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Loop categories

Definition

Given a small strict symmetric monoidal category

C × C
⊗
−→ C

I
←− 1

define

|C	| = |C|

C	(A ,B) =

�
U∈|C|
C(A ⊗ U,B ⊗ U)



Traces of intruders

Dusko Pavlovic

Trace as algebra
Loop categories

Loop monad

Traced cats are loop algs

Uniform trace

Applications

Intruders

Summary

Loop categories

Definition

Given a small strict symmetric monoidal category

C × C
⊗
−→ C

I
←− 1

define

|C	| = |C|

C	(A ,B) =
( ∑

U∈|C|

C(A ⊗ U,B ⊗ U)
) /
∼
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. . . where ∼ is the coend equivalence. . .

C(A⊗U,B⊗U)

))RRRRRR

C(A⊗V ,B⊗U) //___________

(−)◦(A⊗u)
88rrrrrrrrr

(B⊗u)◦(−) &&LLLLLLLLL C	(A ,B)

C(A⊗V ,B⊗V)

55llllll
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. . . where ∼ is the coend equivalence. . .

A ⊗ U
f

yysssssss
A ⊗ V

A⊗u

%%KKKKKKK

B ⊗ V

B⊗u %%KKKKKKK ∼ A ⊗ U

fyysssssss

B ⊗ U B ⊗ V
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. . . extended to factor out c

A ⊗ A

c

��

A

id

��

∼

A ⊗ A A

A ⊗ U ⊗ V

h

��

A ⊗ V ⊗ U
A⊗c // A ⊗ U ⊗ V

h

��

∼

B ⊗ U ⊗ V B ⊗ V ⊗ U B ⊗ U ⊗ V
B⊗c

oo
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Composition

Given

I f ∈ C	(A ,B) as A ⊗ U
f0
−→ B ⊗ U, and

I g ∈ C	(B ,C) as B ⊗ V
g0
−→ C ⊗ V ,

the composite

I f ◦ g ∈ C	(A ,C) can be viewed as

A ⊗ U ⊗ V
f0⊗V // B ⊗ U ⊗ V

B⊗c
��

C ⊗ U ⊗ V

B ⊗ V ⊗ U
g0⊗U // C ⊗ V ⊗ U

C⊗c

OO
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Composition

Given

I f ∈ C	(A ,B) as A ⊗ U
f0
−→ B ⊗ U, and

I g ∈ C	(B ,C) as B ⊗ V
g0
−→ C ⊗ V ,

the composite

I f ◦ g ∈ C	(A ,C) can be viewed as

A ⊗ U ⊗ V
f0⊗V // B ⊗ U ⊗ V

B⊗c
��

A ⊗ V ⊗ U

A⊗c

OO

B ⊗ V ⊗ U
g0⊗U // C ⊗ V ⊗ U
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Tensor

Given

I f ∈ C	(A ,B) as A ⊗ U
f0
−→ B ⊗ U, and

I h ∈ C	(C ,D) as C ⊗ V
h0
−→ D ⊗ V ,

the tensor product

I f ⊗ h ∈ C	(A ⊗ C ,B ⊗ D) can be viewed as

A ⊗ C ⊗ U ⊗ V

A⊗c⊗V
��

B ⊗ D ⊗ U ⊗ V

A ⊗ U ⊗ C ⊗ V
f0⊗h0

// B ⊗ U ⊗ D ⊗ V

B⊗c⊗V

OO
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Trace?

Given

I f ∈ C	(A ⊗ U,B ⊗ U) as

(A ⊗ U) ⊗ V
f0
−→ (B ⊗ U) ⊗ V

its trace

I TrU
AB f ∈ C	(A ,B) can be viewed as

A ⊗ (U ⊗ V)
f0
−→ B ⊗ (U ⊗ V)

i.e. as itself, modulo associativity.
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Yes, trace

Proposition

The operators TrU
AB : C	(A ⊗U,B ⊗U) −→ C	(A ,B) satisfy

the trace axioms.

Sketch of a proof

I dinaturality (sliding), yanking⇐ imposed by ∼

I naturality (tightening)⇐ def’n of composition in C	

I vanishing, superposition⇐ inspection
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Loop monad

Monad data

I 2-category SM of small symmetric monoidal cats

I 2-functor	: SM −→ SM

I unit functors

ηC : C −→ C	

(A
f
→B) 7−→ [A⊗I

f⊗I
→B⊗I]∼

I evaluation functors

µC : C		 −→ C	

[[(A⊗U)⊗V
f0
→(B⊗U)⊗V ]∼]∼ 7−→ [A⊗(U⊗V)

f0
→B⊗(U⊗V)]∼
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Loop monad

Monad data

I 2-category SM of small symmetric monoidal cats

I 2-functor	: SM −→ SM

I unit functors
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Monad data

I 2-category SM of small symmetric monoidal cats
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Traced categories are loop algebras

Theorem

The loop category C	 is the free traced category generated
by the symmetric monoidal category C.

The loop algebra structures T : C	 −→ C are just the trace
operators, expressed in a functorial form.

[Syntactic construction: Abramsky, Kelly-Laplaza]
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Proof

For a loop algebra T : C	 −→ C, and every pair A ,B ∈ C,

I the families
{
TrU

AB : C(A ⊗ U,B ⊗ U) −→ C(A ,B)
}
U∈C

are in one-to-one correspondence with

I the arrow part TAB : C	(A ,B) −→ C(A ,B)

along

∑
U

C(A ⊗U,B ⊗U) // //
�

U
C(A ⊗U,B ⊗U)

TrAB // C(A ,B)
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Proof

The operators TrU
AB : C(A ⊗ U,B ⊗ U) −→ C(A ,B)

satisfy the trace axioms because:

I naturalities, yanking ⇐⇒ factor by



U
C(A ⊗ U,B ⊗ U),

I superposition ⇐⇒ T ◦ ηC = idC
I vanishing ⇐⇒ T ◦ µC = T ◦ T	
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Uniform trace

Definition

A trace operator is uniform if

TrU
AB(f) = TrV

AB(g)

holds whenever there is some h which makes the diagram

A⊗U

f

��

A⊗h // A⊗V

g

��
B⊗U

B⊗h
// B⊗V

commute
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Strict loop categories

Definition

Given a small symmetric monoidal category

C × C
⊗
−→ C

I
←− 1

define

|C"| = |C|

C"(A ,B) =
( ∑

U∈|C|

C(A ⊗ U,B ⊗ U)
) /
≈
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. . . where ≈ strengthens the coend equivalence

C(A⊗U,B⊗U)

++WWWWWWWWWW

(B⊗h)◦(−) &&LLLLLLLLL

C(A⊗V ,B⊗U)

(−)◦(A⊗u)
88rrrrrrrrr

(B⊗u)◦(−) &&LLLLLLLLL C(A⊗U,B⊗V) //____ C"(A ,B)

C(A⊗V ,B⊗V)

(−)◦(A⊗h)
88rrrrrrrrr

33gggggggggg
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. . . where ≈ strengthens the coend equivalence

by

A ⊗ U

f

��

A⊗h__ //__ A ⊗ V

g

��

≈

B ⊗ U B⊗h__ //__ B ⊗ V
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Uniform traced categories are
strict loop algebras

Theorem

The strict loop category C" is the free uniform traced
category generated by the symmetric monoidal category C.

The strict loop algebra structures T : C" −→ C are just the
uniform trace operators, expressed in a functorial form.
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Applications

The upshot of the monadic view is that the structure of

I loop categories,

I trace algebras,

I trace homomorphisms

can often be effectively calculated .
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Examples

N ⊆ N[T ] ⊆ N[T ,A]

(sets) (clone) (action category)
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The loop category of finite sets

Consider the monoid of natural numbers

N × N
+
−→ N

0
←− 1

as the category of sets n = {0, 1, . . . , n − 1} and functions.
Then

N	(a, b) =
∑
u∈N

{
a + u

f
→ b + u | ∀y ∈ u∃x. f(x) = y

}
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The loop category of finite sets

Notation

Write a + u
f
−→ b + u where ∀y ∈ u∃x. f(x) = y

as â
f
−→ b̂ i.e. â = a + u

b̂ = b + u
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The loop category of finite sets

Trv
ab : N	(a + v , b + v) −→ N	(a, b)

(â+v
f
→b̂+v) 7−→

(
â+v̂

f̂
→b̂+v̂

)

where

â+v̂
f̂ //

� _

��

b̂+v̂
_�

��
â+vi+1� _

��

fi+1 // b̂+vi+1_�

��
b̂i+1+vi+1� u

((QQQQ

	)

66mmmm

â+vi
fi

//
66 66mmmm

� _

��

b̂+vi_�

��
â+v0

f0=f
// b̂+v0
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The loop category of finite sets

Then
f = f0 ∼ f1 ∼ · · · ∼ fi ∼ fi+1 ∼ · · ·

∗
∼ f̂

because

â+vi
f̂i

zzuuu
uu

â+vi+1r�

$$IIIII

b̂+vi+1r�

$$III
II

∼ â+vi

f̂i
zzuuu

uu

b̂+vi b̂+vi+1

∗NB The chain must be finite, because the sets are finite.
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The strict loop category of finite sets

N"(a, b) =
∑
u∈N

{
a + u

f
→ b + u | ∀y ∈ u. f(y) = y

∨ (∃i. f i(y) ∈ b

∧∃x. f(x) = y)
}
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The strict loop category of finite sets

Notation

Write a + w
f
−→ b + w where ∀y ∈ w. f(y) = y

∨ (∃i. f i(y) ∈ b

∧ ∃x. f(x) = y

as ã
f
−→ b̃ i.e. ã = a + w

b̃ = b + w
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The strict loop category of finite sets

Trv
ab : N"(a + v , b + v) −→ N"(a, b)

(ã+v
f
→b̃+v) 7−→

(
ã+ṽ

f̃
→b̃+ṽ

)

where

ã+ṽ
f̃ // b̃+ṽ

= =

ã+vb+v• b̃+vb+v•

ã+vb+v	

OOOO

b̃+vb+v	

OOOO

= =

ã+v̂
f̂

// b̃+v̂

vb = {y ∈ v | ∃i. f i(y) ∈ b}

v	 = {y ∈ v | ∀i. f i(y) ∈ v}

v• = v	/ ≈

x≈y ⇐⇒ ∃k`≥0. gk (x)=g`(y)
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Clones (Lawvere theories)

Given an algebraic theory T = 〈ΣT ,ET 〉 where

I Σ = ΣT is a signature, and

I E = ET is a set of equations

adjoin to N

I an arrow m
ϕ
→ n for every m-tuple

〈
ϕi(x1, . . . xn)

〉
i≤m of

well-formed Σ-operations, and

I identify them modulo E

to form (the dual of) the clone (or Lawvere theory)

I N[T ] = N[Σ; E].

NB since the well-formed operations include projections, the arrows of

N[T ] include the variables. A clone is thus a form of polynomial category

(cf. Lambek-Scott).
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Clones (Lawvere theories)
(à la Milner)

∣∣∣N[T ]
∣∣∣ = |N|

N[T ](m, n) =
{
(x1, . . . , xn)〈ϕ1, . . . , ϕm〉

} /
α
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Iterative algebras
Definition.
An algebraic theory T is iterative if every system

y1 = f1(y1, y2, . . . , yk , . . . , y`)

y2 = f2(y1, y2, . . . , yk , . . . , y`)

· · ·

yk = fk (y1, y2, . . . , yk , . . . , y`)

has a unique solution

f†1 (yk+1, . . . , y`) = f1(f
†

1 , f
†

2 , . . . , f
†

k , . . . , y`)

f†2 (yk+1, . . . , y`) = f2(f
†

1 , f
†

2 , . . . , f
†

k , . . . , y`)

· · ·

f†k (yk+1, . . . , y`) = fk (f†1 , f
†

2 , . . . , f
†

k , . . . , y`)

provided that all equations are guarded, i.e. that none of the
operations fj is a projection.
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Traced clones

Theorem

A clone N[T ] has a uniform trace if and only if
the corresponding algebraic theory T is iterative.
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Proof (1)

An arrow f ∈ N[T ](a + v , b + v) is a tuple

fb
1 = fb

1 (ya
1 , . . . , y

a
a , y

v
1 , . . . , y

v
v )

· · ·

fb
b = fb

b (ya
1 , . . . , y

a
a , y

v
1 , . . . , y

v
v )

fv
1 = fv

1 (ya
1 , . . . , y

a
a , y

v
1 , . . . , y

v
v )

· · ·

fv
v = fv

v (ya
1 , . . . , y

a
a , y

v
1 , . . . , y

v
v )
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Proof (2)

Rearranging the equations, we can achieve that

fv
1 = fv

1 (. . . , yv
1 , . . . , y

v
v )

· · ·

fv
k = fv

k (. . . , yv
1 , . . . , y

v
v )

are guarded operations, whereas

fv
k+1 = fv

k+1(. . . , y
v
1 , . . . , y

v
v )

· · ·

fv
v = fv

v (. . . , yv
1 , . . . , y

v
v )

are projections.
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Proof (3)

The second set just induces some identifications of
variables.

This gives a (v − k)-tuple y∗k+1, y
∗
k+2, . . . y

∗
v , possibly with

repetitions.
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Proof (4)

Now solve

yv
1 = fv

1 (yv
1 , . . . , y

v
k , y

∗
k+1, . . . y

∗
v)

· · ·

yv
k = fv

k (yv
1 , . . . , y

v
k , y

∗
k+1, . . . y

∗
v)

to get

f†1 = fv
1 (f†1 , . . . , f

†

k , y
∗
k+1, . . . , y

∗
v)

· · ·

f†k = fv
k (f†1 , . . . , f

†

k , y
∗
k+1, . . . , y

∗
v)
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Proof (5)

Trv
ab(f) ∈ N[T ](a, b) is now the tuple

f•1 = fb
1 (ya

1 , . . . , y
a
a , f
†

1 , . . . , f
†

k , y
∗
k+1, . . . , y

∗
v)

f•2 = fb
2 (ya

1 , . . . , y
a
a , f
†

1 , . . . , f
†

k , y
∗
k+1, . . . , y

∗
v)

· · ·

f•b = fb
b (ya

1 , . . . , y
a
a , f
†

1 , . . . , f
†

k , y
∗
k+1, . . . , y

∗
v)
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Action categories
(Milner 95, DP 97)

∣∣∣N[T ;A]
∣∣∣ = |N|

N[T ;A](m, n) =
{
(x1, . . . , xn)[P]〈ϕ1, . . . , ϕm〉

} /
α
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Traced action categories

Theorem

An action category N[T ;A] has a uniform trace if and only if
the algebraic theory T is iterative, and
the pomsets in A are consistent.
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Intruder in the Middle
Solving the Turing Test

[[this part was not presented]]
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Summary

I the trace operators can be viewed in a functorial form
I as algebras for the loop monad

I the trace structure can be freely adjoined to process
models

I hiding = tracing out

I intrusion can be modeled in terms of the
Int-composition

I security analysis becomes unwinding the trace
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