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Denotational Semantics in the 1970s

Cartesian-Closed
f-) Categories (\
Intuitionistic
[ \-calculus ) € > ( Logic )




Linear Logic in the 1990s

Monoidal-Closed
f-) Categories \
[ Proof-Nets ) € = (Linear Logic )




String Diagrams

Categorical
(String Diagrams) L > ( i(;ilguaazg )

An algebraic investigation of logic




String Diagrams

Categorical
(String Diagrams) L > ( i(;ilguaazg )

A logical investigation of algebra




String Diagrams

Categorical
(String Diagrams) L > ( i(;iiguzrglg )

Connections to physics and n-dimensional algebra




String Diagrams

Categorical
(String Diagrams) L > ( igilguzfgi )

Extending the methodology of linear logic to other effects




String Diagrams

An idea by Roger Penrose (1970)



Monoidal Categories

A monoidal category is a category C equipped with a functor:

® . CxC — C

an object:

and three natural transformations:
(AR B)@C 5 A®(B®OC)

IoA 2 A Al -2

satisfying a series of coherence properties.



String Diagrams
Amorphism f:AQRBRC —DQFE

D E

IS depicted as:
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The morphism A

f

— B

Composition

2, C is depicted as

C

A

Vertical composition

11



The morphism (A N

B®D

A C

Tensor product

B) @ (C -+ D) is depicted as

B

A

Horizontal tensor product
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Example

[ ®idp
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Example

A

(f ® idp) o (idy ® g)
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Example

A

(idp ® g) o (f ®id¢)
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Meaning preserved by deformation

D

C

(f ®idp) o (idg ® g)

B

A

(idp ® g) o (f ® id¢)
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Balanced categories (Joyal, Street 1993)

A balanced category is a monoidal category equipped with

Braidmaps A® B gy ® A Twist maps A Oa, A

Va

AN
Sy
Lo
.




Low dimensional topology
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Low dimensional topology

S INE%

23:_2 — 513_4 -+ :U_Qy_Q 2332 . ZC4 + $2y2

Jones polynomial = a semantics of knots
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Logic is symmetric — not braided

B A B
A B A

A

|

:

A

A

A B A
B A B
] A

L

Leads to a ribbon variant of Linear Logic
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Proof nets

An idea by Jean-Yves Girard (1986)
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Sequent calculus

The two equivalent proofs:

T T T2 n3
s T
~A FB,C . FB,C FD
-A® B,C FD -A FBC®D
FA® B,C®D FA®B,C®D

A permutation equivalence
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Proof nets

are interpreted by the same proof net:

1 T2

X X

AQB C®D

A geometric notation

3
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AQB

Sequentialization by deformation

C®D

2 3
T : :

- B.C FD

A FBC®D

FA® B,C®D
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AQB

Sequentialization by deformation

C®D

1 2
: : T3

A FB,C

~A® B,C FD

FAQB,C®D
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A*

Multiplicative proof nets

A* g A

Multiplicative proof nets are string diagrams!
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Question

Can one extend string diagrams with boxes?
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Functorial boxes

Rediscovery of an idea by Robin Cockett and Robert Seely (1996)

28



The categorical semantics of linear logic
(Nick Benton — CSL'94)

A symmetric monoidal adjunction

M cartesian IL. symmetric monoidal closed

|l = LoM
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Functorial boxes in string diagrams

G

FB

FA

FB

FA
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FC

Functorial equalities

FC

FA

FA

FA

FA
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FA



Lax monoidal functor

A lax monoidal functor is a functor ' : C — D equipped with mor-
phisms

miap - FA®FB — F(AQ B)

m[_] - I — FT

satisfying a series of coherence relations.

A strong monoidal functor is lax monoidal with invertible coercions.
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The purpose of coercions

F(A; ® Ay ® A3) FI
Al ® Ay @ A3 7
W,
F )

MMA;,A,A3] mi—]



Lax monoidal functor

A lax monoidal functor is a box with many inputs - one output.

FB
- ™
B
f
A A
I3 1 k )
FAl o0 0 XFAk

E(f)oma, ... o]

. FA1®---® FA, — FB
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Functorial equalities (on lax functors)
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Strong monoidal functors

A strong monoidal functor is a box with many inputs - many outputs
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Functorial equalities (on strong functors)

Q
9
Q
J
jﬁj
LS o
-

By B = FB FB;
FA U U FA; FA '_' U FA
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Functorial equalities (on strong functors)
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Natural transformations

A natural transformation

0 F — G . C — D
satisfies the pictorial equality:
| GB DR
O,
FB
~ ~
i B i B
@, @,
r A a A
i | GA
(o)
FA FA
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Monoidal natural transformations

A monoidal natural transformation

6 : F — G : C — D
satisfies the pictorial equality:

GB GB
D)

B

@ B @ B
f f
7 Almflk a Alm}lk
- GA,; G Ay
(4 ()

FA, e FA, Far /] eee N\ Fa
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Exercise 1

Transport of trace
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Trace operator (Joyal - Street - Verity 1996)

A trace in a balanced category C is an operator

AQU — BQU
A— B

U
TrA,B

depicted as feedback in string diagrams:
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U
TrA,B

Trace operator

U B
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Sliding (naturality in U)
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Tightening (naturality in A, B)
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Vanishing (monoidality in U)
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[~]




| ]

Superposing
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Yanking
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Traces = fixpoints
(Hasegawa - Hyland 1997)

In cartesian categories:

Fix = I v

Well-behaved parametric fixpoint operator.
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Original question

When does a trace in the category L lifts to a trace in the category M ?

Observation: the functor L is usually faithful.
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Derived question

Characterize when a faithful balanced functor

F:C—D

between balanced categories transport a trace in D to a trace in C.
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Characterization
There exists a trace on C preserved by the functor F’
—

for all objects A, B, U and morphism

f i AQU — BQU
there exists a morphism
g. A— B
such that

F(9) = Trpg pp(mi; g o F(f) ompg p)
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Pictorially...

The last equality is depicted as follows:

FB
i <\ FU
a ) - )
B
g E }
A
F W, F
s R




Proof sketch...

First step: define the operator

B U B

trap =
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which transports every morphism f to the unique morphism such that

FB FB
<\ <\ FU
-~ -
_ !
F F

ne Y

Second step: prove that tr satisfies the axioms of a trace operator.

95



We want to show that

B

A

lllustration: sliding (1)

A
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lllustration: sliding (2)

Because the functor F' is faithful, this reduces to

FB

S57



lllustration: sliding (3)
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lllustration: sliding (4)

99



lllustration: sliding (5)

FA

FB\

-~

)
FU
%

-

|

v
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lllustration: sliding (6)

3

F

.

FU
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lllustration: sliding (7)
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lllustration: sliding (8)
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Examples

e The relational model of linear logic

e Game semantics (Conway games)

Provides well-behaved parametric fixpoints in game semantics
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Non-Example (Masahito Hasegawa)

The adjunction generated by the powerset monad:

L

TN

category of coalgebras Set 1 Rel Kleisli category

~_

M

The trace of a function in Rel is not a function anymore

Currently investigating Ryu Hasegawa’s model of linear logic.
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Exercise 2

Decomposing
the exponential box of linear logic
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The categorical semantics of linear logic

A symmetric monoidal adjunction

M cartesian I. symmetric monoidal closed

Il = LoM
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Decomposition of the exponential box

Aq

LMB
MB )
4 B )
M| 4 A )
MA; M Ay D
LMA, LM Ay,
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Decomposition of the contraction node

LMA l_l H LMA

o MA)

L MA Y,
LMA
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lllustration: duplication of the exponential box

H HLMB

o

LMB
/MB

L MB T
LMB
4 VB )
4 B L
)
M | A Ayg
L MA; M Ay )
LMA, | | | Lya,




Duplication (step 1)

LMB l_l ﬂ LMB
MB MB
MB
4 B )
M| A Ag )
MAl MAk j
LM A, || LM Ay,
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Duplication (step 2)
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Duplication (step 3)

LMB LMB
f
MB MB w
B B |
/ f
Tl MA1 K MAIC MAJ} ® 00 MAk
P AN / N
MA, e MA
L J J
N\ 4 AN /L
( )
I MA, M Ay, p

LMA, I_I

I_‘LMAk
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Duplication (step 4)

LMB LMB
- ™
MB MB
B 4 B
f f
M| A Ay M| Ay Ay
pii | BT I | 55
LMA, \\ . . // LMA,
MA, MA, J

LMA, |_|

ULMAk
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Duplication (step 5)

LMA, |_| ves I_l LM Ay

LMB || mB | ]
) 4 2\
MB MB
B é B
M | Ay M A
i \ ) M
1 L /
LMA, LMA,
] MA 7 MA,
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Five steps instead of one!

Follows faithfully the categorical proof of soundness.
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Philosophy

Algebra

f” [ Categorical ]

[String Diagrama €

- (

Logic and
Language

)
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Thank you!
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