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1. Basics of quantum mechanics
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The very basics

Quantum mechanics is a fundamental branch of
physics that replaces classical mechanics and
classical electromagnetism at atomic and subatomic
level. For instance, Newtonian mechanics and
classical electromagnetism cannot explain why an
electron is staying in its orbital whereas quantum
mechanics does.

Quantum mechanics is concerned with quanta which
refers to discrete units that quantum theory assigns to
physical quantity e.g.: Energy of an atom at rest, spin
of a particle etc.
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Quantum phenomena

Some phenomena that do not appear in classical
physics that quantum mechanics describes:

- Quantisation or discretisation of certain physical
quantities

- Wave-particle duality

- Uncertainty principle

- etc.
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Probabilities

The ‘orthodox’ description of quantum mechanics –
which I will present today – is a probabilistic one.
Indeed, quantum mechanics is content to give a
probabilistic description of the quantum world. The
point is important since the ‘explanation’ of the
measurement process I will give here via quantum
decoherence do not explain how the quantum system
finally evolves in a stable deterministic state but stops
at the level of probabilities.
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The postulates

Here is a summary of the mathematical framework in
which quantum mechanics is expressed:

(i) To each physical system is associated a
(separable) complex Hilbert space H. One
dimensional subspaces of H represents states of
the system.

(ii) Evolution is described by means of unitary
transformations on H.

(iii) Observables are self-adjoint operators on H.

(iv) A composite system is the Hilbert space obtained
via the tensor product of the component state
spaces.
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Measurement in-depth

Note: From now on, I’ll speak about finitary quantum
mechanics i.e. Dim(H) <∞.

As I said in the previous slide, a measurable quantity
(observable) is represented by a self-adjoint operator
σ. The eigenvalues of σ {λi} ⊂ R represents the set of
possible outcomes of the measurement. If I measure
λj then, the state of the system after the measurement
is the eigenstate corresponding to the eigenvalue λj.
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Measurement in-depth

Recall that a hermitian matrix can be unitarily
diagonalised. The eigenvectors obtained during the
process spans the state space of the system in fact,
this says that a state can be expressed as a
superposition of the eigenstates of the observable.
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An example

Now, let us consider the simplest quantum system:
the qubit (quantum bit). A qubit is represented by a
normalized vector |φ〉 ∈ H i.e.

|φ〉 = α|0〉 + β|1〉; α, β ∈ C s.t. |α|2 + |β|2 = 1.

Now, consider the following observable on H:

σ :=

[

1 0

0 −1

]

= 1

[

1 0

0 0

]

− 1

[

0 0

0 1

]

= 1P0 − 1P1

Then expected value of – the probability to observe –
0 if I measure |φ〉 is 〈φ|P0|φ〉 = αα ≥ 0.
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Density operators

Now, note that:

〈φ|P0|φ〉 = Tr(P0|φ〉〈φ|).

There, ρφ := |φ〉〈φ| is called the density operator
associated to |φ〉. It is the projector that describes the
one-dimensional subspace of H spanned by
|φ〉 = α|0〉 + β|1〉; it is a positive matrix of trace one:

[

αα αβ

βα ββ

]

The unitaries U then act on ρ as UρU †.
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Density operators

Density operator formalism has many advantages. If
two state vectors |ψ〉, |φ〉 ∈ H produce the same
density matrix then, they are indistinguishable
physically. Moreover, we can also consider
probabilistic mixture of density operators.
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Density operators

Concretely, Given a set of states and probabilities
{|φi〉, pi} with

∑

i pi = 1, one can form the following
density operator:

∑

i

pi|φi〉〈φi|

It corresponds to a probabilistic mixture of the states
|φi〉 hence, the points in the closure of the convex hull
of pure states – states of the form |ψ〉〈ψ|– are density
operators.
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Density operators

The set of physical transformation on density
operators is given by superoperators i.e. completely
positive trace preserving operators. This includes,
isometries, traces, measurements, adjoining an ancilla
etc.
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2. The measurement problem

Quantum decoherence – p. 15/29



The measurement problem

So far, I have just given the mathematical formalism
describing quantum mechanics and I have said that an
observable is just some hermitian operator. Returning
to our toy-model, before the measurement, the qubit is
in the state:

[

αα αβ

βα ββ

]

after the measurement, it will be in the state |0〉〈0| with
probability αα and in the state |1〉〈1| with probability ββ.
This is the wavefunction collapse.
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The measurement problem

We can also think of the measurement as an operator
which has the following effect on our qubit:

[

αα αβ

βα ββ

]

M
−→

[

αα 0

0 ββ

]

Of course, this is nothing but P0ρφP0 + P1ρφP1.
However, these probabilities are a mathematical
artefact, we are left with either one of the two possible
states in our hand.
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The measurement problem

Vanishing of the off-diagonal elements in the density
operator says that we no longer have a coherent
superposition. Moreover, the outcome state is a
classical mixture. Finally, note that the passage from
coherent superposition to mixture is not unitary and
fundamentally irreversible.

Quantum decoherence – p. 18/29



3. Quantum decoherence
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Quantum decoherence

To this date, there seems to be no consensus on how
we should explain the full process of measurement.
However, there is some consensus on how we pass
from a coherent quantum state to a statistical mixture
(classical). Here is the key intuition:
An observer is macroscopic (classical) while the
objects exhibiting quantum phenomena are very small
(a grain of dust is too big). However, for an observer to
learn the outcome of a measurement on a quantum
system, this system must become correlated with a
measurement apparatus (big, classical) and this gives
the illusion of a collapse.
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Quantum decoherence

The remainder of this talk will be about explaining how
this transition occurs that is, from the density operator
point of view, the process of passing from a coherent
superposition to a statistical mixture and that’s what
quantum decoherence is about.
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Quantum decoherence

There are a few concepts I need to introduce in order
to speak of decoherence namely,

- Traces and

- Quantum entanglement.
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Traces

Working with density matrix yields a notion of trace in
an obvious sense: If I have a density operator ρ acting
on H⊗H′ (which is a joint system), I can trace out the
part which act over H or the part acting over H′. Now
what does the trace mean? It is just the expression of
the ignorance of what happens in some subsystem
(which is traced out) to which some observer doesn’t
have access.
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Quantum entanglement

A state described by ρ acting on H⊗H′ is unentangled
if it factors as ρH ⊗ ρH′ and it is said to be entangled
otherwise. For instance, the 2 qubit state

ρAB =
1

2











1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1











is entangled; simply put, it is quantum correlation.
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Quantum entanglement

Indeed, suppose that the 2 qubit state described in the
previous slide is shared between two observers (Alice
and Bob) and Alice measures her share and obtain ‘0’,
then the state collapse to

1

2











1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1











−→











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











After, if Bob measure his share of the state then, he
will obtain ‘0’ with certainty.
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All this together

Now, suppose that Alice and Bob know that they share
an entangled qubit however, they can’t communicate
then, from their respective point of view, their state
looks like

TrA(ρAB) = TrB(ρAB) =
1

2

[

1 0

0 1

]

which is the completely mixed state. However, if they
can communicate, Alice measures her share and
communicates the result to Bob then, Bob knows the
state of his qubit without having to measure it.
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Quantum decoherence

Back to decoherence. What actually happens during a
measurement? There is a quantum object that
interacts with some macroscopic apparatus in such a
way that the apparatus produces a signal which states
the outcome of the measurement. In other words,
there is an interaction between a quantum system, a
macroscopic apparatus and the environment where
the wave function becomes correlated (entangled) with
both the environment, the apparatus and, moreover,
the environment is inaccessible (traced) to observers.
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Quantum decoherence

Formally, we have a state that represents a system S:

|ψ〉 = α|0〉 + β|1〉

and a measurement apparatus A s.t.

|0〉 ⊗ |A0〉 7→ |0〉 ⊗ |A0〉 and |1〉 ⊗ |A0〉 7→ |1〉 ⊗ |A1〉

and an environment E in the state

|ǫ〉.
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Quantum decoherence

The joint system is, before the measurement in the
state

|ψ〉 ⊗ |A0〉 ⊗ |ǫ〉.

The measurement process is given by

(α|0〉+β|1〉)⊗|A0〉⊗|ǫ〉 7→ α|0〉⊗|A0〉⊗|ǫ0〉+β|1〉⊗|A1〉⊗|ǫ1〉

s.t. 〈ǫ0|ǫ1〉 = 0. As I said before, the environment is
inaccessible to the observer thus, the reduced density
operator is

ρSA = TrE(ρSAE) = |α|2|0〉|A0〉〈0|〈A0| + |β|2|1〉|A1〉〈1|〈A1|

Which contains only classical correlations.
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