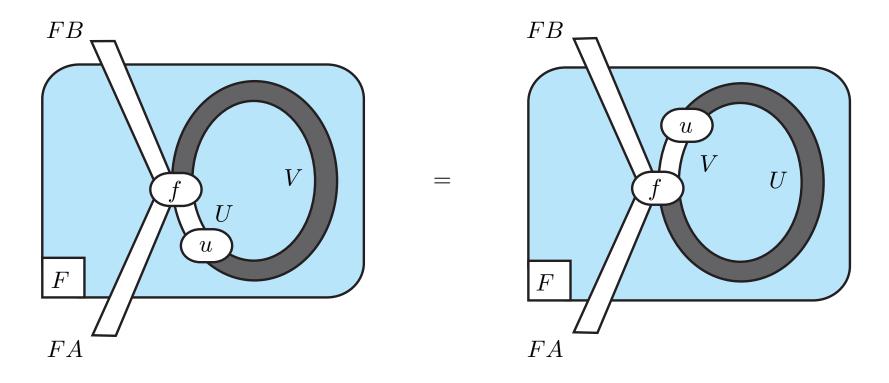


Illustration: sliding (3)

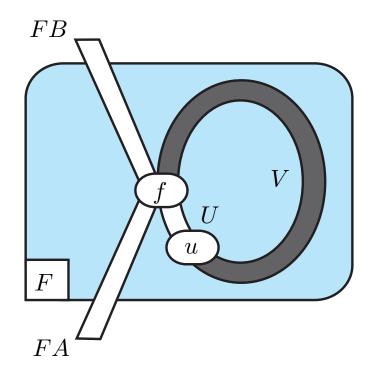


Illustration: sliding (4)

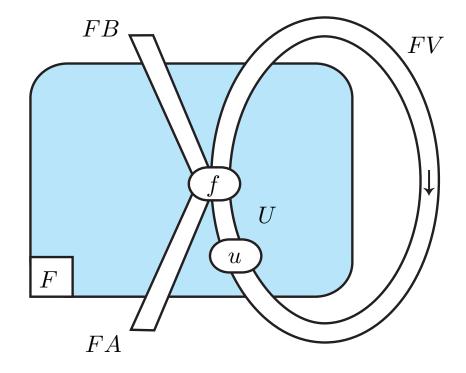


Illustration: sliding (5)

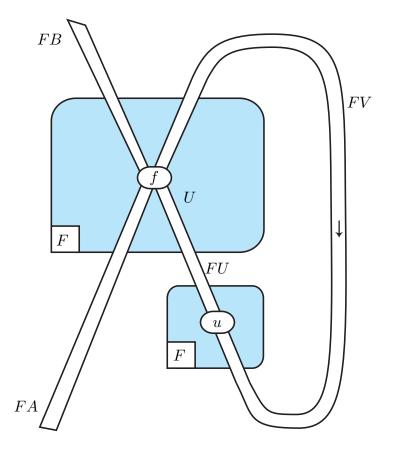
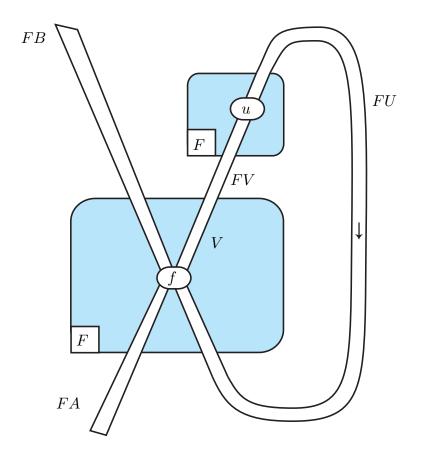


Illustration: sliding (6)



61

Illustration: sliding (7)

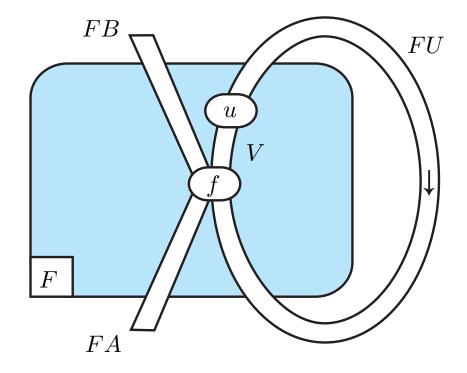
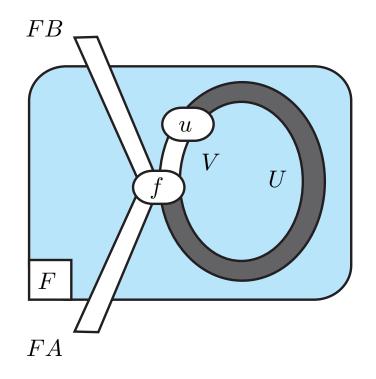


Illustration: sliding (8)



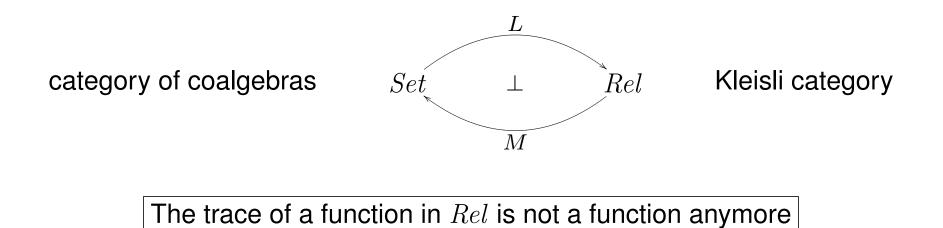
Examples

- The relational model of linear logic
- Game semantics (Conway games)

Provides well-behaved parametric fixpoints in game semantics

Non-Example (Masahito Hasegawa)

The adjunction generated by the **powerset monad**:



Currently investigating Ryu Hasegawa's model of linear logic.

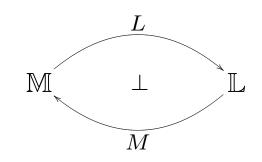
Exercise 2

Decomposing

the exponential box of linear logic

The categorical semantics of linear logic

A symmetric monoidal adjunction



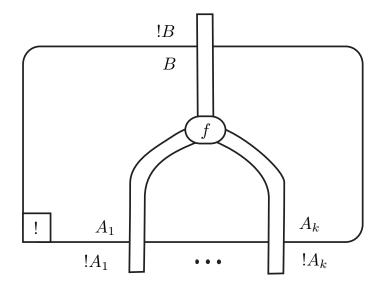
 ${\mathbb M}$ cartesian

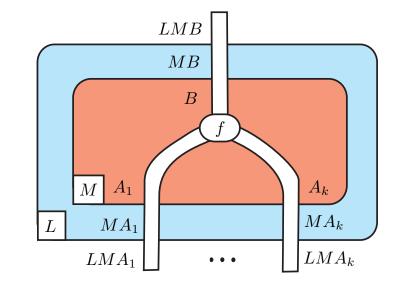
 ${\mathbb L}$ symmetric monoidal closed

 $! = L \circ M$

Decomposition of the exponential box

=





Decomposition of the contraction node

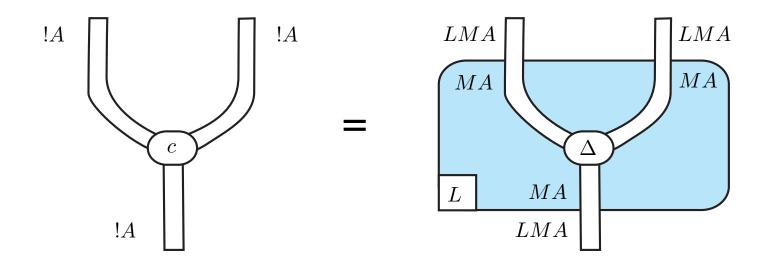
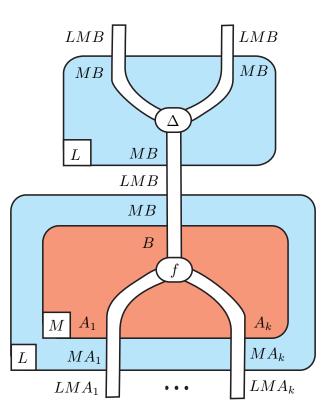
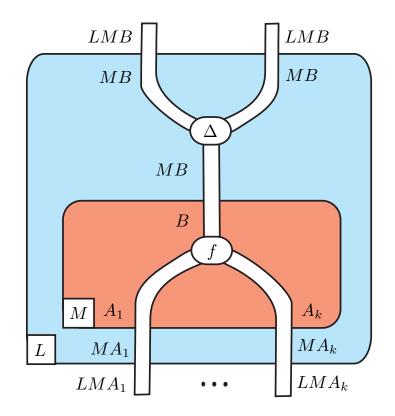


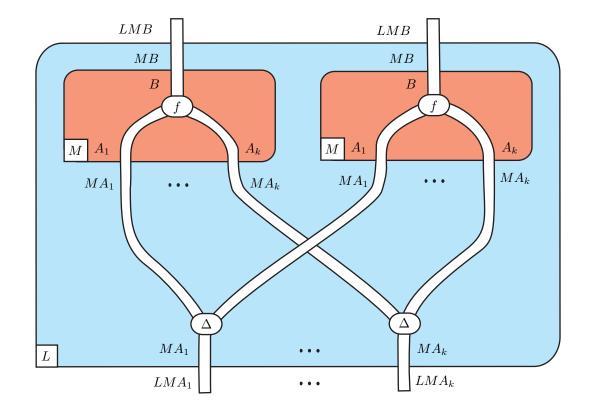
Illustration: duplication of the exponential box



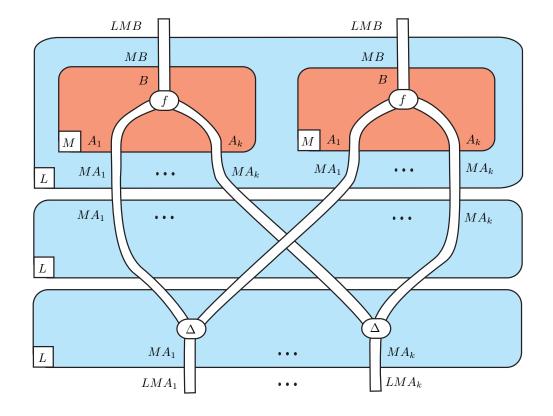
Duplication (step 1)



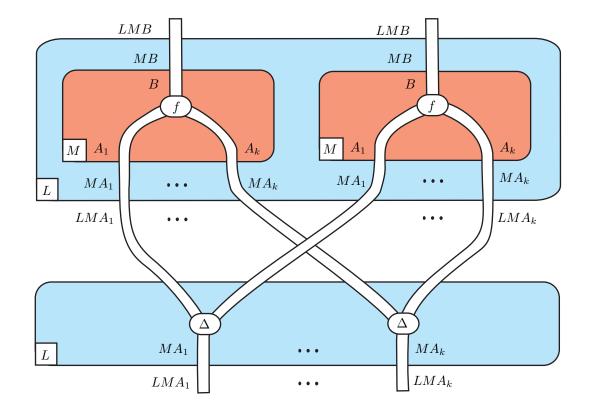
Duplication (step 2)



Duplication (step 3)

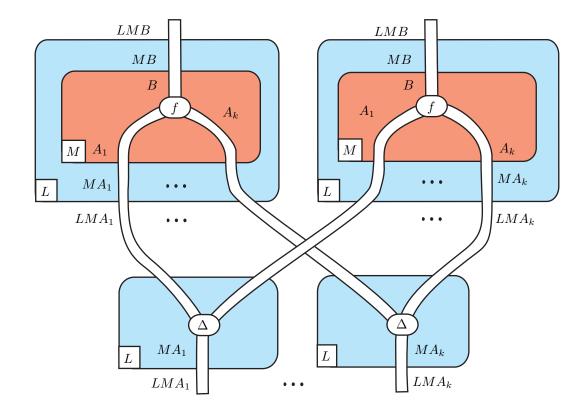


Duplication (step 4)



74

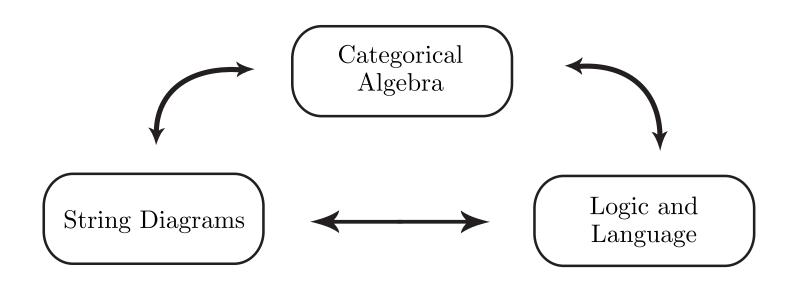
Duplication (step 5)



Five steps instead of one!

Follows faithfully the categorical proof of soundness.

Philosophy



Thank you!