Traces of intruders

Dusko Pavlovic

Trace as algebra Uniform trace Applications Intruders Summary

Traces of intruders

Dusko Pavlovic

Kestrel Institute, Palo Alto (visiting Oxford University)

 — Slides from the Fields Institute Workshop on Traces — Ottawa, April 28, 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Trace as algebra

Loop categories Loop monad Traced categories are loop algebras

Uniform trace as algebra

Uniform trace Strict loop categories Uniform trace algebras

Applications

Sets

Clones

Action categories

Intruders, hiding, and traces

Intruder in the Middle Tracing out the Middle

Summary

Traces of intruders

Dusko Pavlovic

Trace as algebra Uniform trace Applications Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Trace as algebra

Loop categories Loop monad Traced categories are loop algebras

Uniform trace as algebra

Uniform trace Strict loop categories Uniform trace algebras

Applications

Sets Clones Action categories

Intruders, hiding, and traces

Tracing out the Middle

Summary

Traces of intruders

Dusko Pavlovic

Trace as algebra Uniform trace Applications Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Trace as algebra

Loop categories Loop monad Traced categories are loop algebras

Uniform trace as algebra

Uniform trace Strict loop categories Uniform trace algebras

Applications

Sets Clones Action categories

Intruders, hiding, and traces Intruder in the Middle Tracing out the Middle

Summary

Traces of intruders

Dusko Pavlovic

Trace as algebra Uniform trace Applications Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Trace as algebra

Loop categories Loop monad Traced categories are loop algebras

Uniform trace as algebra

Uniform trace Strict loop categories Uniform trace algebras

Applications

Sets Clones Action categories

Intruders, hiding, and traces

Intruder in the Middle Tracing out the Middle

Summary

Traces of intruders

Dusko Pavlovic

Trace as algebra Uniform trace Applications Intruders

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Trace as algebra

Loop categories Loop monad Traced categories are loop algebras

Uniform trace as algebra

Uniform trace Strict loop categories Uniform trace algebras

Applications

Sets Clones Action categories

Intruders, hiding, and traces

Intruder in the Middle Tracing out the Middle

Summary

Traces of intruders

Dusko Pavlovic

Trace as algebra Uniform trace Applications Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Loop categories

Definition

Given a small strict symmetric monoidal category

$$\mathbb{C} \times \mathbb{C} \xrightarrow{\otimes} \mathbb{C} \xleftarrow{l} \mathbf{1}$$

define

$$|\mathbb{C}^{\cup}| = |\mathbb{C}|$$
$$\mathbb{C}^{\cup}(A,B) = \oint_{U \in |\mathbb{C}|} \mathbb{C}(A \otimes U, B \otimes U)$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace

Applications

Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Loop categories

Definition

Given a small strict symmetric monoidal category

$$\mathbb{C} \times \mathbb{C} \xrightarrow{\otimes} \mathbb{C} \xleftarrow{l} 1$$

define

$$|\mathbb{C}^{\cup}| = |\mathbb{C}|$$
$$\mathbb{C}^{\cup}(A, B) = \left(\sum_{U \in |\mathbb{C}|} \mathbb{C}(A \otimes U, B \otimes U)\right) / \sim$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace

Applications

Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

\ldots where ~ is the coend equivalence...

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace

Applications

Intruders

Summary

・

\ldots where ~ is the coend equivalence...

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace

Applications

Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

 $A \otimes V$

 $B \otimes V$

A⊗u

 $A \otimes U$

... extended to factor out c

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications

Intruders

Summary

・ロト・日本・ヨト・ヨー シタウ

Composition

Given

•
$$f \in \mathbb{C}^{\cup}(A, B)$$
 as $A \otimes U \xrightarrow{f_0} B \otimes U$, and

•
$$g \in \mathbb{C}^{\cup}(B, C)$$
 as $B \otimes V \xrightarrow{g_0} C \otimes V$,

the composite

•
$$f \circ g \in \mathbb{C}^{\bigcirc}(A, C)$$
 can be viewed as

$$A \otimes U \otimes V \xrightarrow{f_0 \otimes V} B \otimes U \otimes V \qquad C \otimes U \otimes V$$

$$B \otimes V \otimes U \xrightarrow{g_0 \otimes U} C \otimes V \otimes U$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications

Intruders

Summary

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

Composition

Given

•
$$f \in \mathbb{C}^{\cup}(A, B)$$
 as $A \otimes U \xrightarrow{f_0} B \otimes U$, and

•
$$g \in \mathbb{C}^{\cup}(B, C)$$
 as $B \otimes V \xrightarrow{g_0} C \otimes V$,

the composite

•
$$f \circ g \in \mathbb{C}^{\bigcirc}(A, C)$$
 can be viewed as

$$\begin{array}{c} A \otimes U \otimes V \xrightarrow{f_0 \otimes V} B \otimes U \otimes V \\ A \otimes c & B \otimes c \\ A \otimes V \otimes U & B \otimes V \otimes U \xrightarrow{g_0 \otimes U} C \otimes V \otimes U \end{array}$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace

Applications

Intruders

Tensor

Given

•
$$f \in \mathbb{C}^{\cup}(A, B)$$
 as $A \otimes U \xrightarrow{f_0} B \otimes U$, and

•
$$h \in \mathbb{C}^{\cup}(C, D)$$
 as $C \otimes V \xrightarrow{h_0} D \otimes V$,

the tensor product

• $f \otimes h \in \mathbb{C}^{\cup}(A \otimes C, B \otimes D)$ can be viewed as

$$\begin{array}{ccc} A \otimes C \otimes U \otimes V & B \otimes D \otimes U \otimes V \\ A \otimes \stackrel{|}{\underset{V}{\otimes c} \otimes V} & B \otimes \stackrel{\uparrow}{\underset{B \otimes \stackrel{\circ}{\underset{C}{\otimes v}} \otimes V}{} \\ A \otimes U \otimes C \otimes V \xrightarrow{f_0 \otimes h_0} B \otimes U \otimes D \otimes V \end{array}$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications

Intruders

Trace?

Given

• $f \in \mathbb{C}^{\cup}(A \otimes U, B \otimes U)$ as

$$(A \otimes U) \otimes V \xrightarrow{f_0} (B \otimes U) \otimes V$$

its trace

•
$$Tr_{AB}^U f \in \mathbb{C}^{\bigcirc}(A, B)$$
 can be viewed as

$$A \otimes (U \otimes V) \xrightarrow{f_0} B \otimes (U \otimes V)$$

i.e. as itself, modulo associativity.

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace

Applications

Intruders

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Yes, trace

Proposition

The operators Tr^U_{AB} : $\mathbb{C}^{\bigcirc}(A \otimes U, B \otimes U) \longrightarrow \mathbb{C}^{\bigcirc}(A, B)$ satisfy the trace axioms.

Sketch of a proof

- ► dinaturality (sliding), yanking ⇐ imposed by ~
- naturality (tightening) \leftarrow def'n of composition in \mathbb{C}^{\bigcirc}
- vanishing, superposition ⇐ inspection

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs

Uniform trace

Applications

Intruders

Monad data

- 2-category SM of small symmetric monoidal cats
- 2-functor $\bigcirc: S\mathcal{M} \longrightarrow S\mathcal{M}$
- unit functors

$$\eta_{\mathbb{C}} : \mathbb{C} \longrightarrow \mathbb{C}^{\bigcirc}$$
$$(A \xrightarrow{f} B) \longmapsto [A \otimes I \xrightarrow{f \otimes I} B \otimes I].$$

evaluation functors

$$\boldsymbol{\mu}_{\mathbb{C}} : \mathbb{C}^{\cup \cup} \longrightarrow \mathbb{C}^{\cup}$$
$$[[(A \otimes U) \otimes V \xrightarrow{f_0} (B \otimes U) \otimes V]_{\sim}]_{\sim} \longmapsto [A \otimes (U \otimes V) \xrightarrow{f_0} B \otimes (U \otimes V)]$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications Intruders

Summary

Monad data

- 2-category SM of small symmetric monoidal cats
- ▶ 2-functor $\bigcirc: SM \longrightarrow SM$
- unit functors

$$\eta_{\mathbb{C}} : \mathbb{C} \longrightarrow \mathbb{C}^{\bigcirc}$$
$$(A \xrightarrow{f} B) \longmapsto [A \otimes I \xrightarrow{f \otimes I} B \otimes I].$$

evaluation functors

$$\mu_{\mathbb{C}} : \mathbb{C}^{\cup \cup} \longrightarrow \mathbb{C}^{\cup}$$
$$[[(A \otimes U) \otimes V \xrightarrow{f_0} (B \otimes U) \otimes V]_{\sim}]_{\sim} \longmapsto [A \otimes (U \otimes V) \xrightarrow{f_0} B \otimes (U \otimes V)]$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Monad data

- 2-category SM of small symmetric monoidal cats
- 2-functor $\bigcirc: S\mathcal{M} \longrightarrow S\mathcal{M}$
- unit functors

$$\eta_{\mathbb{C}} : \mathbb{C} \longrightarrow \mathbb{C}^{\cup}$$
$$(A \xrightarrow{f} B) \longmapsto [A \otimes I \xrightarrow{f \otimes I} B \otimes I]$$

evaluation functors

$$\mu_{\mathbb{C}} : \mathbb{C}^{\cup \cup} \longrightarrow \mathbb{C}^{\cup}$$
$$[[(A \otimes U) \otimes V \xrightarrow{f_0} (B \otimes U) \otimes V]_{\sim}]_{\sim} \longmapsto [A \otimes (U \otimes V) \xrightarrow{f_0} B \otimes (U \otimes V)]$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications

Intruders

Summary

(ロ) (母) (主) (主) (三) の()

Monad data

- 2-category SM of small symmetric monoidal cats
- 2-functor $\bigcirc: S\mathcal{M} \longrightarrow S\mathcal{M}$
- unit functors

$$\eta_{\mathbb{C}} : \mathbb{C} \longrightarrow \mathbb{C}^{\circlearrowright}$$
$$(A \xrightarrow{f} B) \longmapsto [A \otimes I \xrightarrow{f \otimes l} B \otimes I].$$

evaluation functors

$$\mu_{\mathbb{C}} : \mathbb{C}^{\cup \cup} \longrightarrow \mathbb{C}^{\cup}$$
$$[[(A \otimes U) \otimes V \xrightarrow{f_0} (B \otimes U) \otimes V]_{\sim}]_{\sim} \longmapsto [A \otimes (U \otimes V) \xrightarrow{f_0} B \otimes (U \otimes V)]_{\sim}]_{\sim}$$

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications Intruders

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

~

Traced categories are loop algebras

Theorem

The loop category $\mathbb{C}^{\mathcal{O}}$ is the free traced category generated by the symmetric monoidal category \mathbb{C} .

The loop algebra structures $T : \mathbb{C}^{\bigcirc} \longrightarrow \mathbb{C}$ are just the trace operators, expressed in a functorial form.

[Syntactic construction: Abramsky, Kelly-Laplaza]

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop alge

Uniform trace

Applications

Intruders

Proof

For a loop algebra $T : \mathbb{C}^{\bigcirc} \longrightarrow \mathbb{C}$, and every pair $A, B \in \mathbb{C}$,

- ► the families $\{Tr_{AB}^U : \mathbb{C}(A \otimes U, B \otimes U) \longrightarrow \mathbb{C}(A, B)\}_{U \in \mathbb{C}}$ are in one-to-one correspondence with
- the arrow part $T_{AB} : \mathbb{C}^{\cup}(A, B) \longrightarrow \mathbb{C}(A, B)$

along

$$\sum_{U} \mathbb{C}(A \otimes U, B \otimes U) \longrightarrow \oint_{U} \mathbb{C}(A \otimes U, B \otimes U) \xrightarrow{Tr_{AB}} \mathbb{C}(A, B)$$

<ロ> <同> <目> <目> <目> <目> <日> <日> <日> <日</p>

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs Uniform trace Applications

Intruders

Proof

Traces of intruders

Dusko Pavlovic

Trace as algebra Loop categories Loop monad Traced cats are loop algs

Uniform trace

Applications

Intruders

Summary

The operators $Tr_{AB}^U : \mathbb{C}(A \otimes U, B \otimes U) \longrightarrow \mathbb{C}(A, B)$ satisfy the trace axioms because:

▶ naturalities, yanking \iff factor by $\oint_U \mathbb{C}(A \otimes U, B \otimes U)$,

▶ superposition
$$\iff$$
 $T \circ \eta_{\mathbb{C}} = \mathit{id}_{\mathbb{C}}$

• vanishing
$$\iff T \circ \mu_{\mathbb{C}} = T \circ T^{\mathbb{C}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniform trace

Definition

A trace operator is uniform if

$$Tr^U_{AB}(f) = Tr^V_{AB}(g)$$

holds whenever there is some h which makes the diagram

commute

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Uniform trace

Strict loop categories Uniform trace algebras

Applications

Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Strict loop categories

Definition

Given a small symmetric monoidal category

$$\mathbb{C} \times \mathbb{C} \xrightarrow{\otimes} \mathbb{C} \xleftarrow{l} \mathbf{1}$$

define

$$\begin{aligned} |\mathbb{C}^{\leftrightarrow}| &= |\mathbb{C}| \\ \mathbb{C}^{\leftrightarrow}(A,B) &= \left(\sum_{U\in|\mathbb{C}|} \mathbb{C}(A\otimes U,B\otimes U)\right) \middle| \approx \end{aligned}$$

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Uniform trace

Strict loop categories

Uniform trace algebras

Applications

Intruders

Summary

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

... where \approx strengthens the coend equivalence

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Uniform trace

Strict loop categories

Uniform trace algebras

Applications

Intruders

Summary

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへぐ

\ldots where \approx strengthens the coend equivalence

by

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Uniform trace

Strict loop categories

Uniform trace algebras

Applications

Intruders

Summary

$$A \otimes U - -A \otimes h \rightarrow A \otimes V$$

$$\begin{vmatrix} f & \approx & g \\ \downarrow & \downarrow & \downarrow \\ B \otimes U - -B \otimes h \rightarrow B \otimes V \end{vmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniform traced categories are strict loop algebras

Theorem

The strict loop category \mathbb{C}^{\leftarrow} is the free uniform traced category generated by the symmetric monoidal category \mathbb{C} .

The strict loop algebra structures $T : \mathbb{C}^{\leftrightarrow} \longrightarrow \mathbb{C}$ are just the uniform trace operators, expressed in a functorial form.

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Uniform trace

Strict loop categories Uniform trace algebras

Applications

Intruders

Applications

The upshot of the monadic view is that the structure of

- loop categories,
- trace algebras,
- trace homomorphisms

can often be effectively calculated.

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets Clones

Action categories

Intruders

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Examples

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones Action categories

Intruders

Summary

$\mathbb{N} \subseteq \mathbb{N}[\mathcal{T}] \subseteq \mathbb{N}[\mathcal{T},\mathcal{A}]$

(sets) (clone) (action category)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Consider the monoid of natural numbers

$$\mathbb{N} \times \mathbb{N} \xrightarrow{+} \mathbb{N} \xleftarrow{0} 1$$

as the category of sets $n = \{0, 1, ..., n-1\}$ and functions. Then

$$\mathbb{N}^{\bigcirc}(a,b) = \sum_{u \in \mathbb{N}} \left\{ a + u \xrightarrow{f} b + u \mid \forall y \in u \exists x. f(x) = y \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Notation

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

Write
$$a + u \xrightarrow{f} b + u$$
 where $\forall y \in u \exists x. f(x) = y$
as $\hat{a} \xrightarrow{f} \hat{b}$ i.e. $\hat{a} = a + u$
 $\hat{b} = b + u$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

$$Tr_{ab}^{v} : \mathbb{N}^{\bigcirc}(a+v,b+v) \longrightarrow \mathbb{N}^{\bigcirc}(a,b)$$
$$(\hat{a}+v\overset{f}{\rightarrow}\hat{b}+v) \longmapsto (\hat{a}+\hat{v}\overset{f}{\rightarrow}\hat{b}+\hat{v})$$

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

because

Then

*NB The chain must be finite, because the sets are finite.

Traces of intruders
Dusko Pavlovic
Trace as algebra
Uniform trace
Applications
Sets
Clones
Action categories
Intruders
Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

$$\mathbb{N}^{\leftrightarrow}(a,b) = \sum_{u \in \mathbb{N}} \left\{ a + u \xrightarrow{i} b + u \mid \forall y \in u. \ f(y) = y \\ \lor (\exists i. \ f^{i}(y) \in b \\ \land \exists x. \ f(x) = y) \right\}$$

•

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Notation

Write
$$a + w \xrightarrow{t} b + w$$
 where $\forall y \in w$. $f(y) = y$
 $\lor \quad (\exists i. f^i(y) \in b)$
 $\land \exists x. f(x) = y$

as
$$\tilde{a} \longrightarrow b$$
 i.e. $\tilde{a} = a + w$
 $\tilde{b} = b + w$

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

$$\begin{array}{rcl} Tr^{v}_{ab} \ : \ \mathbb{N}^{\leftrightarrow}(a+v,b+v) & \longrightarrow & \mathbb{N}^{\leftrightarrow}(a,b) \\ & & (\tilde{a}+v\overset{f}{\rightarrow}\tilde{b}+v) & \longmapsto & \left(\tilde{a}+\tilde{v}\overset{\tilde{f}}{\rightarrow}\tilde{b}+\tilde{v}\right) \end{array}$$

Traces of intruders
Dusko Pavlovic
Trace as algebra
Uniform trace
Applications
Sets
Clones
Action categories
Intruders
Summary

where

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Clones (Lawvere theories)

Given an algebraic theory $\mathcal{T} = \langle \Sigma_{\mathcal{T}}, \textit{E}_{\mathcal{T}} \rangle$ where

- $\Sigma = \Sigma_T$ is a signature, and
- $E = E_T$ is a set of equations

adjoin to $\ensuremath{\mathbb{N}}$

- an arrow m → n for every m-tuple ⟨φ_i(x₁,...x_n)⟩_{i≤m} of well-formed Σ-operations, and
- identify them modulo E

to form (the dual of) the clone (or Lawvere theory)

• $\mathbb{N}[\mathcal{T}] = \mathbb{N}[\Sigma; E].$

NB since the well-formed operations include projections, the arrows of $\mathbb{N}[\mathcal{T}]$ include the variables. A clone is thus a form of *polynomial category* (cf. Lambek-Scott).

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Clones (Lawvere theories) (à la Milner)

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

$$\begin{aligned} \left| \mathbb{N}[\mathcal{T}] \right| &= |\mathbb{N}| \\ \mathbb{N}[\mathcal{T}](m,n) &= \left\{ (x_1,\ldots,x_n) \langle \varphi_1,\ldots,\varphi_m \rangle \right\} \Big/ \alpha \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Iterative algebras

Definition.

An algebraic theory ${\mathcal T}$ is *iterative* if every system

. . .

$$y_1 = f_1(y_1, y_2, ..., y_k, ..., y_\ell) y_2 = f_2(y_1, y_2, ..., y_k, ..., y_\ell)$$

$$y_k = f_k(y_1, y_2, \ldots, y_k, \ldots, y_\ell)$$

has a unique solution

$$\begin{aligned} f_1^{\dagger}(y_{k+1}, \dots, y_{\ell}) &= f_1(f_1^{\dagger}, f_2^{\dagger}, \dots, f_k^{\dagger}, \dots, y_{\ell}) \\ f_2^{\dagger}(y_{k+1}, \dots, y_{\ell}) &= f_2(f_1^{\dagger}, f_2^{\dagger}, \dots, f_k^{\dagger}, \dots, y_{\ell}) \\ & \dots \\ f_k^{\dagger}(y_{k+1}, \dots, y_{\ell}) &= f_k(f_1^{\dagger}, f_2^{\dagger}, \dots, f_k^{\dagger}, \dots, y_{\ell}) \end{aligned}$$

provided that all equations are *guarded*, i.e. that none of the operations f_j is a projection.

Traces of intruders
Dusko Pavlovic
Trace as algebra
Uniform trace
Applications
Sets
Clones
Action categories
Intruders
Summary

Traced clones

Theorem

A clone $\mathbb{N}[\mathcal{T}]$ has a uniform trace if and only if the corresponding algebraic theory \mathcal{T} is iterative.

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof (1)

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

An arrow $f \in \mathbb{N}[\mathcal{T}](a + v, b + v)$ is a tuple

. . .

. . .

$$f_1^b = f_1^b(y_1^a, \dots, y_a^a, y_1^v, \dots, y_v^v)$$

$$\begin{aligned} f_b^b &= f_b^b(y_1^a, \dots, y_a^a, y_1^v, \dots, y_v^v) \\ f_1^v &= f_1^v(y_1^a, \dots, y_a^a, y_1^v, \dots, y_v^v) \end{aligned}$$

$$f_v^v = f_v^v(y_1^a, \ldots, y_a^a, y_1^v, \ldots, y_v^v)$$

Proof (2)

Rearranging the equations, we can achieve that

. . .

$$f_1^v = f_1^v(\ldots, y_1^v, \ldots, y_v^v)$$

$$f_k^{\mathsf{v}} = f_k^{\mathsf{v}}(\ldots, y_1^{\mathsf{v}}, \ldots, y_{\mathsf{v}}^{\mathsf{v}})$$

are guarded operations, whereas

$$f_{k+1}^{\nu} = f_{k+1}^{\nu}(\ldots, y_1^{\nu}, \ldots, y_{\nu}^{\nu})$$

...
$$f_{\nu}^{\nu} = f_{\nu}^{\nu}(\ldots, y_1^{\nu}, \ldots, y_{\nu}^{\nu})$$

are projections.

Traces of intruders
Dusko Pavlovic
Trace as algebra
Uniform trace
Applications
Sets
Clones
Action categories

Intruders

Proof (3)

The second set just induces some identifications of variables.

This gives a (v - k)-tuple $y_{k+1}^*, y_{k+2}^*, \dots, y_v^*$, possibly with repetitions.

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

(日)

Action categories

Intruders

Proof (4)

Now solve

$$y_{1}^{v} = f_{1}^{v}(y_{1}^{v}, \dots, y_{k}^{v}, y_{k+1}^{*}, \dots, y_{v}^{*})$$

...
$$y_{1}^{v} = f_{1}^{v}(y_{1}^{v}, \dots, y_{k}^{v}, y_{k+1}^{*}, \dots, y_{v}^{*})$$

$$y_k^v = f_k^v(y_1^v, \ldots, y_k^v, y_{k+1}^*, \ldots, y_v^*)$$

to get

$$\begin{array}{rcl} f_{1}^{\dagger} & = & f_{1}^{v}(f_{1}^{\dagger},\ldots,f_{k}^{\dagger},y_{k+1}^{*},\ldots,y_{v}^{*}) \\ & & \\ & & \\ f_{k}^{\dagger} & = & f_{k}^{v}(f_{1}^{\dagger},\ldots,f_{k}^{\dagger},y_{k+1}^{*},\ldots,y_{v}^{*}) \end{array}$$

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

Proof (5)

 $Tr_{ab}^{v}(f) \in \mathbb{N}[\mathcal{T}](a, b)$ is now the tuple

$$f_{1}^{\bullet} = f_{1}^{b}(y_{1}^{a}, \dots, y_{a}^{a}, f_{1}^{\dagger}, \dots, f_{k}^{\dagger}, y_{k+1}^{*}, \dots, y_{v}^{*})$$

$$f_{2}^{\bullet} = f_{2}^{b}(y_{1}^{a}, \dots, y_{a}^{a}, f_{1}^{\dagger}, \dots, f_{k}^{\dagger}, y_{k+1}^{*}, \dots, y_{v}^{*})$$

$$\dots$$

$$f_{b}^{\bullet} = f_{b}^{b}(y_{1}^{a}, \dots, y_{a}^{a}, f_{1}^{\dagger}, \dots, f_{k}^{\dagger}, y_{k+1}^{*}, \dots, y_{v}^{*})$$

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

・ロト・4日・4日・4日・4日・9000

Action categories

Intruders

Action categories

(Milner 95, DP 97)

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Summary

$$\begin{aligned} \left| \mathbb{N}[\mathcal{T};\mathcal{A}] \right| &= |\mathbb{N}| \\ \mathbb{N}[\mathcal{T};\mathcal{A}](m,n) &= \left\{ (x_1,\ldots,x_n)[P]\langle \varphi_1,\ldots,\varphi_m \rangle \right\} / \alpha \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Traced action categories

Theorem

An action category $\mathbb{N}[\mathcal{T}; \mathcal{A}]$ has a uniform trace if and only if the algebraic theory \mathcal{T} is iterative, and the pomsets in \mathcal{A} are consistent.

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Sets

Clones

Action categories

Intruders

Intruder in the Middle

Solving the Turing Test

[[this part was not presented]]

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Intruders

Intruder in the Middle Tracing out the Middle

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Tracing out the Middle

Traces of intruders

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Intruders

Intruder in the Middle Tracing out the Middle

Summary

[[this part was not presented]]

Summary

- the trace operators can be viewed in a functorial form
 - as algebras for the loop monad
- the trace structure can be freely adjoined to process models
 - hiding = tracing out
- intrusion can be modeled in terms of the Int-composition
 - security analysis becomes unwinding the trace

Fraces	of	intr	ud	er
	· · ·			

Dusko Pavlovic

Trace as algebra

Uniform trace

Applications

Intruders

Summary

▲□▶▲□▶▲□▶▲□▶ ▲□ シタの