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Loop categories

Definition
Given a small strict symmetric monoidal category
® I
CxC—C—1
define

Ic°| = |C|
C°(A,B) = 9§ C(A® U,Bo )
Ue|C|
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CxC-2cd 1
define
Ic°| = [C]|

CY(A.B) = (UE% C(A®U,B®U))/~



.where ~ is the coend equivalence...

C(AsU,BU)
(-)o(Asu) =

C(A@V,B@U) —————————— > CU(A B)

(wm -7

C(A®V,BoV
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. extended to factor out ¢

A®A

A®A

AUV

BaU®V

AsVelU-—22-AgUsV

Lh

B®V®UﬁﬁjB®U®v
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the tensor product
» f®@heCY(A®C,B® D) can be viewed as

ARCU®V BeDeU®V
|
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A®U®C®Vf—O>B®U®D®V
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Yes, trace

Proposition

The operators Tri; : CY(A® U, B® U) — C°(A, B) satisfy
the trace axioms.

Sketch of a proof

» dinaturality (sliding), yanking < imposed by ~
» naturality (tightening) < def'n of composition in C°
» vanishing, superposition < inspection
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Loop monad
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Loop monad

Monad data
» 2-category SM of small symmetric monoidal cats
» 2-functor O: SM — SM
» unit functors

e : C—C°

(ALB) — [Ael3Bel].
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Loop monad

Monad data

v

2-category SM of small symmetric monoidal cats
2-functor O: SM — SM
unit functors

\4

v

e : C—C°

(ALB) — [Ael3Bel].

evaluation functors

v

He - cPC — ¢V

[[(AsU)eV3(BaU)eV].]. — [As(UsV)SBe(UsV)]-
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Traced categories are loop algebras

Theorem

The loop category C is the free traced category generated
by the symmetric monoidal category C.

The loop algebra structures T : C¥ — C are just the trace
operators, expressed in a functorial form.

[Syntactic construction: Abramsky, Kelly-Laplaza]
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Uniform trace
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along

Tras

D C(AeU,BaU) —= 9§C(A®U,B®U) —_C(A, B)
U U



Proof

The operators Try; : C(A ® U, B® U) — C(A, B)
satisfy the trace axioms because:

> naturalities, yanking < factor by ¢ C(A® U,B®U),
» superposition < T onc = idc
> vanishing & Touc=ToTY
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Uniform trace

Definition
A trace operator is uniform if
W,LL\JB(f) = TrXB(g)

holds whenever there is some h which makes the diagram

A®h
AQU ——— AV
f g

BoU ——— BgV
B®h

commute
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.where = strengthens the coend equivalence ~ ™=*"**
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...where =~ strengthens the coend equivalence

by

ARU--Ash->ApV

B U--Beh—->B®V
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Uniform traced categories are
strict loop algebras

Theorem

The strict loop category C is the free uniform traced
category generated by the symmetric monoidal category C.

The strict loop algebra structures T : C* — C are just the
uniform trace operators, expressed in a functorial form.
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Applications
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The upshot of the monadic view is that the structure of Inlruder:
> loop categories, Summary

» trace algebras,

» trace homomorphisms

can often be effectively calculated
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(sets) (clone) (action category)
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as the category of sets n = {0, 1,...,n — 1} and functions.
Then

N°(a,b) = Z{a+u—f>b+u|\!yeuﬂx. f(x):y}
ueN



The loop category of finite sets

Notation

f
Write @ + u — b + uwhere Yy € udx. f(x) =y

as

~ [ &
a—b»>

ie. a

b

a-+u
b+u
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The loop category of finite sets

T, N%(a+v,b+v) — N9a,b)

(a+ v—f>l3+v) — (a+ 0—’>B+\7)

where

atvo ————> bty

fo=F
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The Ioop Category Of flnlte Sets Traces of intruders
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f=fo~fi~eoonfim iy~ 2

because e
Intruders
- a+v; é+Vi+1 Summary
y N
b+vis & a+tv;
(\ ) A ;/?I
btv b+vita

*NB The chain must be finite, because the sets are finite.



The strict loop category of finite sets

N“’(a,b):Z{a+u—f>b+u|Vyeu.f(y):y

ueN

v (3. f(y)eb
Adx. f(x) = y)}
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The strict loop category of finite sets

Notation

Writea+w—f>b+wwhere\7’yew. fly)=y

as

45

e. a

(@

v (3. fi(y)
A Ax. f(x)

a+w
b+w

€b
=Yy
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The strict loop category of finite sets

v o &
Try, : N7(a+v,b+v)
(é—|—v—f>5+v)
where
- f 2.
447V ———— pit 7 Vb
= = g
a+vP+ve b+vP+ve v
? -
FERVLRRVE bvP4v©

[\

+

<>
~n>J]

o
e
<>
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{y ev|3i f(y)eb)
{yev|Vif(y)ev)
VU/ ~

x~y e 3IkL20. gk (x)=g’(y)



Clones (Lawvere theories)

Given an algebraic theory 7~ = (X4, Es-) where
» > = >4 is a signature, and
» E = E+ is a set of equations
adjoin to N
> an arrow m 5 n for every m-tuple {pi(x1,...Xn))i<y Of
well-formed X -operations, and
> identify them modulo E
to form (the dual of) the clone (or Lawvere theory)
» N[7] = NI[L; E].

NB since the well-formed operations include projections, the arrows of

N[77] include the variables. A clone is thus a form of polynomial category

(cf. Lambek-Scott).
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(& la Milner)
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N[ = IN|
N[7](m, n)

I
——
~—~
&

5

..,Xn)(gol,...,t,om)}/cx



Traces of intruders

Iterative algebras

Definition.
An algebraic theory 7 is iterative if every system
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Summary

Yo = f(yY2, s Yis--osYe)

has a unique solution

fI(yk-‘rl’---vyf) = fl(ffaf;""-af;’-"ayf)
B Whgao-nye) = By
f;(ka,...,yg) = fk(ff,f;,...,f;,...,yg)

provided that all equations are guarded, i.e. that none of the
operations f; is a projection.



Traced clones
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A clone N[T| has a uniform trace if and only if
the corresponding algebraic theory T is iterative.



Proof (1)

An arrow f € N[T](a + v,b + v) is a tuple

i

b
fb

ff

fy

i

§%

a

15+~

a v
LYa Y.

a v
YarYi.---
a v
YarYi.---

a v
SYE Y

V)

V)
V)

V)
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Proof (2)

Rearranging the equations, we can achieve that

o=

o=

Gy W)

(oo Yoo W)

are guarded operations, whereas

v —
k+1

fo=

are projections.

(Y W)

fy (oo ¥ W)
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Proof (3)

The second set just induces some identifications of
variables.

This gives a (v — k)-tuple ¥ 1, ¥, 5, - - ¥y, possibly with
repetitions.
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Proof (4)

Now solve

to get

B Y Yians

LGN IS I

(AN AR I
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)
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V)



Proof (5)

Tr}, (f) € N[T](a, b) is now the tuple

f

f;

(v§
(v§

]

]

a ff Toy*

5 il o000 s Miampooo
a ff Toy*

o Vol paaa o s e

+ i
.,ys,fl,...,fk,y;+1,...

V)

YY)

W)
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(Milner 95, DP 97)
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Traced action categories

Theorem

An action category N[T"; A| has a uniform trace if and only if
the algebraic theory 7 is iterative, and
the pomsets in A are consistent.
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Intruder in the Middle

Solving the Turing Test

[[this part was not presented]]
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» the trace operators can be viewed in a functorial form
» as algebras for the loop monad

» the trace structure can be freely adjoined to process
models

» hiding = tracing out
» intrusion can be modeled in terms of the
Int-composition
» security analysis becomes unwinding the trace

Summary
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